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ABSTRACT This paper investigates the problem of fast time-varying frequency-selective (i.e., multipath)
channel estimation over single-input multiple-output orthogonal frequency-division multiplexing (SIMO
OFDM)-type transmissions. We do so by tracking the variations of each complex gain coefficient using
a polynomial-in-time expansion. To that end, we derive the log-likelihood function (LLF) both in the data-
aided (DA) and non-data-aided (NDA) cases. The DA maximum likelihood (ML) estimates over fast SIMO
OFDM channels are derived here for the first time in closed-form expressions and hereby shown to be
limited to applying over each receive antenna the DA least squares (LS) estimator tailored in [1] to fast
SISO OFDM channels. This DA ML is used to initialize periodically, over a relatively large number of data
blocks (i.e., with further reduced and relatively close-to-negligible pilot overhead compared to DA ML),
a new expectation maximization (EM) ML-type solution we developed here in the NDA case to iteratively
maximize the LLF. We also introduce an alternative regularized DA ML (RDM) initialization solution
no longer requesting - in contrast to DA ML - more per-carrier pilot frames than the number of paths to
further reduce overhead without incurring significant performance losses. Simulation results show that the
proposed hybrid ML-EM estimator (i.e., combines all new NDA ML-EM and DA ML or RDM versions)
converges within few iterations, thereby providing very accurate estimates of all multipath channel gains.
Most importantly, this increased estimation accuracy translates into very significant BER and link-level per-
carrier throughput gains over the best representative benchmark solution available so far for the problem at
hand, the SISO DA LS technique in [1] with its new generalization here to SIMO systems.

INDEX TERMS Channel estimation, time-varying channel (TVC), OFDM, multi-carrier, single-input
multiple-output (SIMO), single-input single-output (SISO), maximum likelihood (ML), expectation max-
imization (EM), least squares (LS), DA (data-aided), NDA (non-data-aided), regularized DA ML (RDM),
maximum a posteriori (MAP), inter-carrier interference (ICI) cancellation (ICIC).

I. INTRODUCTION
Orthogonal frequency-division multiplexing (OFDM)
showed its effectiveness in current 4th generation wireless
technology (4G). A scalable variety of CP-OFDM is already
included in 5th generation (5G) new radio (NR) standards
by the 3rd Generation Partnership Project (3GPP) [2].
The adopted waveform will include multiple sub-carrier
spacings that depend on the type of deployments and service
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requirements. Moreover, when coupled with the large-scale
antenna technology OFDM is poised to enable the 1000-fold
increase in capacity that is required over the next few years.
Despite its attractive features such as robustness to frequency
selective channels and spatial diversity, OFDM-type radio
interface technologies (RITs) are already very sensitive to
channel time variations since the latter break the crucial
orthogonality between the subcarriers thereby introducing
the so-called inter-carrier interference (ICI). Accurate
channel estimation, hence, becomes a daunting task at very
high mobility [3].
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So far, a number of channel estimation techniques have
been reported in the literature. They can be categorized in two
major categories: i) the data-aided (DA) approaches where
the transmitted symbols are assumed to be perfectly known
at the receiver. They provide highly-accurate channel esti-
mates performance at a significant cost, however, in terms of
overhead; ii) the blind or non-data-aided (NDA) approaches
where the receiver has no a priori information about the
transmitted data. Therefore, NDA techniques do not incur
any overhead at the cost, however, of reduced accuracy. Some
NDA parameter estimation approaches available in the litera-
ture (mainly proposed by the authors’ group e.g., see [4]–[7])
occasionally or intermittently operate an initialization step at
much less frequent pilot insertion instants (by an order or two
of magnitude). Referred to as hybrid (i.e., combine NDA and
DA), these techniques very often perform much better than
full NDA approaches (i.e., with random initialization). While
at the same time they require negligible overhead amounts
compared to DA solutions [5]. Hence, we shall advocate a
hybrid approach in this work.

For fast time-varying channels, most of the DA techniques
rely on a basis expansion model (BEM) to estimate the equiv-
alent discrete-time channel taps [8]–[10]. In fact, BEMmeth-
ods such as Karhunen-Loeve BEM were designed with low
mean square error (MSE) [8]. They are, however, sensitive
to statistical channel mismatch. The complex-exponential
BEM, also proposed in [8], does not make use of the channel
statistics but suffers from large modeling errors. The poly-
nomial BEM (P-BEM) investigated in [9] yields accurate
channel estimates, but only at low Dopplers. In [1], the com-
plex gain variations of each path was approximated by a
polynomial function of time then estimated by least squares
(LS) technique. This solution offers accurate performance
even at high Doppler. However, it requires that the number
of paths to be smaller than the inserted pilot symbols in each
OFDM time slot. Moreover, it was derived in the single-input
single-output (SISO) case and its extension to single-input
multiple-output (SIMO) systems has never been addressed.

Under the NDA category, time-varying channel estimation
was also investigated in [11]. The authors used the discrete
Legendre polynomial BEM along with the space alternat-
ing generalized expectation maximization (EM)-maximum
a posteriori probability (SAGE-MAP) technique to estimate
the time-domain channel coefficients of OFDM channels.
In [12], we used EM to estimate the channel gains over a SISO
configuration. However, both techniques have been tailored
for multi-carrier SISO systems and, hence, do not exploit the
potential diversity gain achievable by multi-antenna systems.
Moreover, they require the number of pilots to be greater than
the number of channel paths. In [13], the instantaneous SNR
estimation problem was investigated using the EM approach,
yet still over SISO configurations only. In [14] and [15], both
the EM and LS techniques were again leveraged, respec-
tively, to estimate the SNR over single-carrier SIMO systems.
In [16], [17], iterative channel estimation with Kalman fil-
tering and QR detection was first investigated under SISO

multi-carrier channels and later generalized to multiple-input
multiple-output (MIMO) OFDM systems. Its performance
was further enhanced in [18] by exploiting the statistics
of the channel estimation errors in an iterative estimation
process. However, Kalman filter-based techniques require
perfect knowledge of the Doppler as well as the power-delay
profile. Moreover, a high number of pilots per OFDM block
is needed to obtain accurate estimates thereby affecting the
overall throughput of the system.

In this paper, we develop an iterative EM-based maximum
likelihood (ML) estimator of fast time-varying channels over
SIMO OFDM-type radio interfaces. By relying on the poly-
nomial approximation of the multipath channel gains [1] and
resorting to the powerful EM technique [19] instead of the
LS approach, our solution offers a more accurate ML-type
acquisition of the polynomial expansion coefficients and the
resulting time-varying channel gains. To avoid local conver-
gence that is inherent to iterative algorithms, we initialize
the EM algorithm with a SIMO DA ML version developed
in this work for that sole purpose. We show that the latter
boils down to applying SISO DA LS in [1] over each receive
antenna. Besides, coming back to our key contribution here,
our new SIMO NDA ML-EM solution, it yields as a byprod-
uct MAP-based soft estimates of the unknown symbols. The
latter are leveraged to devise a dedicated ICI cancellation
(ICIC) scheme that works side by side with the EM-based
time-varying estimator according to the turbo principle (e.g.,
see [20]). Furthermore, we introduce an alternative SIMO
regularized DA ML (RDM) initialization procedure that can
still apply when the number of paths exceeds the number of
available pilot observations. This desirable feature renders the
proposed solution robust to any rapid variations in the prop-
agation environment where the number of paths can change
unpredictability due the motion of mobile users. Hence we
investigate the possibility of reducing the number of pilots in
each OFDM block down below the number of channel paths
without significantly affecting the performance. By doing so,
we are able to reduce the overhead and eventually increase
the throughput quite significantly.

