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In this report, we provide the details of the proofs for the asymptotic behaviour of the post-processing SNR for the Time-
multiplexed training scheme as well as for the data-dependent superimposed training scheme.

I. TIME-MULTIPLEXING TRAINING SCHEME

In [1], we stated the following theorem:
Theorem 1: Under the asymptotic regime, and conditioned on the channel, the post-processing noise experienced by the i-th
antenna at each time j for the TDMT scheme behaves asymptotically as a Gaussian random variable:
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We provide hereafter some elements of the proof.
We recall in [1] that the channel estimate is given by:
ﬁt = H + AHt

where AH; = V, P} (PtP?)fl. After applying the zero forcing linear receiver, the effective post-processing noise AW, can
be written as:
AW, = —-H*AH,W + (H* — H* AH,H¥) V,
In the sequel, we propose to determine the asymptotic distribution of the post-processing noise of each entry of the matrix
AW,. Actually the (i, 7) entry of AW, is given by:
(AW,), ; = —hf AH,w; + (h#), (Ix — AH,) H#v,
where hf& denotes the ith row of H¥, w; and vy ; denote jth columns of W and V3, respectively. Conditioned on H, V;
and W, (AWy), ; 1s a Gaussian random variable with mean equal to fthHtwj and variance
H
o2 x = o’hf(Ix — AH,) H# (H#)" (Ix — AH,Y) (h?)
H
= o?h# (Ix — AH,) (H'H) ' (Ix — AH,") (h#) .

The characteristic function of a complex Gaussian random variable is given by the following theorem.

Theorem 2: Let X, be a complex Gaussian random variable with mean m x , and variance aﬁ(,n, such that E(X,,—m x,n)2 =
0. Then, X,, can be seen as a two-dimensional random variable corresponding to its real and imaginary parts. The characteristic
function of X, is therefore given by:

E [exp (JR(s*X,))] = exp (3R (s"mx.n)) exp <—3520§(7n> .

Applying Theorem?2, the conditional characteristic function of (AW,). . can be written as:

2%}
E [exp (]?R (s* (AWt)i’j)) V1, H,W} = exp (—j?R (s*h?&AHtwj)) exp <—£5203}7N> .

To remove the condition expectation on V; and W, one should prove that o2 ;- converges almost surely to a deterministic
quantity. Actually, 02 , can be expanded as follows:

o2 =o*bf () + o*hf AR, (HH) T (AH)" (bF) " - 2% (hF AR, (HUH) T (0F)7).

w,
Let
H
Aen = bFAH, (H'H) (AH)"(bF)
H
con = hFAH, (H'H)™ (hf) .
We study in the following the asymptotic behaviour of A, n and €, n. But first, let us recall the following known results.
Theorem 3: Let x = [x1,--- ,xn|" be a N x 1 vector where the entries x; are centered iid complex random variables with
unit variance and finite fourth order. Let A be a determinsitic N x N complex matrix with bounded spectral norm. Then,
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NXHAX - N'I‘r(A) —0 almost surely.



Theorem 4: Almost sure convergence of weighted averages

Let ay = [a1,--- 7aN]T be a sequence of N x 1 determinstic of complex vectors with sup %a}*\,aN < oo. Let xy be a
N x 1 random vector with iid entries such that Ez; = 0 and E|z1| < co. Therefore, %a’]‘VxN converges almost surely to zero
as NNV tends to infinity.
Using Theorem3, it can be proved that:
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Since %Tr (HHH)_1 converges asymptotically to as the dimensions go to infinity, we get:
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Note that Theorem3 can be applied since the smallest eigenvalue of the Wishart matrix (H"H) are almost surely uniformely
bounded away from zero by (1 —/cz )2 > 0, [2]. Also, using theorem 4, we can prove that:

€N — 0 almost surely.

This leads to
TN~ Ty — 0 almost surely.
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where &, \ is given by:
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Conditioning on H and W, the characteristic function satisfies asymptotically:
1
E [GXP (ﬁR (5* (AWt)i,j)) H, W] -E [eXp (—Jﬂ% (S*hZ#AHth)> |W,H] exp <—152517N> — 0 almost surely.

