
Received April 1, 2019, accepted May 10, 2019, date of publication May 30, 2019, date of current version June 10, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919978

FPGA-SDR Integration and Experimental
Validation of a Joint DA ML SNR and
Doppler Spread Estimator for
5G Cognitive Transceivers
HAITHEM HAGGUI 1, SOFIÈNE AFFES 1, (Senior Member, IEEE), AND FAOUZI BELLILI 2
1INRS-EMT, Montreal, QC H5A 1K6, Canada
2Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada

Corresponding author: Haithem Haggui (haggui@emt.inrs.ca)

This work was supported in part by the Discovery Grants and the CREATE PERSWADE <www.create-perswade.ca> Programs of the
Natural Sciences and Engineering Research Council of Canada (NSERC), and in part by the Discovery Accelerator Supplement Award
from NSERC.

ABSTRACT In a multi-connected, multi-technology, and pervasive mobile infrastructure, such as what is
being planned for 5G, artificial intelligence and cognition will play a major role. An important goal of future
mobile infrastructures is to self-adapt their characteristics to their operating conditions, at the physical link,
as well as at the network and application layers, which gives rise to a new paradigm known as context-aware
cognitive radio (CR). CR transceivers (CTRs) mostly incorporate a cognitive engine that relies on various
sensorial entities, which attempt to provide sufficient information about the quality of the link through the
estimation of various key channel parameters. Two important parameters are required in a wide range of
CTR architectures: the signal-to-noise ratio (SNR) and the Doppler spread. Within this context, we tackle
the hardware design and integration of a joint data-aided (DA) maximum likelihood (ML) SNR and Doppler
spread estimator recently shown to outperform main state-of-the-art solutions both in terms of accuracy and
complexity. We propose a deep-pipelined and resource-efficient architecture for the outlined joint DA ML
estimator, and we integrate our design on an FPGA-based software-defined radio (SDR) platform.We finally
validate and test this prototype in real time under realistic over-the-air propagation conditions reproduced
by a highly-scalabile channel emulator. Compared to its MATLAB floating-point version, our hardware
prototype suggests negligible losses in performance despite the existence of several hardware impairments,
thereby confirming its very strong potential and attractiveness for possible integration in future 5G CTRs.

INDEX TERMS Context awareness, cognitive radio (CR), software-defined radio (SDR), SNR, Doppler
spread, maximum likelihood (ML), data-aided (DA), parameter estimation, FPGA.

ABBREVIATIONS AND ACRONYMS
ADC Analog to Digital Converter
BPS BEEcube Platform Studio
CPU Central Processing Unit
CR Cognitive Radio
CTF Coarse-To-Fine
CTR CR Transceivers
DA Data-Aided
DAC Digital to Analog Converter
FMC FPGA Mezzanine Cards

The associate editor coordinating the review of this manuscript and
approving it for publication was Mauro Fadda.

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GPP General Purpose Processor

HDL Hardware Description Language

HW/SW Hardware/Software

LUT Look-Up Table

MAC Multiply-And-Accumulate

ML Maximum Likelihood

NDA Non-Data-Aided

NMSE Normalized Mean Square Error

OTA Over-The-Air

69464
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-3630-5354
https://orcid.org/0000-0002-1729-3503
https://orcid.org/0000-0001-6630-6561

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

RTL Register-Transfer-Level
SDR Software Defined Radio
VHSIC Very High Speed Integrated Circuit

I. INTRODUCTION
The continuing growth in demand for ubiquitous wire-
less ultra-broadband communications has pushed service
providers and mobile industries to deploy new data pro-
cessing techniques and network infrastructures in order to
enable highly-efficient, secure, ultra-reliable, and ultra-low
latency services to everyone and everything [1]–[3]. ‘‘Zero
latency’’, gigabit, and fully immersive experiences will be the
main drivers for the uptake of new technology components
on future 5G mobile networks [3], [4]. Several challenges,
however, need to be tackled to meet not only the expected per-
formance in terms of throughput, energy efficiency, service-
level latency, battery lifetime, quality of service (QoS),
manageability, etc., but also any future requirements.

This calls, indeed, for the integration of highly flexible,
scalable, and modular infrastructure, as well as the setting-
up of some ‘‘intelligence’’ capabilities in the network [5].
Therefore, cognitive architectures and networking should be
an inherent characteristic of future 5Gmobile communication
systems. This feature will provide automatic and dynamic
adaptation policies to the different transmission areas owing
to the integration of context-awareness capabilities across all
communication levels, from the physical and networking to
transport and application layers. In fact, context awareness
is considered as a response process to some context infor-
mation such as activities, network states, user speeds, battery
levels, energy consumption, and wireless channel states, etc.,
obtained from the involved concrete or virtual ‘‘sensorial’’
entities.

Recently, a new context-aware cognitive transceiver (CTR)
architecture has been devised in [6] by the Wireless Lab
<www.wirelesslab>. The new CTR is able to change its
internal configuration automatically by making the best
selection of the combination triplet among three different
pilot-utilization modes, two different channel identification
schemes, and two data detection modes. At low SNRs and
high user mobility, the software integration of the new CTR
was shown to provide, respectively, up to 700% and 40% of
peak link-level and system-level throughput gains, compared
to conventional transceiver architectures [6].

The cognitive engine of our CTR requires the a priori
knowledge of two key channel parameters, which represent
its basic sensorial entity: the Doppler spread and the SNR.
Therefore, the knowledge/estimation of these two param-
eters is required to set up the CTR’s context awareness,
since the Doppler and the SNR reveal, respectively, the
channel’s time variation rate and the operational conditions
that both dictate countless functional mode selectors and
criteria such as the adaptation rate or the channel quality
information (CQI) [7], [8] to name a few. Motivated by this

fact, we set as a main goal of this work the hardware design,
implementation, and real-time over-the-air validation of a
link-layer CTR sensorial functionality using a robust hard-
ware prototyping environment.