The rest of the paper is organized as follows: In Section II,
we introduce the system model. In Section III, we derive a
new NDA EM-based ML solution for the underlying esti-
mation problem. In Section IV, we develop a new DA ML
version of this estimator over fast SIMO OFDM channels
and demonstrate that it amounts to applying the SISO DA
LS estimator in [1] separately over each receive antenna. The
latter is only run for the initialization of our NDA ML-EM
solution at relatively rare pilot insertion instants, resulting in
the ultimately proposed new hybrid ML-EM estimator of fast
time-varying OFDM channels. In Section V, we use exhaus-
tive computer simulations to assess and confirm the superior
performance of the proposed channel estimator not only in
terms of component-level channel identification accuracy, but
also in terms of much more compelling yet rarely adopted
link-level throughput. Finally, we draw out some concluding
remarks in Section VI.
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The notations adopted in this paper are as follows. Vec-
tors and matrices are represented in lower- and upper-case
bold fonts, respectively. Moreover, {.}T and {.}H denote the
conjugate andHermitian (i.e., transpose conjugate) operators.
The Euclidean norm of any vector is denoted as ||.||. For any
matrix X, [X]q and [X]l,k denote its qth column and (l, k)th

entry, respectively. For any vector x, diag{x} refers to the
diagonal matrix whose elements are those of x. Moreover,
{.}∗, 6 {.}, and |.| return the conjugate, angle, and modulus
of any complex number, respectively. Finally, E{.} stands for
the statistical expectation, j is the pure imaginary number (i.e.,
j2 = −1), and the notation , is used for definitions.

II. SYSTEM MODEL
Consider a SIMO OFDM system with Nr receiving antenna
elements, N subcarriers, and a cyclic prefix (CP) of a length
Ncp. The wireless link between the transmitter and the
{r th}Nrr=1 antennas is modeled as a multipath fading channel
as follows:

hr (t, τ ) =
Lr∑
l=1

αl,r (t)δ(τ − τl,rTs), (1)

where Lr is the number of paths of the r th wireless link. For
each path, the delay τl,r is normalized by the sampling period
Ts and the complex gain αl,r (t) is modeled by a Rayleigh
random variable with zero mean and a variance σ 2

l,r . The
multipath power profile (i.e., the channel) is assumed to be
normalized (i.e.,

∑Lr
l=1 σ

2
l,r = 1). For each of the Nr links,

we approximate the sampled complex gain of the l th path
within the duration of Nc consecutive OFDM blocks, αl,r =
[αl,r (−NcpTs), . . . , αl,r (NbNc−Ncp− 1)]T , by a polynomial
of order Nc − 1 as follows [1]:

αl,r (pTs) ≈
Nc∑
d=1

cd,l,rp(d−1) + ζl,r [p], (2)

where p ∈ [−Ncp,−Ncp+1, . . . ,NbNc−Ncp−1]. Moreover,
cl,r = [c1,l,r , c2,l,r , . . . , cNc,l,r ]

T gathers the approximating
polynomial coefficients corresponding to the l th path between
the transmitter and the r th receiving antenna while ζl,r [p] is
the approximation error. T = NbTs denotes the OFDM block
durationwhereNb = N+Ncp. At the destination, after remov-
ing the CP and applying a N−point fast Fourier transform
(FFT), the collected OFDM symbols at each local approxi-
mation window of Nc OFDM blocks (i.e., k = 1, 2, . . . ,Nc),
over the r th antenna element, can be written as follows:

ỹk,r = Hk,rak + wk,r , (3)

where ỹk,r =
[
yk,r [1], yk,r [2], . . . , yk,r [N ]

]T
is the received k th OFDM block, and wk,r =[
wk,r [1],wk,r [2], . . . ,wk,r [N ]

]T is the complex white
Gaussian noise vector with covariance σ 2IN where
IN is the N -dimensional identity matrix. The N
transmitted symbols during the k th OFDM block,
ak =

[
ak [1], ak [2], . . . , ak [N ]

]T , are generated randomly

from a M−ary constellation alphabet, denoted CM , and
are assumed equally likely, i.e., {Pr (am) = 1

M }am∈CM . The
N × N matrix, Hk,r , is the channel frequency response
whose elements are given by:

[Hk,r ]m,n

=
1
N

Lr∑
l=1

e−j2π( n−1N − 1
2

)
τl,r

N−1∑
q=0

αk,l,r (qTs)ej2π
n−m
N q

 , (4)
where {αk,l,r (qTs)}

kNb+N−1
q=kNb are the samples corresponding to

the l th path within the duration of the k th OFDM block over
the r th receiving antenna. As shown in [1], with the above
approximation [1], the polynomial coefficients, cl,r can be
obtained using the time average of the channel gain over
the effective duration of each OFDM time slot ({ᾱk,l,r =
1
N

∑kNb+N−1
q=kNb αk,l,r (qTs)}

Nc−1
k=0 ) as follows:

cl,r = T−1ᾱl,r , (5)

where ᾱl,r = [ᾱ1,l,r , ᾱ2,l,r , . . . , ᾱNc,l,r ]
T andT is a (Nc×Nc)

matrix given by:

T

=


1

N − 1
2

(N − 1)(2N − 1)
6

1
N − 1

2
+Nb

(N−1)(2N−1)
6

+(N − 1)Nb+N 2
b

1
N − 1

2
+2Nb

(N−1)(2N−1)
6

+2(N − 1)Nb+4N 2
b .


Using these coefficients, the samples of the complex gain of
each channel path over the interval [−Ncp, . . . ,NbNc−Ncp−
1], cl = [c1,l,r , c2,l,r , . . . , cNc,l,r ], can be obtained as follows:

αl,r = ST cl,r , (6)

where S is a (Nc × NbNc) matrix whose elements are given
by: {{

[S]d,p′ = (p′ − Ncp − 1)d−1
}NbNc
p′=1

}Nc
d=1

. (7)

The channel gains can be estimated using (6) from the chan-
nel coefficient estimates whose estimation in (5) ultimately
requires an estimate for the channel gain time averages
vector ᾱl,r .
In [1], ᾱl,r is estimated by SISODALS overNp per-carrier

pilot frames inserted in each OFDMblock in the case of SISO
systems (i.e., Nr = 1). Two more processing blocks of i)
iterative ICIC and ii) frequency-domain smoothing (to take
advantage of the previous Nc − 1 estimates of {ᾱk,l,1}

Nc−2
k=0 )

then follow to improve estimation accuracy and speed up
convergence. However, increasing performance requires a
relatively large number of pilot symbols per block. Moreover,
the LS solution requires the number of per-carrier pilot frames
to be greater than the number of paths at each antenna ele-
ment.