Also conditioning on W and H, hf& AH,w; is a Gaussian random variable with zero mean and variance
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Since - w;"w; — o2, almost surely, we get that o2, \, converges almost surely to 62, \ where
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E {exp (fﬁf (s*thHtwj)) |W,H} = exp (71820'72,17]\;) .
Finally, we obtain that conditionally on the channel:

E [exp (ﬂ% (s* (AWt)”))} —exp (—isz (&fn’N + &?U’N)) — 0 almost surely.
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The proof is concluded by noticing that 57, y + 65, v = 02,0 [(HHH)_l}

II. DATA-DEPENDENT SUPERIMPOSED TRAINING SCHEME

We also stated in [1] the following theorem. » ) ) ) )
Theorem 5: Under the asymptotic regime, and conditioned on the channel, the post-processing noise experienced by the i-th
antenna at each time j behaves asymptotically as a Gaussian mixture random variable, i.e:
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where Q is the cardinal of the set of all possible values of W (i, k) = ¢; Z W (i, k) and p; is the probability that W (i, k)

k=1
takes the value «;. Moreover, d, is given by:
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In the sequel, we provide the proof for this theorem. We recall in [1] that for the data-dependent scheme, the channel estimate
is given by: .
H,=H+ AH,

where AH; = VP " (PdeH)fl. After applying the zero forcing linear receiver, the effective post-processing noise AW,
can be written as:
AW, = -WIJ-H#AH,W (Iy —J)+ (H* - H*AH,H#) V (Iy — J)
= —-WJ-H?AH,W (Iy —J) + H*V (Iy — J) - H¥ AHH*V (Iy — J).
Hence
(AW,), ; = =Wwid; —hI VP (PaP{) ' W (e; = ;) + hiV (ej — J;) — h¥ VPy" (PaPY) "  H¥V (e; - J;)
where e; and J; denotes the jth columns of I and J, respectively and w; denotes the ith row of the matrix W. Let v; =
T

V(e; —J,), and vy = [h?V(PdPg)‘lplf,m ,th(PdPg)‘lp;} . where py,--- ,px denote the K rows of P. The
vector [v],v3]" is a Gaussian vector. Since E [viv}] = 0, v, and v, are independent. Moreover, E [viv}] = o2 (1 — £) Iy,
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and E [(v1)"v3] = 25 [(HHH)—l] Ix.
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Conditioning on vy, H and W, (A%d)

. 2 .
and variance o, equal to:

;.; is a Gaussian random variable with mean equal to —w;J; — vi'W (e; — J;)

Zon = E[(0F —viu#)vivi ()" - (18%)" D)) v
_ E [hfvlvil (hf)ﬂ} +E [ng#vlv§I (H#)“(vg)H] —9E {m (viE#v, v (hi )H)
= -5y )] o2 Somtvg )~ (v (0F) " a0 T (v (n?))

Using the same techniques as before, it can be proved that:
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and also that, Y
viH? (hf&) — 0 almost surely.

Therefore,
qud,N - 53%1\7 — 0 almost surely
where,
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Consequently,

~ * T Lo
E {exp (]ER (s* (AW)”)) |H,W,v2] =E[exp (=R (s"W;J; + s"va W (e; — J;))) |[W, va]exp (_152‘712%1\1> .

Conditioning on W and H, w;J; + viW (e; — J;) is a Gaussian random variable with mean equal to w;J; and variance

2 : .
O, N given by:

= E[viW(e; —J;) (e} —J)) W"(v3)"|W, H]

0,2

- 5

Using Theorem 3, we can easily prove that:
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Conditioning only on H, the conditional characteristic function satisfies:

E [exp (]§R (s* (AWd)i,j)) |H} — E[exp (—jR (s*w;J;))] exp (—ESQ (63,va + &?nd,N)> — 0.



Giving the structure of the matrix J, w;J; involves the average of i symmetric independent and identically distributed discrete
random variables, and therefore,

o)
E [exp (—5R (s"W,))] = D piexp (R (s7ai))

i=1
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where Q is the set of all possible values of W, = ¢1 > 2, W, ; and p; is the probability that W, ; takes the value «;.
Consequently;

E [exp (57 (5" (AWL), ;) ) 1H] = ip exp (R (0 exp (-1 (0 + o))

We conclude the proof by noting that
G+ 0%, =0 [(HH)Y] o
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