Typically, a suitable parameter estimator can be selected
from a plethora of state-of-the-art techniques. For instance,
a number of Doppler spread estimation schemes have been
reported in the open literature. But most of them are either
level-crossing-rate (LCR) [9], [10], power spectrum den-
sity (PSD) [11], or covariance-based methods [12]–[14].
These three types of estimators do not extract the Doppler
information from the received signal itself, but rather from its
statistics. Therefore, they require a large number of received
samples tomeet the target estimation performance.Moreover,
most of them involve some complex mathematical operations
such as matrix inversion or multiplication and, therefore,
their computational complexity is deemed too high for prac-
tical implementation. However, in [15], a new robust and
low-complexity maximum likelihood (ML) Doppler spread
estimator based on a frequency-domain two-ray approxima-
tion of the channel covariance matrix has been proposed.
It extracts the Doppler information directly from the received
signal itself, regardless of the existing Doppler spectrum,
thereby requiring a small number of received samples. More-
over, unlike the previously discussed techniques, it involves
no matrix inversion or multiplication. Motivated by these
facts, we have chosen to implement this estimator since it
not only entails a low computational burden, but also unam-
biguously outperforms state-of-the-art techniques in terms of
estimation accuracy, more so at extremely small normalized
Doppler frequencies.1

In line with the requirements of the CTR itself, the selected
Doppler estimator of [15] also requires the knowledge of the
instantaneous SNR and the noise variance, which are also
unknown in practice. For this purpose, among many others,
we have also recently developed a new low-cost joint ML
SNR, channel, and noise variance estimator and data demod-
ulator over time-varying flat-fading channels [16]. Depend-
ing on the pilot-use mode, this estimator is referred to as
data-aided (DA), non-data-aided (NDA), or hybrid. The DA
version, in particular, relies on the sole use of some known
pilot symbols and as such is derived in closed form. Owing
to its simplicity and the huge performance gains it brings
with respect to state-of-art-the techniques, the joint estimator/
demodulator of [16] was also integrated in the CTR. Its DA
version, in particular, will be used to identify the operating
instantaneous SNR required by the CTR’s cognitive engine
in order to dynamically select the best combination triplet of
pilot-use, channel identification, and data-detection mode.

Several works have adopted the key perspective of pushing
promising algorithms from a simple software status to a

1In future 5G communication systems, the normalized Doppler frequency,
fDTs is indeed expected to be extremely small since the latter will oper-
ate at a very small symbol period, Ts, in order to provide high-data-rate
communications.

VOLUME 7, 2019 69465

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

fully-functional hardware prototype [17]–[19]. More than
proving the concept, this perspective significantly reduces
time-to-market for new outstanding application-oriented
techniques. Indeed, the challenging process of hardware
development and integration allows the DSP designers to
face the practical realization and standardization constraints
from the earliest conception stage of the product. To that
end, this multidisiplinary process requires the cooperation
of software, hardware, radio-frequency (RF) and printed-
circuit-board (PCB) designers in an application-oriented
approach. Software defined radio (SDR) is an adapted inte-
gration host-platform which is gaining popularity among our
peers [20]–[23] due to its high reconfigurability and flexi-
bility. In fact, to enable rapid and cost-effective development
of modern wireless communication systems, SDR combines
the scalability and the excellent computation capabilities
of FPGAs with a user-friendly software design flow. Some
works [22], [23] have put forward the SDR capabilities of
prototyping communication systems, however, illustrating
them with any practical examples. Other works [24], [20]
have implemented entire communication systems over SDR
thereby showcasing the great potential of these prototyp-
ing platforms. However, partitioning of the SDR resources
adopted there is very often suboptimal [24] since the main
base-band computation burden is processed in the host com-
puter rather than in the resources-abundant FPGA. In general,
the SDR’s embedded general purpose processor (GPP) imple-
ments communication protocols, user applications, and sup-
ports powerful real-time test and debugging environments.
Whereas, the reconfigurable logic of the SDR’s FPGA is
more adapted for a parallel execution of various baseband
processing blocks including modulation/demodulation, fil-
tering, channel coding/decoding, etc. These tasks were a
throughput bottleneck in the earliest SDR platforms which
came without FPGA accelerators such as [25]. In [21],
a powerful multi-standard FPGA-hosted baseband OFDM
transceiver architecture has been presented to explore the
outcome of the FPGA dynamic partial reconfiguration [26]
in terms of resource utilization and reconfiguration latency
in the context of a CTR implementation. However, its cog-
nitive engine used to instruct on a runtime the base-band
processing operates based on a pure spectrum efficiency
perspective without considering the wireless channel condi-
tions. Moreover, the FPGA dynamic partial reconfiguration,
despite promising, requires high-level of FPGA expertise
that can slow down the prototyping process. A more fluid
prototyping method in [20], adopting a model-based design-
flow [27], has implemented a generic communication system
with an efficient partitioning of SDR resources. However, its
performance has been tested over a nearly-perfect wireless
channel rather than in realistic over-the-air transmission sce-
narios. Besides, utilization of FPGA resources and energy
consumption were not investigated there to seek possible
enhancements of the generic implementation aspect.