In the following, we address the problem of estimating
ᾱl,r in SIMO systems (i.e., Nr ≥ 1) using all data symbols
available at each OFDM block, not only pilots. By doing
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so, we develop a new ML-type EM solution that is able to
significantly improve performance while keeping the same
overhead or otherwise reducing it. Accuracy can be further
enhanced as in [1] by suppressing the ICI components from
the received signal.

III. NEW NDA ML-EM ESTIMATOR
We start by stacking the received samples at the output of all

the antenna elements,
{{
{yk,r (n)}Nn=1

}Nc−1
k=0

}Nr
r=1

, into vectors{{
yk (n) = [yk,1(n), yk,2(n), . . . , yk,Nr (n)]

T
}N
n=1

}Nc−1
k=0

.

We also define ϕ̄k = [ϕ̄Tk,1, ϕ̄
T
k,2, . . . , ϕ̄

T
k,Nr ] as the vectors

containing all the time averages of the channel gains of all
{Lr }

Nr
r=1 paths with {ϕ̄k,r = [ᾱk,1, ᾱk,2, . . . , ᾱk,Lr ]

T
}
Nr
r=1. The

probability density function (pdf) of the received samples
{{yk (n)}Nn=1}

Nc−1
k=0 conditioned on the transmitted symbol

ak [n] and parametrized by ψk =
[
ϕ̄Tk , σ

2
]T
, is expressed as

follows:

p(yk (n)|ak [n] = am;ψk )

=
1

(2πσ 2)Nr
exp

{
−1
2σ 2

Nr∑
r=1

∣∣yk,r (n)
− am[Hk,r ]n,n

∣∣2} , (8)

where:

[Hk,r ]n,n =
1
N

Lr∑
l=1

e−j2π( n−1N − 1
2

)
τl,r

N−1∑
q=0

αl,k,r (qTs)

 , (9)

Note that, for the time being, we absorb the effect of the
ICI in the additive noise and we also assume that normalized
delays, {τl,r }

Lr
l=1, are perfectly known to the receiver. The n

th

diagonal element of the matrixHk,r in (9) can then be written
as follows:

[Hk,r ]n,n = ϕ̄Tk,rFn,r , (10)

where Fn,r is a vector containing the elements of the mth row
of the (N × Lr ) matrix Fr which is defined as:

[Fr ]m,l = e
−j2π

(
m−1
N −

1
2

)
τl,r
. (11)

By injecting (10) back into (8), we obtain the following result:

p(yk (n)|ak [n] = am;ψk ) =
1

(2πσ 2)Nr

× exp

{
−1
2σ 2

Nr∑
r=1

∣∣∣∣yk,r (n)− amϕ̄Tk,rFn,r ∣∣∣∣2
}
.

(12)

Now, by averaging (12) over the alphabet, the pdf of the
received samples can be written as follows:

p(yk (n);ψk ) =
M∑
m=1

Pr (am)p(yk (n)|ak [n] = am;ψk ). (13)

As mentioned earlier, the transmitted symbols are gener-
ated from a normalized M−ary constellation (i.e., PAM,
PSK or QAM). It follows that:

p(yk (n);ψk ) =
1

M (2πσ 2)Nr

×

M∑
m=1

exp

{
−

1
2σ 2

Nr∑
r=1

∣∣∣∣yk,r (n)−amϕ̄Tk,rFn,r∣∣∣∣2
}
.

(14)

It is obvious at this stage that maximizing (14) with respect
to ψk is analytically intractable. Thus, we will resort to the
EM concept to find the maximum of the multidimensional
likelihood function (LF). First, we define the log-LF (LLF),
L(ψk |ak [n] = am) , ln(p(yk (n)|ak [n] = am;ψk )), of yk (n)
conditioned on the transmitted symbol ak [n] for the k th

OFDM symbol which can be written as:

L(ψk |ak [n] = am)

= −Nr ln(2πσ 2)−
1

2σ 2

( Nr∑
r=1

∣∣yk,r (n)∣∣2
+

∣∣∣amϕ̄Tk,rFn,r ∣∣∣2 − 2<
{
yk,r (n)∗amϕ̄Tk,rFn,r

})
. (15)

During the ‘‘expect step (E-STEP)’’ of the EM algorithm,
we compute the expectation of the LLF in (15) over all
possible transmitted symbols, {am}Mm=1, using the previous
estimates of the underlying unknown parameters. Then,
the resulting expectation is maximized with respect to the
unknown coefficient ψk during the ‘‘Maximization step
(M-STEP)’’. Starting with an initial guess, ψ̂

(0)
k , of the chan-

nel estimates, the cost function to be maximized during the
M-STEP at the ith EM iteration is given by:

Q
(
ψk |ψ̂

(i−1)
k

)
=

N∑
n=1

Eam
{
L(ψk |ak [n] = am)

∣∣∣∣yk (n); ψ̂ (i−1)
k

}
, (16)

where Eam{.} denotes the expectation over all possible trans-

mitted symbols {am}Mm=1 and ψ̂
(i−1)
k =

[̂̄ϕ(i−1)
k

T
, σ̂ 2(i−1)

k

]T
contains the estimates of ψk and the noise variance at the
(i− 1)th EM iteration. The expression in (16) can be further
simplified as follows:

Q
(
ψk |ψ̂

(i−1)
k

)
= −NNr ln(2πσ 2)−

1
2σ 2

( Nr∑
r=1

Zk,r

+

N∑
n=1

γ
(i−1)
n,k

∣∣ϕ̄Tk,rFn,r ∣∣2 − 2β(i−1)n,k,r

)
, (17)

where1:

Zk,r =
N∑
n=1

|yk,r (n)|2, (18)

1For the particular case of normalized-energy constant-envelope constel-
lations, note that we have γ (i−1)n,k = 1.
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γ
(i−1)
n,k = Eam

{
|am|2

∣∣yk (n); ψ̂ (i−1)
k

}
, (19)

β
(i−1)
n,k,r = Eam

{
<

{
yk,r (n)∗amϕ̄Tk,rFn,r

} ∣∣yk (n); ψ̂ (i−1)
k

}
. (20)

Using the Bayes formula, the a posteriori probability of am,
P(i−1)m,n,k = Pr

(
am|yk (n); ψ̂

(i−1)
k

)
, at the (i − 1)th iteration is

given by:

Pr
(
am|yk (n); ψ̂

(i−1)
k

)
=

Pr (am)P
(
yk (n)|am; ψ̂

(i−1)
k

)
P
(
yk (n); ψ̂

(i−1)
k

) . (21)

