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In this report, we provide the details of the proofs for the asymptotic behaviour of the post-processing SNR for the Time-
multiplexed training scheme as well as for the data-dependent superimposed training scheme.

I. TIME-MULTIPLEXING TRAINING SCHEME

In [1], we stated the following theorem:
Theorem 1: Under the asymptotic regime, and conditioned on the channel, the post-processing noise experienced by the i-th

antenna at each time j for the TDMT scheme behaves asymptotically as a Gaussian random variable:
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We provide hereafter some elements of the proof.
We recall in [1] that the channel estimate is given by:

Ĥt = H + ΔHt

where ΔHt = V1P
H

t (PtP
H

t )
−1. After applying the zero forcing linear receiver, the effective post-processing noise ΔWt can

be written as:
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#
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In the sequel, we propose to determine the asymptotic distribution of the post-processing noise of each entry of the matrix
ΔWt. Actually the (i, j) entry of ΔWt is given by:
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The characteristic function of a complex Gaussian random variable is given by the following theorem.
Theorem 2: Let Xn be a complex Gaussian random variable with mean mX,n and variance σ2

X,n, such that E(Xn−mX,n)2 =
0. Then, Xn can be seen as a two-dimensional random variable corresponding to its real and imaginary parts. The characteristic
function of Xn is therefore given by:
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Applying Theorem2, the conditional characteristic function of (ΔWt)i,j can be written as:
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To remove the condition expectation on V1 and W, one should prove that σ2
w,K converges almost surely to a deterministic

quantity. Actually, σ2
w,N can be expanded as follows:

σ2
w,N = σ2h

#
i

(
h

#
i

)
H

+ σ2h
#
i ΔHt (HHH)

−1
(ΔHt)

H

(
h

#
i

)
H

− 2σ2�
(
h

#
i ΔHt (HHH)

−1
(
h

#
i

)
H
)

.

Let
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We study in the following the asymptotic behaviour of Aσ,N and εσ,N . But first, let us recall the following known results.
Theorem 3: Let x = [x1, · · · , xN ]

T be a N × 1 vector where the entries xi are centered iid complex random variables with
unit variance and finite fourth order. Let A be a determinsitic N × N complex matrix with bounded spectral norm. Then,

1

N
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Theorem 4: Almost sure convergence of weighted averages
Let aN = [a1, · · · , aN ]

T be a sequence of N × 1 determinstic of complex vectors with supN
1
N aH

NaN < ∞. Let xN be a
N × 1 random vector with iid entries such that Ex1 = 0 and E|x1| < ∞. Therefore, 1

N aH
NxN converges almost surely to zero

as N tends to infinity.
Using Theorem3, it can be proved that:
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Note that Theorem3 can be applied since the smallest eigenvalue of the Wishart matrix (HHH) are almost surely uniformely
bounded away from zero by (1 −√
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2 > 0, [2]. Also, using theorem 4, we can prove that:
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Conditioning on H and W, the characteristic function satisfies asymptotically:
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Also conditioning on W and H, h
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Finally, we obtain that conditionally on the channel:
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The proof is concluded by noticing that σ̃2
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II. DATA-DEPENDENT SUPERIMPOSED TRAINING SCHEME

We also stated in [1] the following theorem.
Theorem 5: Under the asymptotic regime, and conditioned on the channel, the post-processing noise experienced by the i-th

antenna at each time j behaves asymptotically as a Gaussian mixture random variable, i.e:
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In the sequel, we provide the proof for this theorem. We recall in [1] that for the data-dependent scheme, the channel estimate
is given by:

Ĥd = H + ΔHd

where ΔHd = VPd
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can be written as:
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Conditioning on v2, H and W, (ΔWd)i,j is a Gaussian random variable with mean equal to −w̃iJj − vT
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Using the same techniques as before, it can be proved that:
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Conditioning only on H, the conditional characteristic function satisfies:
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Giving the structure of the matrix J, w̃iJj involves the average of 1
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symmetric independent and identically distributed discrete
random variables, and therefore,
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