In this paper, we propose a newmodel-based FPGA design
and the SDR integration of the sensorial entity of the new

CTR which is composed of the selected ML Doppler spread
and SNR estimators. More specifically, we put forward an
efficient hardware architecture that ensures an optimized
performance/resource usage trade-off to produce a modular,
versatile, and reusable hardware prototype. Then, we take
advantage of the high reconfigurability of the SDR host
platform to integrate, test, and validate our FPGA design in
real time. Finally, we showcase this core in realistic over-
the-air (OTA) operating conditions using a channel emulator
which mimics real-world radio channels. Compared to the
original reference MATLAB version, the new hardware core,
operating in real time and over-the-air, suggests negligible
performance losses, thereby validating and confirming the
efficiency of our implementation and its robustness to all
hardware imperfections.

We organize the remainder of this paper as follows.
In Section II, we introduce the system model and the
mathematical formulation of the Doppler spread and SNR
estimators. In Section III, we present the hardware setup,
the integration platform, and the most important hardware
design trade-offs. We will dedicate Section IV to the discus-
sion of the proposed design’s architecture, while we assess
in Section V its performance and gauge it, in real-time and
near OTA conditions, against its MATLAB-based floating-
point software version. Finally, we draw out some concluding
remarks in Section VI.

We define beforehand the adopted mathematical notations.
Vectors and matrices are represented in lower- and upper-
case bold fonts, respectively. The Euclidean norm of a vector
is denoted as ||.||, and the operators {.}∗ and |.| return the
complex conjugate and amplitude of any complex number,
respectively. {.}H represents the Hermitian conjugate oper-
ator. Whereas, the operators L{.} and ln{.} denote the log-
likelihood function and the natural logarithm, respectively.
For the sake of clarity, the mathematical notations for the
most important variables and parameters adopted in this work
are listed in Table 1.

II. SYSTEM MODEL AND MATHEMATICAL
FORMULATION
In this section, we briefly review the mathematical formula-
tion of the selected DAML Doppler spread and SNR estima-
tors introduced in [15] and [16], respectively.

We consider a continuous transmission of symbols over
a flat-fading2 Rayleigh channel, h(t), immersed in an addi-
tive white Gaussian noise, w(t). Assuming an ideal receiver
with perfect time and frequency synchronization, the sampled

2The narrowband model in (1) is well justified in practice by its wide
adoption in current and next-generation multicarrier communication sys-
tems, such as long-term-evolution (LTE), LTE-Advanced (LTE-A) and
Beyond (LTE-B) systems. In fact, it is well known that OFDM systems
transform a multipath frequency-selective channel in the time domain into
a frequency-flat (i.e., narrowband) channel over each subcarrier as modeled
by (1). Actually,multicarrier technologieswere primarily designed to combat
the multipath effects in high-data-rate communications by bringing back the
per-carrier propagation channel to the simple flat-fading case.

69466 VOLUME 7, 2019

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

TABLE 1. List of mathematical notations for most important variables
and parameters.

baseband received signal can be expressed as:

y(nTs) = h(nTs)x(nTs)+ w(nTs), n = 0, 1, 2 . . . (1)

where n and Ts denote, respectively, the time index and the
sampling period. The equivalent discrete-time observation
data sequence is:

y[n] = h[n]x[n]+ w[n], n = 0, 1, 2 . . . (2)

TheMLDoppler spread and SNR estimators were both devel-
oped for a fully-DA scheme. In other words, only the received
samples corresponding to pilot positions are used during the
estimation process.Without loss of generality, we assume that
the known pilot sequence that is periodically transmitted is
an all-ones sequence. Then, the observed baseband signal at
pilot positions can be expressed as:

y[n] = h[n]+ w[n], n = 0, 1, 2 . . . (3)

In order to apply locally a Taylor series expansion advo-
cated in [16] (clarifications will follow shortly), the entire

observation window is further split into multiple local
approximation windows of size N . The main advantage of
this approach is its ability to locally capture the unpredictable
time variations of the channel using very few approximating-
polynomial coefficients. Fig. 1 better illustrates the received
data layout. We denote by M the total number of the local
approximation windows. Hence, the mth local observation
sequence at pilot positions is given by:

y(m)[n] = h(m)[n]+ w(m)[n], n = 0, 1, . . . ,N − 1. (4)

A. DA ML DOPPLER SPREAD ESTIMATOR
By considering the system model described in (4), it is worth
mentioning that the information about the Doppler spread is
hidden in the channel’s autocorrelation coefficients. As men-
tioned previously, the ML Doppler spread estimator derived
in [15] is built upon the following very simple second-order
Taylor series approximation for the covariance matrix of the
channel:

Rh(σD) =
σ 2
h

2
A(σD)AH (σD), (5)

where σD denotes the Doppler spread, and A(ω) is a (N × 2)
matrix explicitly given by:

A(ω) =
[
a(−ω) a(ω)

]
, (6)

in which the vector a(ω) is defined as:

a(ω) ,
[
1 ejωTs ej2ωTs · · · ej(N−1)ωTs

]T
. (7)

Building upon the approximation in (5), and resorting to
tedious algebraic manipulations (for more details, cf. [15]),
the log-likelihood function (LLF) of the mth local obser-
vation sequence y(m) ,

[
y(m)[1], y(m)[2], . . . , y(m)[N]

]T
,

parametrized by σD is obtained as:

L(m)(σD)=−Ln(ψ(σD))+
1

σ̂
2(m)
n

2∑
i=1

γi(σD)2
∣∣∣ui(σD)Hy(m)∣∣∣2,

(8)

where:

ψ(σD) =
[
2+ ρ̂(m)λ1(σD)

] [
2+ ρ̂(m)λ2(σD)

]
, (9)

γi(σD) =

√
ρ̂(m)λi(σD)

2+ ρ̂(m)λi(σD)
, i = 1, 2. (10)

FIGURE 1. Payload and pilot symbol layout with M local approximation windows.