Since the transmitted symbols are equiprobable (i.e.,
Pr (am) = 1

M ), we have the following result:

P
(
yk (n); ψ̂

(i−1)
k

)
=

1
M

N∑
n=1

P
(
yk (n)|am; ψ̂

(i−1)
k

)
. (22)

Exploiting the fact that ϕ̄k,r = <{ϕ̄k,r }+={ϕ̄k,r } and Fn,r =
<{Fn,r }+={Fn,r }, the cost function in (17) can be written as
follows:
Q
(
ψk |ψ̂

(i−1)
k

)
= −NNr ln(2πσ 2)−

1
2σ 2

( Nr∑
r=1

Zk,r +
N∑
n=1

γ
(i−1)
n,k

×

(
FHn,rG1,k,rFn,r + ={Fn,r }TG2,k,r<{Fn,r }

+<{Fn,r }TG3,k,r={Fn,r }
)

− 2
M∑
m=1

P(i−1)m,n,kη
(m)
k,n,r

)
, (23)

where:
G1,k,r = <{ϕ̄k,r }<{ϕ̄k,r }

T
+ ={ϕ̄k,r }={ϕ̄k,r }

T ,

G2,k,r = <{ϕ̄k,r }={ϕ̄k,r }
T
− ={ϕ̄k,r }<{ϕ̄k,r }

T ,

G3,k,r = ={ϕ̄k,r }<{ϕ̄k,r }
T
−<{ϕ̄k,r }={ϕ̄k,r }

T ,

η
(m)
k,n,r = <{yk,r (n)

∗amFTn,r }<{ϕ̄k,r }

−={yk,r (n)∗amFTn,r }={ϕ̄k,r }. (24)

As per the M-STEP, we differentiate the cost function in (23)
with respect to <{ϕ̄k,r } and ={ϕ̄k,r } and set the result to zero
to obtain the following results:
N∑
n=1

γ
(i−1)
n,k

(
J1,n,r<{ϕ̄k,r } − J2,n,r={ϕ̄k,r }

)
=

N∑
n=1

µ1,n,k,r ,

N∑
n=1

γ
(i−1)
n,k

(
J1,n,r={ϕ̄k,r } + J2,n,r<{ϕ̄k,r }

)
= −

N∑
n=1

µ2,n,k,r ,

where:
J1,n,r = <{Fn,r }<{Fn,r }T + ={Fn,r }={Fn,r }T ,

J2,n,r = <{Fn,r }={Fn,r }T − ={Fn,r }<{Fn,r }T ,

µ1,n,k,r =

M∑
m=1

P(i−1)m,n,k<{yk,r (n)
∗amFTn,r },

µ2,n,k,r =

M∑
m=1

P(i−1)m,n,k={yk,r (n)
∗amFTn,r }.

Now, using the identity ϕ̄k,r = <{ϕ̄k,r } + j={ϕ̄k,r } leads to:

N∑
n=1

(J1,n,r + jJ2,n,r )γ
(i−1)
n,k ϕ̄k,r =

N∑
n=1

µ1,n,r − jµ2,n,r . (25)

Hence, the ith EM update for time average of the channel
gains at the ith iteration can be obtained as follows:

̂̄ϕ(i)
k,r =

(
N∑
n=1

γ
(i−1)
n,k (J1,n,r + jJ2,n,r )

)−1
(26)

×

N∑
n=1

(
M∑
m=1

P(i−1)m,n,ky
∗
k,r (n)amF

T
n,r

)H
. (27)

Similarly, by differentiating the cost function in (23) with
respect to σ 2 and setting the result to zero, we obtain the
following update for the noise variance:

σ̂ 2(i) =

∑Nr
r=1 Zk,r +

∑N
n=1

∣∣∣FTn,r̂̄ϕ(i−1)
k,r

∣∣∣2 γ (i−1)
n,k − 2β(i−1)n,k,r

2NNr
.

(28)

Finally, after IEM iterations of the EM algorithm, the channel
estimates, corresponding to Nc consecutive OFDM symbols
over the r th antenna element, are obtained as follows:

α̂l,r = ST ĉl,r = STT−1̂̄α(IEM )
l,r , (29)

where ̂̄α(IEM)
l,r = [̂ᾱ(IEM)

1,l,r ,
̂̄α(IEM)
2,l,r , . . . ,

̂̄α(IEM)
Nc,l,r ]

T is the
EM-based ML vector estimate of the complex channel gain
time averages of the l th path over Nc OFDM data symbols.
The channel gain estimates in (29) can be further improved by
implementing an iterative ICIC technique. Indeed, the chan-
nel and symbol estimates provided by the EM algorithm
can be used to reconstruct then remove the ICI components
from the received signal and the resulting samples can be
re-injected once again as new inputs to the EM algorithm
to enhance accuracy. In this way, the entire process can be
repeated IICI iterations until no additional improvements can
be achieved. ICIC requires decoding the data symbols to be
able to reduce the ICI level. Instead of implementing the
successive interference cancellation (SIC) at the output of
each antenna element as in [1], we make use of the symbols’
posteriors, P(IEM)

m,n,k , already provided by the EM algorithm and
decode the data symbols according to the MAP criterion as
follows:

â(s)k [n] = argmax
am∈CM

∣∣∣am −∑M
m′=1 P

(IEM)
m′,n,kam′

∣∣∣2 , (30)

where â(s)k [n] is the detected symbol corresponding to the nth

subcarrier of each k th OFDM block after s ICIC iterations.
At each sth ICIC iteration, the detected symbols are used to
remove the ICI component from the original received signal
so as to provide the EM algorithm with less-ISI-corrupted
observations. The later is given by:

ỹ(s+1)k,r = ỹk,r − (Ĥ(s,IEM )
k,r − diag{̂h(d,s,IEM )

k,r })â(s)k , (31)
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where ĥ(s,IEM )
k,r is a vector containing the diagonal elements

of Ĥ(s,IEM )
k,r . The latter is the estimate of channel frequency

response at the convergence of the EM technique.

IV. PROPOSED HYBRID ML-EM ESTIMATOR
Due to its iterative nature, NDA ML-EM requires an initial
starting point. One straightforward solution is to settle on
a random initial guess. By doing so, the proposed solution
preserves its full NDA characteristic. However, with random
initialization, the algorithm’s convergence to a local mini-
mum becomes extremely high. Hence, we develop a SIMO
DA ML version of this estimator for the sole purpose of
providing relatively reliable initial values that ensure global
convergence of the NDA ML-EM solution. We will show
later in this section that this initialization step can be applied
at relatively rare pilot insertion instants, giving rise to the
ultimately proposed new hybrid ML-EM estimator of fast
time-varying OFDM channels.