VOLUME 7, 2019 69467

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

Here, ρ̂(m) and σ̂ 2(m)
n are, respectively, the values of the esti-

mated instantaneous SNR and noise variance over the mth

local approximation window. Moreover, λ1 and λ2 are the
two eigenvalues of the approximated covariancematrix in (5),
which are expressed as follows [15]:

λ1(σD) = N +

∣∣∣∣ sin(NσDTs)sin(σDTs)

∣∣∣∣ , (11)

λ2(σD) = N −

∣∣∣∣ sin(NσDTs)sin(σDTs)

∣∣∣∣ . (12)

Hence, their associated eigenvectors, u1 and u2, are given as:

u1(σD) =
1

√
2λ1(σD)

(
a(−σD)+

ϕ(2σDTs)∗

|ϕ(2σDTs)|
a(σD)

)
, (13)

u2(σD) =
1

√
2λ2(σD)

(
a(−σD)−

ϕ(2σDTs)∗

|ϕ(2σDTs)|
a(σD)

)
, (14)

in which ϕ is defined as follows:

ϕ(x) =
sin
(Nx

2

)
sin
(x
2

) exp
(
j
(N − 1)

2
x
)
. (15)

Finally, the ML estimate of the Doppler spread is obtained
as follows:

σ̂
(m)
D = argmax

σD

{
L(m)(σD)

}
. (16)

In order to enhance the estimation accuracy, the obtained
ML Doppler spread estimates are further averaged over the
M local approximation windows (each of size N) as follows:

σ̂D =
1
M

M∑
m=1

σ̂
(m)
D . (17)

B. DA ML SNR ESTIMATOR
The main attractive feature of the DA ML SNR estimator
of [16] is that instead of evaluating the LLF expression over
a two-dimensional (2D) grid of candidate values for θ =
[ρ, σ 2

n], it relies on an analytical closed-form expression of
their ML estimates. First of all, the DA ML SNR estimation
algorithm finds the optimal coefficients for the polynomial
that best approximates the time-varying channel over the mth

local window, as follows:

ĉ(m) =
(
BHB

)−1
BHy(m). (18)

where B = AT is a (N × L) matrix. L denotes the
order of the approximation polynomial, A = diag {x(Ts),
x(2Ts), . . . , x(NTs)}, and T is a known Vandermonde matrix
whose entries correspond to the sampling time instants,
{0,Ts, 2Ts, . . . , (N − 1)Ts}.

In a second step, the DA ML algorithm exploits the esti-
mated channel polynomial coefficients in order to find the
noise variance as:

σ̂ 2(m)
n =

1
2N

∥∥∥y(m) − B̂c(m)
∥∥∥2 . (19)

Finally, themth local instantaneous SNR estimate is given by:

ρ̂(m) =
‖̂h(m)‖2

2N σ̂ 2(m)
n

. (20)

The channel estimate, ĥ(m), is obtained from the estimated
channel coefficients over the mth local approximation win-
dow, is obtained as follows:

ĥ(m) = T ĉ(m). (21)

III. HARDWARE SETUP
In order to ensure an effective prototyping process and a
fluid integration in a near real-world conditions, our hardware
setup will be composed of:
• A BEEcube miniBEE4 SDR platform;
• A BEEcube Platform Studio (BPS) environment;
• An EB Propsim FS8 channel emulator;

A. THE BEECUBE MINIBEE4 SDR PLATFORM
The main part of the outlined hardware setup consists in a
BEEcube miniBEE4 SDR platform [28] which is a highly
efficient prototyping platform built around a large capac-
ity Virtex-6 Xilinx FPGA and an Intel Core i7 central
processing unit (CPU). This complete ‘‘R&D in the box’’
platform is equipped with two integrated FPGA mezzanine
cards (FMC111) which are connected to the RF front-end,
where the local oscillator frequency, attenuators, and filters
are user-defined. Our main motivations for choosing this par-
ticular SDR are as follows. First, theminiBEE4 SDRprovides
the flexibility required for the hardware development process.
In fact, it supports themajor existing digital design flows such
as register-transfer-level (RTL), high-level-synthesis (HLS),
and model-based design solutions. Second, the strong test
and debugging capabilities of the miniBEE4 are definitely a
key prototyping feature that helps meeting the stringent 5G
time-to-market constraints [29]. Third, we also emphasize the
ability of the selected SDR to off-load heavy processing to the
cloud or a centralized processing unit (e.g. C-RAN) owing to
its high-data-rate connection interfaces.

B. BEECUBE PLATFORM STUDIO (BPS)
BPS is a high-level hardware/software co-development
environment which runs on the top of the Mathworks
Simulink R©framework. It has been designed to abstract the
low-level implementation details in order to accelerate the
development and integration process. BPS ensures an auto-
matic generation of all platform-specific hardware interfaces
and the corresponding software drivers, thereby, ensuring a
fluid CPU-FPGA interaction while enabling high flexibility
in design partitioning [28].

C. THE EB PROPSIM FS8 CHANNEL EMULATOR
The EB Propsim FS8 channel emulator supports up to
4×4 bidirectional MIMO topology over various existing
radio access technologies such as UMTS, LTE, LTE-A,
MANET, and VANET. Furthermore, FS8 enables very accu-
rate signal fading processing in terms of time, phase and

69468 VOLUME 7, 2019

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

FIGURE 2. High-level FPGA architecture adopted for the joint DA ML SNR and Doppler spread estimator.

amplitude [30]. This feature made it a great option for our
in-system over-the-air integration and evaluation.