A. INITIALIZATION WITH NEW DA ML
As mentioned above, NDA ML-EM requires a good initial
guess in order to return accurate estimates of the channel
gains. An intuitive solution for obtaining those initial values
is to use the pilot symbols injected at the subcarrier positions
{p1, p2, . . . , pNp} within each OFDM block. In the SIMO
system, the received Np subcarriers at each OFDM block,
y(p)k,r = [yk,r (p1), yk,r (p2), . . . , yk,r (pNp )]

T , corresponding to
the pilot positions (by neglecting the ICI) are given by:

ỹ(p)k,r = diag
{
a(p)k

}
h(p)k,r + w(p)

k,r , (32)

where a(p)k = [a(p)k (1), a(p)k (2), . . . , a(p)k (Np)]T are the
transmitted pilots within the k th OFDM block. The
channel frequency response and noise component
corresponding to the pilot indices are given by
h(p)k,r =

[
[Hk,r ]p1,p1 , [Hk,r ]p2,p2 , . . . , [Hk,r ]pNP ,pNp

]T
and w(p)

k,r = [wk,r (p1),wk,r (p2), . . . ,wk,r (pNp )]
T ,

respectively. By stacking the received pilot samples
at the output of the antenna elements into vectors,{
y(p)k (pn) = [yk,1(pn), yk,2(pn), . . . , yk,Nr (pn)]

T
}Np
n=1

,
we rewrite (32) as follows:

y(p)k = A(p)
k F(p)ϕ̄k + w(p)

k , (33)

where w(p)
k =

[
w(p)
k,1

T
,w(p)

k,2
T
, . . . ,w(p)

k,Nr

T ]T
and A(p)

k is a
diagonal matrix given by:

A(p)
k = INr ⊗ diag

{
a(p)k

}
. (34)

The matrix F(p) is a (NrNp × L) block-diagonal matrix (L =∑Nr
r=1 Lr ) defined as follows:

F(p)
= blkdiag{F(p)

1 ,F
(p)
2 , . . . ,F

(p)
Nr }. (35)

in which F(p)
r contains the rows of the matrices Fr that cor-

responds to the pilot symbols’ indices
(
i.e.,

{{
[F(p)

r ]m,l =

[Fr ]pm,l
}Np
m=1

}Lr
1

)
. The pdf in the DA case is given by:

p(y(p)k |a(p)k ;ψk )

=
1

(2πσ 2)NrNp

× exp
{
−1
2σ 2

(
yk − A(p)

k F(p)ϕ̄k

)H (
yk − A(p)

k F(p)ϕ̄k

)}
.

(36)

The corresponding LLF is given by:

L(ψk ) = −NrNp ln(2πσ
2)

−
1

2σ 2

(
yk − A(p)

k F(p)ϕ̄k

)H (
yk − A(p)

k F(p)ϕ̄k

)
.

(37)

By differentiating (37) with respect to ϕ̄k , we obtain the
following initial ML-based DA estimates:

̂̄ϕ(0)
k =

(
F(p)HA(p)

k
H
A(p)
k F(p)

)−1
F(p)HA(p)

k
H
yk . (38)

Due to the linearity of the observation model in (32) and
the Gaussianity of the noise, the new SIMO DA ML esti-
mator reduces in the SISO case to the DA LS estimator
in [1], making the former a generalized extension of the
latter to SIMO configurations. More importantly, we reveal
that the solution in (38) requires the inversion of a block-
diagonal matrix whose computation can therefore be decou-
pled across the receive antennas by separately inverting the

Nr antenna-specific blocks {F(p)
r

H
diag{a(p)k }{a

(p)
k }

HF(p)
r }

Nr
r=1.

Hence, we prove that the SIMO DA ML solution actually
boils down to applying the SISO DA LS in [1] at the output
of each receive antenna. Another point worth mentioning
here is that the number of pilots Np required to obtain initial
estimates has to be larger than the number of paths Lr . The
initial estimate of the noise variance can also be obtained by
differentiating (37) with respect to σ 2 as follows:

σ̂ 2(0) =
1

2NpNr

∥∥∥yk − A(p)
k F(p)ϕ̄

(0)
k

∥∥∥2 . (39)

B. REDUCTION OF PILOT SUBCARRIERS
Usually, the solution in (38) requires that Np ≥ max{Lr }

Nr
r=1

otherwise the system of equations is underdetermined and

the matrix F(p)
r

H
diag{a(p)k }{a

(p)
k }

HF(p)
r is no longer invertible.

In this case, the overall throughput will be strongly dependant
on the number of paths max{Lr }

Nr
r=1. Now since the ML-EM

solution relies on those estimates only to trigger the iteration
process, we can settle for less reliable initial estimates by
reducing the number of pilots per OFDM blocks. Taking into
account the fact that the SIMO DA ML solution in (38) cor-
responds to an ill-posed problem, we opt for a regularization
technique to solve this problem. One attracting solution is the
Tikhonov regularization [21] which allows us to obtain the
initial estimates as follows:

̂̄ϕ(0)
k =

(
F(p)HA(p)

k
H
A(p)
k F(p)

+ λIL

)−1
F(p)HA(p)

k
H
yk . (40)
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FIGURE 1. Channel path gain estimates versus time index over the first
Nc = 3 OFDM blocks with the SISO DA LS (8 pilots) and SISO RDM
(4 pilots) initialization techniques at SNR = 30 dB for Nr = 1 and multiple
values of λ.

The factor λ is a regularization factor, when set to zero,
the solution in (40) becomes equivalent to the one in (38).
Mainly, the RDM is developed to improve the conditioning
of the problem by adding a regularization factor to the non-

invertible matrix, F(p)
r

H
diag{a(p)k }{a

(p)
k }

HF(p)
r .

In Fig. 1, we show the effect of the regularization factor
on the performance of the RDM estimator. On one hand,
if chosen too small (i.e., λ = 10e−16), the solution in (40) is
close to the original one given in (38). At this point, the RDM
may suffer from the same instability issues as the original
DA ML solution. On the other hand, if chosen too large (i.e.,
λ = 4), the provided solution will start moving away from the
original problem defined in (36). It is worth mentioning that
the range of values over which RDM provides acceptable ini-
tial values is conveniently large. Hence, an exhaustive search
for the optimal regularization factor is not required. Note
also that other regularization techniques can be envisioned
such as the least absolute shrinkage and selection operator
(LASSO) technique [22]. However, the latter, unavailable in
a closed-form solution, is usually found using optimization
methods such as quadratic programming or convex opti-
mization. Such solution introduces additional computational
complexity whereas the Tikhonov regularization keeps the
computational burden approximately the same of the original
SIMO DA ML.

C. EXTREME SLOW-UP OF PILOT INSERTION RATE
As mentioned earlier, an initial guess is always required to
trigger NDA ML-EM. However, depending on the receiver
mobility, the EM technique may use the estimates of the
previous OFDM block channel gains as initial candidates for
the current one. In the following, we discuss the possibility
of reducing the total number of per-carrier pilot frames and,
hence, the overhead to achieve higher per-carrier throughput.
As depicted in Fig. 2, we show an example of pilots inser-
tion and processing tasks for all possible channel estimation
techniques. In the DA case, i.e., Fig.2 (a), the estimation
relies on known per-carrier pilot frames at the receiver side.