IV. PROPOSED HARDWARE ARCHITECTURE
A. SYSTEM SPECIFICATIONS
From a system-level point of view, the outlined DA ML
SNR and Doppler spread estimator architecture needs to be
versatile and resource-efficient for future extensions. More-
over, as a part of our CTR’s sensorial entity, this prototype
should be reconfigurable in order to self-adapt to differ-
ent environment conditions. Therefore, a wise CPU/FPGA
design partitioning needs to be applied within the SDR plat-
form. To that end, baseband processing should be sufficiently
pipelined and entirely carried out by the FPGA resources. The
high-level reconfiguration and parameter switching should
be executed automatically or manually by the user through
the SDR’s CPU. Furthermore, the produced prototype must
ensure an optimized resources/performance trade-off. As a
performance metric, the 1 ms latency constraint for ultra-
reliable and low-latency communications (URLLC) in future
5G systems [31] must be met while ensuring a satisfactory
estimation accuracy for a wide set of real-world SNR val-
ues. The SDR-embedded SNR and Doppler spread estimator

should be robust to hardware impairments and to setup imper-
fections. Therefore, it must preserve in real-time the accuracy
of the MATLAB-based software version.

B. SYSTEM-LEVEL ARCHITECTURE
As discussed previously, the proposed FPGA design of our
CTR’s sensorial unit is embedded in a miniBEE4 SDR plat-
form. Fig. 2 depicts a system-level view of our FPGA core
within its hardware/software (HW/SW) development envi-
ronment which allows us to use simultaneously a general
purpose CPU and a customized hardware component, namely
the FPGA. The outlined block diagram consists of 3 main
parts [28]: the FPGA, the FMC111 board, and a host terminal.
While the baseband processing is totally carried out by the
FPGA, the host CPU manages the storage and analysis of the
FPGA’s real-time results for debugging and visualization pur-
poses. Besides, it is up to the CPU to reconfigure the FPGA’s
architecture on a runtime (whenever required) depending on
the desired performance and link conditions. This HW/SW
functional partitioning benefits from the high flexibility
of the software routines to execute the decision-making
processes in the host CPU. Whereas, the FPGA computation
capabilities are entirely dedicated to baseband processing.

VOLUME 7, 2019 69469

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

And, the RF front-end is integrated in the FMC111 board. The
latter enables the modification, through the host interface,
of various parameters such as the local oscillator frequency,
DAC/ADC clocks, and TX/RX gains, etc.

On the top of the functional HW/SW partitioning,
a datapath/control partitioning is required in order to handle
the algorithm’s complexity in the most effective way. Unlike
software instruction-based programs, a hardware design
needs to be synchronized at the low level of the Register-
Transfer-Level (RTL). From this perspective, our design
datapath is an unsynchronized description of the baseband
processing using a hardware description language (HDL).
Meanwhile, our control unit monitors the design and controls
the datapath module. To build this key unit, we make use
of efficient synchronization tools, namely the finite state
machines (FSMs) [32].

As illustrated in Fig. 2, the baseband I/Q symbols are
generated, pulse-shaped, then up-sampled within the FPGA
at the transmitter side. After applying a user-defined TX gain,
the FMC111 RF card up-converts the baseband signal and
broadcasts the resulting RF waveform over the communica-
tion link (i.e., the channel emulator in III.C). At the receiver
side, the collected signals are down-converted then down-
sampled prior to matched filtering. At this point, the ‘‘Data
Acquisition’’ block acquires and stores NM data samples
from the received baseband signal (at the pilot positions) in a
shared SW/HW block RAM (BRAM) [28]. The parameters
N , M , and the sampling period (Ts) are user-defined. They
can be reconfigured —through the host CPU— depending
on the application requirements and the underlying system’s
signaling standard. To ensure such flexibility and control the
acquisition task, a dedicated FSM has been implemented.
It takes these user-defined parameters and generates the
appropriate triggers, commands, and other control signals in
order to monitor the sampling and recording tasks. The stored
samples are used at different estimation stages of our design.
In the next subsections, we detail our proposed hardware
architecture for the joint DA ML SNR and Doppler spread
estimator.

C. DA ML SNR ESTIMATOR
As explained in Section II, the DA ML SNR algorithm esti-
mates the local SNR in three steps:
• Estimate channel approximating-polynomial coeffi-
cients at the mt th sub-block, ĉ(m), using (18);

• Estimate the noise power, σ̂ 2(m)
n over the mth local

approximation window using (19);
• Estimate the mth local instantaneous SNR, ρ̂(m)

using (20);
The first step is performed by the ‘‘Channel Coeff. Estima-

tion’’ module. There, we estimate the local N channel coef-
ficients through the process illustrated by the block diagram
in Fig. 3.

In practice, an SDR allows one to modify —through the
host CPU on a runtime— several operating parameters [33]
such as the sampling period (Ts), the local window size (N),

FIGURE 3. Block diagram of the ‘‘Channel Coeff. Estimation’’ module.

and the channel polynomial order (L). In our implementa-
tion, these parameters cannot be modified, on the fly, dur-
ing the real-time operation of the hardware versions of the
estimators. Consequently, the NL elements of the matrices
B and T, stay all constants and known a priori. A very cost-
effective way to execute the ‘‘Channel Coeff. Estimation’’
task is to store matrix elements of P in the FPGA’s read-
only-memories (ROMs) to be ready-to-use on runtime. This
avoids us the heavy computational burden of online high-
order matrix multiplications and inversions, namely P =(
BHB

)−1 BH in (18). Specifically, this approach reduces the
number of multiply-and-accumulate (MAC) modules in our
design by a factor of N (N − 1)(L − 1).
At RTL, the proposed ‘‘Channel Coeff. Estimation’’ design

incorporates L parallel high-pipelined datapaths, monitored
by an optimized Moore FSM [32]. In the ith datapath, i =
1, 2, . . . ,L, the data stream, (y(m)), of the N local received
samples, already stored in BRAM, goes through aMACmod-
ule before multiplication by the N elements of the ith column
of P =

(
BHB

)−1 BH . Then, the output results are accumu-
lated to ultimately produce the ith estimated polynomial coef-
ficient, ĉ(m)(i). Once the accumulator output is tested valid,
the FSM enables the second multiplication [T]i,j × ĉ(m)(i).
Finally, the L datapath outputs pass through an adder to obtain
an online stream of the N estimated channel coefficients
which are the results of (21).

The DAMLSNR algorithm provides us also with the noise
power estimation. By considering all-ones pilot sequences,
the matrix A = diag{x(Ts), x(2Ts), . . . , x(NTs)} is simply
the identity matrix and, consequently, B = AT = T.

69470 VOLUME 7, 2019

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

FIGURE 4. Block diagram of the ‘‘Noise Variance Estimation’’ and ‘‘SNR Estimation’’ modules.

Therefore, the estimate of the noise variance can be simply
obtained as follows:

σ̂ 2(m)
n =

1
2N

∥∥∥y(m) − T̂c(m)
∥∥∥2 = 1

2N

∥∥∥y(m) − ĥ(m)
∥∥∥2 . (22)

The handshake from the ‘‘Channel Coeff. Estimation’’
module is ensured by its inner FSM through a flag signal
output that triggers the controller of the ‘‘Noise Power Esti-
mation’’ block once the first element of the estimated chan-
nel coefficients stream becomes valid. An RTL description
of the noise power estimation design according to (22) is
shown in Fig. 4 wherein the design consists of a dedicated
FSM (the operations controller), two adders, three multi-
pliers, and an accumulator. This highly cost-effective self-
controlled datapath provides the estimated noise variance to
the last stage of the DA ML SNR estimator’s architecture,
the ‘‘SNR Estimation’’ module which estimates the local
SNR according to (20). In line with the general principle of
intellectual property (IP) reuse in hardware design, we make
use of the ‘‘Xilinx Divider Generator 5.1’’ [34] to implement
the division in (20). The output is a reconfigurable resource
efficient and a high-performance solution based on radix-2
approach. The underlying IP division block allows reconfig-
uration of the degree of parallelism and the latency in order to
meet the required trade-off between performance, speed, and
resource utilization.

Finally, the estimated noise variance and SNR are fed as
inputs to the ‘‘Doppler Spread Estimation’’ module, whose
inner architecture is described in the next subsection.

D. ML DOPPLER SPREAD ESTIMATOR
In this subsection, we describe the proposed RTL architec-
ture for the ML Doppler spread estimator. From a high-
level point of view, the ‘‘Doppler Spread Estimation’’module
takes as inputs the estimated values of the noise power
and local SNR, and the N received pilot samples (over the

same mth approximation window), and outputs the estimated
Doppler spread value. Unlike the DA ML SNR estimator,
the ML Doppler spread estimator [15] is not in closed form.
Therefore, this module evaluates the LLF function at different
candidate values for the unknown Doppler spread, then finds
the global maximum. Consequently, it is obvious that this
module will require more resources and relatively higher
latency. An effective way to proceed is to start by further
simplifying the mathematical equations of the ML Doppler
spread estimator in order to adapt the required processing
to hardware implementation. In other words, we rewrite the
different mathematical terms involved in the LLF expression
in such a way that we eliminate high-cost operations such as
the square root and ensure maximal block reuse. Indeed, after
some algebraic manipulations, (8) is rewritten as (23).

Beyond mathematical model adaptations, operation
scheduling is a critical step in the design of efficient hardware
architectures [35]. It identifies parallel operations, the prede-
cessors and successors of each operation, as well as, their
inter-dependencies in order to design a robust control unit.
Furthermore, owing to operation scheduling, it is possible
to prematurely identify critical paths (i.e., those having the
highest relative latencies) and then accelerate them by incor-
porating highly-pipelined datapaths.

L(m)(σD)

=−ln
[
2+ρ̂(m)λ1(σD)

]
−ln

[
2+ρ̂(m)λ2(σD)

]
+

ρ̂(m)

2σ̂ 2(m)n

2+ρ̂(m)λ1(σD)

∣∣∣∣∣
(
a(−σD)+

ϕ∗(2σDTs)
|ϕ(2σDTs)|

a(σD)
)H

y(m)
∣∣∣∣∣
2

+

ρ̂(m)

2σ̂ 2(m)n

2+ρ̂(m)λ2(σD)

∣∣∣∣∣
(
a(−σD)−

ϕ∗(2σDTs)
|ϕ(2σDTs)|

a(σD)
)H

y(m)
∣∣∣∣∣
2

.

(23)

VOLUME 7, 2019 69471

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

FIGURE 5. System-level view of the proposed hardware design.

Through an intuitive functional partitioning, we structured
the RTL architecture of the ‘‘Doppler Spread Estimation’’
module into the ‘‘LLF Submodule’’, ‘‘Argmax’’, and ‘‘Control
Unit’’ blocks as depicted in Fig 5. Each block was designed,
verified, and validated separately before its integration and
synchronization within the general structure. The ‘‘LLF Sub-
module’’ is the capital block of the Doppler spread esti-
mator. There, the candidate σD goes through the so-called
λi(σD) and ϕ(σD) sub-blocks. The latter mainly consist of
two look-up-tables (LUTs) in which predefined complex
trigonometric functions are stored instead of using high-cost
techniques such as CORDIC algorithms [36]. The appropriate
output address can be found via a bijective conversion which
depends on the input data, the input’s range, and the desired
resolution. Explicitly, this bijection is given by:

address =
⌊
(input − min)×

depth− 1
max − min

⌋
, (24)

where input ∈ [min,max], address ∈ {0, 1, . . . , depth − 1},
and depth is the size of the LUT,while b.c denotes the flooring
function of real numbers.