In this configuration, the DA techniques provide better esti-
mation performance at the expense of significant overhead.
Indeed, some subcarriers at each OFDM block are used as
pilots for estimation purposes while (N − Np) remaining
ones carry the useful data. Such approach relies on a trade-
off between overhead and estimation performance since the
estimation accuracy increases with the number of pilots. In
the full NDA case, i.e., Fig.2 (b), the estimation technique
uses only the per-carrier data frames to estimate the channel
gains. Such technique enjoys zero overhead but suffers from
performance degradation especially in high mobility scenar-
ios. With the new hybrid ML-EM, i.e., Fig.2 (c), the ini-
tialization technique (SIMO DA ML or its SIMO RDM
equivalent at a low number of pilot subcarriers) is performed
only once each RI consecutive Nc OFDM blocks to trigger
the NDA estimation process. Since the channel, even a fast
time-varying one, varies relatively slowly with respect to the
high sampling or processing rates that characterize new radio
access technologies, more so at low and moderate mobili-
ties, there is no need for frequent initialization at each Nc
OFDM blocks. Instead, the EM technique relies on the same
estimates provided by NDA ML-EM during the previous Nc
OFDM blocks. In other words, the first Nc OFDM blocks of
a sequence of RI Nc blocks will be initialized using the DA
LS technique. And each of the remaining (RI −1) Nc OFDM
blocks will be initialized with the channel gain estimates of
their predecessors. Thus, the number of inserted pilots can be
significantly reduced (by an order or two of magnitude as will
be shown later).

Note that the choice of RI , called hereafter as the refresh-
ment interval, might vary depending on some key parame-
ters. Indeed, from an estimation accuracy point of view, RI
depends mainly on the Doppler frequency and the average
per-carrier SNR. From a per-carrier throughput point of view,
performance deterioration is expected at higher RI values
in high mobility scenarios. However, such deterioration can
have a negligible impact if not any, on decoding performance.
Indeed, with the adoption of adaptive modulation, QPSK
is adopted at low per-carrier SNR values since it is more
robust to estimation errors. At high per-carrier SNR values,
the estimation error is less severe and higher modulation
orders can be considered since they perform well even with
low pilot numbers.

By taking into account all the features mentioned above,
the hybrid channel estimation technique can be summarized
in Algorithm 1.

Note that the ‘‘initialization’’ condition mentioned in
Algorithm 1 controls the rate at which the SIMO RDM is run
during the initialization phase.

V. SIMULATION RESULTS
In this section, we assess the performance of the new
EM-based ML time varying channel estimator i) at the com-
ponent level in terms of the mean square error (MSE) of the
channel gains (averaged over all antennas), and ii) in terms
of link-level bit error rate (BER) and per-carrier throughput.
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FIGURE 2. Data structure and processing tasks for different estimation approaches: (a) SISO DA LS [1] or its proposed SIMO DA ML extension, (b) the
new NDA ML-EM, and (c) the advocated new hybrid ML-EM solution (i.e., combines both new NDA ML-EM and DA ML versions).

Algorithm 1 Joint Hybrid ML-EM Channel and Data Esti-
mation

for k = 1 to Nc do
if initialization then
if Np ≥ max{Lr }

Nr
r=1 then

Estimate ̂̄ϕ(0)
k using (38)

else
Estimate ̂̄ϕ(0)

k using (40)
end if

else
Use ̂̄ϕ(k−1)

k as initial guess
end if
Estimate σ̂ 2(0) using (39)

end for
while s < IICI do
for k = 1 to Nc do

while i < IEM do
Estimate ̂̄ϕ(i)

k using (26)

Estimate the noise variance σ̂ 2(i) using (28)
end while
Decode the data âk using (30)

end for
Construct the channel frequency response using
{̂α

(IEM )
l,r }

Lr
l=1 as in (4)

Remove the ICI component using {âk}
Nc
k=1 as in (31)

end while

In all simulations, we consider a SIMO OFDM RIT with
N = 128 subcarriers, a cyclic prefix Ncp = 16, and a central
frequency fc = 5 GHz. The sampling period is Ts = 0.5 µs.
The channel between the transmitter and each r th antenna
element is modeled by a multipath Rayleigh fading channel
where the individual complex path gains, {αl,r (t)}

Lr
l=1, follow

a uniform Jake’s model. We assume, without loss of gener-
ality, that the links between the source and the Nr receiving
antennas have the same channel parameters used in [1] listed

TABLE 1. Channel parameters.

FIGURE 3. MSE of the advocated new hybrid ML-EM vs the number of
ICIC iterations for QPSK and 64−QAM modulations with v = 300 km/h,
Nc = 3, Nr = 2, and Np = 8 at: (a) SNR = 10 dB, and (b) SNR = 30 dB.

in Table 1. Unless specified otherwise, the initialization step
is executed at each OFDM block (i.e., RI = 1).
We start by investigating the effect of the number of EM

iterations on the estimation accuracy. To do so, we plot
in Fig. 3 the MSE of our proposed estimator (referred to
hereafter as hybridML-EM) alongwith theMSE lower bound
(LB) derived in [1] against REM at two different per-carrier
SNR levels and high Doppler (i.e., FDT = 0.1). The latter
translates into a receiver speed of v = 300 km/h (v = FDvc

fc
,

vc being the speed of light).
Obviously, at a fixed per-carrier SNR level, the conver-

gence rate of the hybrid ML-EM technique (IEM ) is affected
by the ICI level corrupting the received samples. In fact,
the EM technique is able to converge much faster when the
ICI level is reduced with an ICIC technique. For instance,
when using QPSKmodulation, ML-EM is able to provide the

148272 VOLUME 7, 2019



S. B. Amor et al.: ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions

FIGURE 4. MSE of the advocated new hybrid ML-EM, the SISO DA LS in [1]
(i.e., Nr = 1), and its proposed SIMO DA ML extension vs. the per-carrier
SNR for different numbers of receiving antennas with QPSK, Nc = 3 and
Np = 8 at: (a) v = 60 km/h, and (b) v = 300 km/h.

same accuracy either with 1 or 5 EM iterations when ICIC is
applied. However, for high modulation order (i.g., 64-QAM)
that are usually more sensitive to ICI component, the same
technique requires at least 3 EM iterations to converge when
ICIC is not implemented.

In Fig. 4, we investigate the influence of the number of
receiving antenna elements on the estimation performance.
We compare the hybrid ML-EM estimator to the DA LS
technique and the LB both derived in [1] in the SISO case
and to the generalized DA ML versions proposed here in the
SIMO case. We observe a clear advantage of hybrid ML-EM
at both low (i.e., FDT = 0.02 or equivalently v = 60 km/h)
and high (i.e., FDT = 0.01 or v = 300 km/h) Dopplers
even in the SISO case. As the number of antenna elements
increases, hybrid ML-EM exhibits a better estimation accu-
racy especially at low and medium per-carrier SNR levels.
Since hybrid ML-EM takes advantage of the diversity gain
of multi-antenna systems, it is able to improve the channel
estimates per-antenna. Moreover, the noise variance estimate
in (28), provided by hybrid ML-EM is a more accurate as it
is averaged over many antenna branches. At high per-carrier
SNR, however, we observe that increasing the number of
antennas has almost no effect on the estimation accuracy per-
formance. This is due to the noise level being lower than the
ICI components. At such per-carrier SNR levels, the channel
estimation accuracy is dictated mainly by ICIC capabilities
of the proposed design.