The main advantage of a LUT is its very low latency.
In fact, obtaining data from a predefined array is much
faster than calculating it using iterative or rotating algorithms.
Yet, the design of an efficient LUT is still challenging as it
requires the knowledge of the upstream range, which is not
a priori known in several applications. Furthermore, there is
a trade-off between the output resolution and the upstream

range, since the larger the range, worse is precision. In order
to sidestep this issue, one may be tempted by integrating
huge LUTs. Unfortunately, such a simplistic solution is not
even practical due to the high-size ROM usage it requires.
Hence, we propose a new technique that reduces the size
of the required LUTs without necessarily compromising
accuracy.

The new solution consists in integrating pre-processing and
post-processing stages in order to reduce the upstream range
by exploiting some basic mathematical identities. Indeed,
in our case, LUTs are only used to perform trigonomet-
ric functions. Therefore, we use in a first step an obvious
translation of the input data into the range [−π, π]. This
pre-processing block was incorporated in order to map the
input angle to its main measure. Due to this optimization,
we greatly reduce the LUT’s depth and consequently decrease
memory utilization. Besides, we further reduce hardware
usage by encoding only the first quadrant (i.e., the upstream
range is limited to [0, π/2]) in the LUT and then casting
inside any angle outside this quadrant from proper adjust-
ments of the input data signs. This simplification reduces
four times memory usage. A post-processing block unwraps
the angle back into the original four quadrants to return the
correct value. Fig. 6 illustrates the inner RTL structure of the
proposed sine LUT. There, the input x (with an unknown
data range) is translated into its main value (denoted as θ)
and assigned conventionally to the first quadrant using two
multipliers, an adder, and a truncate circuit that gives the

69472 VOLUME 7, 2019

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

FIGURE 6. Inner structure of the optimized sine function’s LUT.

floor value. Then, by relying on some comparators, it is
possible to determine the quadrant index of the main angle
value. This index is used to control the behavior of the 1× 4
MUX and select the appropriate value between θ , (π − θ),
(θ − π), and −θ . This value will be fed to the ROM in
which the pre-calculated sine grid points are stored before
being transformed into a memory address using the bijection
described in (24).

By using these optimization strategies along with some
arithmetic and logic instructions, we succeed in building
accurate output values for the complex functions ϕ(2σDTs)H

|ϕ(2σDTs)|
,

[2 + ρ̂λ1(σD)], and [2 + ρ̂λ2(σD)], three basic terms used
extensively in a later step to evaluate the LLF expression.

Meanwhile, a systolic-based process is run to compute
the vector a(σD) and perform the projection on the received
samples. The idea behind this approach is to decompose the
required inner product operation —between any two real
vectors u and v— into multiple parallel threads. Each thread
runs a process element (PE) which independently computes
a partial result as a function of the data received from its
upstream. An example of a K -order decomposition, where
qNK is an integer, is given by:

uT v =
K−1∑
k=0


N/K∑
n=1

u
[
n+ k

N
K

]
v
[
n+ k

N
K

] . (25)

By carefully controlling these parallel PEs, the above decom-
position results in a (NK×) saving in terms of latency.

As described previously, the ML Doppler spread estima-
tor evaluates the LLF at different candidate values for the
Doppler spread σD. Their range varies depending on the
application. In a high-speed railway, for instance, the max-
imum mobile velocity can reach v = 500 km/h [37].
By considering a transmission over a carrier frequency of
about fc = 2.45 GHz, the maximum Doppler frequency is
fD = v

c fc ' 1200 Hz, where c denotes the speed of light.

FIGURE 7. State diagram of ‘‘Doppler Spread Estimation FSM’’.

Thus, to cover almost all possible applications at the given
carrier, we need to evaluate the LLF function at different
candidates in the range3 σD ∈ [0, 10000] rad.s−1. Obviously,
the latency of this process is directly related to the search
technique. In this work, we propose a coarse-to-fine (CTF)
technique [38] for the maximum’s detection.

The CTF search strategy, an efficient algorithm for detec-
tion, reduces the computation latency and the FPGA resource
usage by minimizing the searching range. In fact, we first
evaluate the LLF at a number of candidates incremented by a
coarse step in order to detect a first coarse maximum. Then,
we use a fine search by incrementing the candidate value in a
limited range to find the local maximum. We design a dedi-
cated FSM to control andmonitor the CTF search task, whose
state diagram is illustrated in Fig. 7. Initially, the FSM is in
the INIT state where the candidate value (σD) is initialized
to the user-defined min parameter. Once the enable signal is
set to valid (enable is a status signal produced by the ‘‘SNR
Estimation’’module), themachine transits immediately to the
COMPUTE state that enables the LLF computation for the
current Doppler spread candidate value. Once the computing

3 Please note here that the maximum Doppler frequency is related to
the Doppler spread, σD, where the underlying relationship depends on the
specific channel’s spectrum model. In this work, we consider the widely
studied uniform Jakes’ model for which we have: σD = 2π fD/

√
2 [15].

VOLUME 7, 2019 69473

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

TABLE 2. Hardware-in-the-loop co-simulation parameters.

task is finished, indicated by a high-logic-level of a status sig-
nal, the candidate value will be incremented by a coarse or a
fine step, according to the current search task. A control logic
on the candidate value is made in the COARSE INCREMENT
and the FINE INCREMENT states. As long as the candidate
value does not exceed the range limit, denoted by the max
parameter, the FSM moves to the COMPUTE state and starts
another computation task. Otherwise, it refines the step value
or transits to the FINISH state. Here, the FSM indicates
the end of the estimation task with the status signal finish.
This signal is fed to the ‘‘Windowing’’ FSM, i.e., the top-
level control unit in charge of data playback and estimation
averaging.