In Fig. 5, we evaluate the performance of the proposed
technique at low and high mobilities against the DA LS
technique and the LB both derived in [1] in the SISO case
and to the generalized DA ML versions proposed here in
the SIMO case. We observe a clear advantage of the hybrid
ML-EM technique at both low and high Dopplers. We also
observe that the ICIC block enhances the performance of both
techniques. However, hybrid ML-EM benefits from much
larger gains and approaches the LB at high per-carrier SNR
values. Moreover, we notice that the ICIC block provides
enhanced performances only at high per-carrier SNR values.

FIGURE 5. MSE of the advocated new hybrid ML-EM, the SISO DA LS in [1]
(i.e., Nr = 1), and its proposed SIMO DA ML extension vs. the per-carrier
SNR with QPSK, Nc = 3, Nr = 2, and Np = 8 at: (a) v = 60 km/h, and
(b) v = 300 km/h.

FIGURE 6. MSE of the advocated new hybrid ML-EM vs. the per-carrier
SNR for different values of RI with QPSK, Nc = 3, Nr = 2, and Np = 8 at:
(a) v = 60 km/h, (b) v = 300 km/h, and (c) v = 600 km/h.

This behavior stems from the fact that noise level at low
and medium SNRs is much higher than the ICI component.
Hence, the estimator performance is dictated by the noise
level. At high per-carrier SNR, the ICI level becomes com-
parable to the noise level it follows that more ICIC iterations
are required to provide better estimation accuracy.

In Fig. 6, we investigate the effect of the refreshment inter-
valRI on the estimation accuracy of the proposed technique at
low and high mobilities. At low Doppler (i.e., at velocity v =
60 km/h), the hybrid ML-EM technique exhibits the same
performance when initialized with DA ML at each OFDM
block (i.e., RI = 1) or with less recurrent initialization (i.e.,
RI = 20). However, at high Doppler (i.e., at velocity v
= 600 km/h), we observe a significant deterioration when
hybrid ML-EM is initialized at the rates of 5 or 20. This is
hardly surprising because the channel varies slowly at low
Doppler and the estimates provided during the previous Nc
OFDMblocks become adequate initial guesses for the current
Nc blocks. At high Doppler, however, the channel varies
rapidly in time and the estimates of the previous blocks can
no longer be considered as good candidates to trigger the
estimation process during the following blocks.
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FIGURE 7. MSE of the advocated new hybrid ML-EM vs. the per-carrier
SNR for different regularization factors of RDM at initialization with
QPSK, Nr = 2, and Nc = 3 at: (a) v = 60 km/h, and (b) v = 300 km/h.

FIGURE 8. Performance of the advocated new hybrid ML-EM, the SISO DA
LS in [1] (i.e., Nr = 1), and its proposed SIMO DA ML extension vs. the
per-carrier SNR with QPSK, Nc = 3 and Nr = 2 in terms of: (a) MSE at
v = 60 km/h, (b) BER at v = 60 km/h, (c) MSE at v = 300 km/h, and
(d) BER at v = 300 km/h.

In Fig. 7, we investigate the impact of the regularization
factor λ in initialization with SIMORDMon the performance
of the proposed hybrid ML-EM technique.

With an arbitrarily small regularization factor (i.e., λ =
10−16), its performance deteriorates since its initialization
with SIMO RDM suffers from the same instability issues
of the SISO DA LS technique in [1] or its proposed SIMO
DAML extension. By increasing λ, its performance improves
and approaches the estimation accuracy achieved with Np =
8 pilot tones. The latter corresponds to an overdetermined
problem. However, for higher values of λ, the performance
of hybrid ML-EM starts to deteriorate again since the SIMO
RDM initialization solution departs significantly from the
original one defined in (37) and becomes less sensitive to the
received samples.

In Fig. 8, we assess the robustness of the proposed tech-
nique to the number of available per-carrier pilot frames.
We see that the gap between the two techniques increases
by reducing the number of pilots per OFDM block from
Np = 16 to Np = 8, more so at high Dopplers. Indeed,

both SISO DA LS in [1] and and its proposed SIMO DAML
extension deteriorate in MSE performance by reducing Np
while the advocated hybridML-EM exhibits exactly the same
performance at medium-to-high per-carrier SNR thresholds.
Actually, hybrid ML-EM performs nearly the same in BER2

as the proposed SIMODAML extension, yet with less pilots.
Consequently, the new technique can achieve a higher per-
carrier throughput by reducing the overhead by half. The
number of pilots can even be further reduced to Np = 4
(up to 75% reduction), below the number of paths. In this
configuration, both SISO DA LS in [1] and its proposed
SIMO DA ML extension cannot provide reliable estimates.
Whereas, the advocated hybrid ML-EM solution still works
properly when initialized instead with SIMO RDM. As can
be seen in Figs. 8 (a) and (c), the new technique exhibits
approximately the same MSE performance, except for some
negligible deterioration at high SNRs. Yet the latter does not
affect the BER performance. Indeed, the proposed hybrid
ML-EM performs nearly the same in BER regardless of the
different numbers of pilots considered in Figs. 8 (b) and (d).

In Fig. 9, we plot the link-level per-carrier throughput
curves of hybrid ML-EM. For a given modulation order M ,
please note that the per-carrier throughput can be obtained
from the symbol error rate (SER) as follows:

Throughput =
1
T

log2(M )(1− SER)(1−1), (41)

where 1 is the overhead ratio computed as:

1 =
Np
N RI

, (42)

which becomes negligible at large values of RI . The lat-
ter cannot be, however, increased indefinitely as the hybrid
ML-EM technique requires more frequent up-to-date initial
estimates in the case of high mobility.

We see from Fig. 9 (a) that QPSK transmissions, among the
considered modulations, provide higher per-carrier through-
put at per-carrier SNR values below 4 dB. When the
per-carrier SNR ranges between 4 and 14 dB, 16-QAM
becomes more suitable whereas 64-QAM dominates when
the per-carrier SNR exceeds 14 dB. The resulting per-carrier
throughput curve assuming an adaptive (i.e., SNR-dependent)
modulation is depicted by the black curve. In Fig. 9 (b),
we show the performance of the hybrid ML-EM technique
at a higher normalized Doppler FDT = 0.1. In this scenario,
QPSK, 16-QAM, and 64-QAM modulations provide higher
per-carrier throughput over the same SNR ranges reported
above at low Doppler. We also observe that both 16- and
64-QAM transmissions suffer from some performance degra-
dation when compared to the low mobility scenario. Indeed,

2In the proposed SIMO DA ML extension and its SIMO RDM vari-
ant, we implement maximum ratio combining (MRC) over the Nr antenna
branches prior to passing the resulting MRC output through an iterative SIC
decoder as in SISO DA LS in [1]. Whereas we implement the MAP decoder
in (30) with the advocated hybrid SIMO ML-EM solution or the proposed
SIMO NDA ML version.
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FIGURE 9. Link-level per-carrier throughput vs. the per-carrier SNR of the
advocated new hybrid ML-EM with Nc = 3, Nr = 2, and Np = 8 at:
(a) v = 60 km/h, and (b) v = 300 km/h.

FIGURE 10. Link-level per-carrier throughput vs. the per-carrier SNR of
the advocated new hybrid ML-EM, the SISO DA LS in [1] (i.e., Nr = 1), and
its proposed SIMO DA ML extension with Nc = 3, Nr = 2, and λ = 0.5 at:
(a) v = 60 km/h, and (b) v = 300 km/h.

at lower Doppler values, the hybrid technique provides accu-
rate estimates since the channel varies slowly during the
same period. Hence, the decoder at the destination is able to
accurately decode the transmitted symbols. In the case of high
mobility, the channel varies rapidly during the same period,
leading to amore severe degradation of the channel estimates.
The latter affects the decoding process, especially at higher-
order modulations which are more sensitive to phase shifts.

In Fig. 10, we plot the link-level per-carrier throughput
curves of the hybrid ML-EM, the SISO DA in [1], and the
proposed SIMODAML extension assuming an adaptive (i.e.,
SNR-dependent) modulation scheme. Here, we report a clear
advantage in throughput performance of the hybrid ML-EM
technique, especially at higher mobility (i.e., FDT = 0.1)
and modulation orders (i.e., 16- and 64-QAM). As reported
previously, the SISO DA LS technique in [1] and its pro-
posed SIMO DA ML extension provide less reliable channel
estimates since both operate only at pilot symbols. These
estimates lead to higher BER when injected later at the data

samples in the MRC-SIC decoding process. Moreover, from
Fig. 10 (b), we observe that the performance of both SISODA
in [1] and its proposed SIMO DAML extension significantly
deteriorates when the number of pilots reduces by half from
16 to 8. Such losses stem from the fact that poor channel
gain estimates result in less reliable ICIC, especially at higher
modulation orders. Even though the proposed SIMO DAML
extension takes advantage of antenna diversity, it still exhibits
the same behaviour as the SISODA LS original version in [1]
since the quality of channel estimates also deteriorates when
the number of pilots decreases. On the other hand, the advo-
cated hybrid ML-EM maintains approximately the same per-
formance in terms of MSE whether initialized with Np = 4,
8 or 16 Per-carrier pilot frame. Hence, it exhibits higher link-
level per-carrier throughputs, more so at medium or high per-
carrier SNR levels, with best performance achieved when
Np = 4 pilots.
In Fig. 11, we plot the link-level per-carrier throughput

curves of the advocated hybrid ML-EM - when operated at
multiple refreshment rates - and both SISO DA LS in [1] and
its proposed SIMO DA ML extension to assess more thor-
oughly their robustness to mobility. We see from Figs. 11 (a)
and (b) that the per-carrier throughput increases with hybrid
ML-EM at low to medium Doppler once the refreshment
interval RI jumps from 1 to 5. This is hardly surprising since
the channel varies slowly in time and, hence, the channel
coefficients of the previous OFDM blocks act as extremely
reliable initial guesses for the current OFDM blocks. It fol-
lows that the pilot subcarriers are no longer required at the
current OFDM blocks and can be used to carry data instead.
Pilot insertion rate can be slowed down significantly, by at
least as much as 20 times (pilot to data or overhead ratio
can become as low as 0.16%), while still reporting some
noticeable throughput gains instead of losses, more so at
high per-carrier SNR! Whereas SISO DA LS in [1] and its
proposed SIMO DA ML extension still require the same
amount of pilots to provide reliable channel estimates. There-
fore, no additional throughput gains can be achieved. At high
Doppler, however, the channel varies more rapidly and more
frequent initialization is needed. As can be observed in Fig. 11
(c), we start to measure increasingly significant per-carrier
throughput losses as the refreshment interval RI increases.
Yet, most importantly, our new hybrid ML-EM technique
still outperforms both SISO DA LS in [1] and its proposed
SIMO DAML extension in all considered scenarios, more so
over increasingly faster time-varying channels. Here, we have
to reduce RI at least from 20 to 5 among three tested val-
ues, or ultimately to 1 in order to secure the highest reported
gains in throughput achievable among the threeRI -dependent
scenarios. Actually, one can reach the maximum achievable
throughput performance after offline optimization3 of the
refreshment interval RI against mobility.

3To obtain the optimal value of RI , the performance of the new hybrid
ML-EM can be evaluated offline in different scenarios over multiple com-
binations of the average per-carrier SNR, Doppler, and RI values. However,
this ad hoc offline optimization step is beyond the scope of this work.
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FIGURE 11. Link-level per-carrier throughput vs. the per-carrier SNR of the advocated new hybrid ML-EM (with Np = 4) at multiple RI values, the SISO
DA LS in [1] (i.e., Nr = 1), and its proposed SIMO DA ML extension (with Np = 8) with Nc = 3, Nr = 2, and λ = 0.5 at: (a) v = 60 km/h, (b) v = 120
km/h, and (c) v = 240 km/h.

VI. CONCLUSION
In this paper, we addressed the problem of time-varying chan-
nel estimation over SIMO OFDM transmissions in multipath
propagation environments. The proposed approach is based
on a polynomial approximation of the complex path gains
and takes advantage of all the observation - both at pilot
and non-pilot positions - to enhance the channel estimation
capabilities. To do so, we develop a new SIMO DA ML
estimator - which turns out to be a generalized extension
of the SISO DA LS estimator in [1] - for the sole pur-
pose of initializing at relatively rare pilot insertion instants
(pilot to data or overhead ratio can be as low as 0.16%) of
another new SIMO NDA ML version when operated at the
remaining data samples, resulting in the ultimately advocated
new hybrid ML-EM estimator of fast time-varying OFDM
channels. Moreover, by further developing a new regularized
DA ML (RDM) variant of either SISO DA LS in [1] or its
proposed SIMO DA ML extension, we were able to further
reduce the number of pilots and break the strict requirement
of more pilots than paths in [1], and, hence, decrease the
overhead and increase the per-carrier throughput. We show
through exhaustive simulations that the proposed hybrid ML-
EM solution outperforms both SISO DA LS in [1] and its
proposed SIMO DA ML extension in terms of component-
level channel identification accuracy. The latter translates
into significant gains in terms of link-level BER and per-
carrier throughput performances, especially at medium-to-
high per-carrier SNR values more so at relatively higher
Doppler or faster SIMO OFDM channel variations.
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