E. FUNCTIONAL SIMULATION OF THE DESIGN
The pre-synthesis final simulation of the design verifies
whether the overall system’s processing matches the behavior
of the referenceMATLAB-based software version in terms of
datapath accuracy and inter-component interactions ensured
by the high-level control unit. The simulation process is made
much easier with the strong simulation capabilities of the BPS
environment [28] wherein several HW/SW shared blocks
allow a bidirectional reading and writing access both from
the host processor and the FPGA side and, hence, enable an
effective MATLAB/hardware interaction. In fact, HDL test-
benches are not needed since stimulus signals and test vectors
can be generated in the MATLAB workspace then injected
dynamically to the HW design via the ‘‘FromWorkspace’’
block. Besides, the outputs and the internal signals can be
visualized using the ‘‘Scope’’ and ‘‘Display’’ interfaces or
simply stored to theMATLABworkspace for further analysis
via the ‘‘ToWorkspace’’ block.
The simulation results obtained in BPS environment are

cycle- and bit-accurate, and mirror those which should be
obtained once the design is implemented on the SDR’s FPGA.
The resulting accuracy, despite the fixed point representa-
tion imperfections, is enough to validate the design’s data-
path and synchronization before its hardware synthesis and
implementation.

V. DESIGN TRADE-OFF
The joint DA ML SNR and Doppler spread estimator, whose
top-level block diagram is shown in Fig. 2, was designed
and tested within the BPS framework. During the design
process, we exploited the Xilinx IP blockset to conceive the
proposed architecture over a model-based framework. Never-
theless, wemade use ofMATLAB and VHSICHDL (VHDL)
particularly for the finite state machine’s description. The
range analysis of the different inputs/outputs, parameters and
internal signals is a key factor in the design trade-off. We took
advantage of MATLAB’s fixed-point dedicated tool [39]
to perform this task. This tool accelerates range analysis
by intensively simulating the entire design with the user-
specified fixed-point representations, and comparing it with
the floating-point version in a way to maximize precision
while covering the dynamic range. Based on this comparison,
an optimized fixed-point representation of the design signals
is produced.

It is worth mentioning that we are able to directly influence
the performance/FPGA usage trade-off by specifying several
internal parameters within the Xilinx IP blocks of the design
such as latency, synthesis, and implementation rules so as
to save area or increase processing speed. The design was
synthesized, mapped, placed, and routed using Xilinx System
Generator tool, and finally implemented on the FPGA of the
miniBEE4 SDR platform.

In this section, we will evaluate thoroughly the proposed
hardware architecture in terms of hardware design trade-
off. Indeed, we will investigate the effect of the proposed
hardware optimizations on the overall FPGA resource uti-
lization, energy consumption, and processing latency. Then,
we will examine the overall system performance of the opti-
mized architecture in terms of estimation accuracy under
several propagation scenarios. To that end, we consider the
configuration of the system’s setup parameters displayed
in Table 2. There, a basic baseband configuration is adopted
along with CMC’s FMC111 front-end configuration parame-
ters already fine-tuned and set in [28]. We also fix the FPGA’s
clock rate to the DAC/ADC sampling frequencies in order to

69474 VOLUME 7, 2019

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

comply with CMC’s recommendations for best operation of
the miniBEE4 SDR platform.

A. FPGA RESOURCE UTILIZATION
Since there are no related works on the hardware imple-
mentation of the considered joint estimator, we conceive
another ‘‘unoptimized’’ design which employs temporary
buffers, CORDIC blocks, and does not implement the CTF
search technique. We then compare the resource utilization
of the optimized solution to the straightforward unoptimized
architecture, called Unoptimized Architecture, and evaluate
the impact on the overall usage/performance trade-off. The
FPGA programming file is generated for the target device
Virtex-6 XC6VSX475T and its resource utilization is summa-
rized in Table 4.

At a glance, one can easily verify that the introduced
optimization techniques offer a large savings in terms of
resource utilization by consuming less than 2% of the avail-
able slice registers on the target board. WhereasUnoptimized
Architecture requires up to 10% of the same resource or five
times more. Moreover, the optimized design uses 9837 out
of 297600 LUTs, which represents only 3.31% of all the
LUTs provided on the Virtex-6 FPGA. The last two features
presented in Table 4 (i.e., BRAM/FIFO and DSP48) are spe-
cific limited resources available on the Virtex-6 device series.
There, the optimized design uses 34.86% and 17.61% of the
available BRAM/FIFO and DSP48 cores, respectively. Com-
pared to the unoptimized design (i.e., Unoptimized Architec-
ture), it saves up to 34.45% of the BRAMs/FIFOs but loses
about 11.64% of the DSP48 resources.
To summarize, the proposed optimization strategies bring

together up to (5×), (4×), and (1.5×) savings in terms of
slice registers, LUTs, and BRAM/FIFO utilization, respec-
tively. This comes at the cost, however, of losing 11% of
the DSP48 specific resources. This is due to the fact that
the proposed optimized design considers the DSP48 high-
performance MAC slices instead of using embedded multi-
pliers or a Fabric approach that takes though longer latency to
produce a valid output. These strategies require considerable
routing efforts, and are less efficient in terms of hardware
costs and latency [40]. Finally, as expected, Table 4 confirms
that the optimized design uses a very small area of the target
chip, making it an attractive candidate for possible peripheral
extension for industry standard compliance and for integra-
tion in future 5G cognitive transceivers.

As an overall benchmark, we will gauge the complexity of
the proposed hardware design against works on the hardware
implementation of Doppler-based techniques for different
applications. For instance, [41] developed FPGA imple-
mentations of improved least-squares methods for Doppler
centroid frequency fitting dedicated to a synthetic-aperture
radar (SAR) application. There, the authors compare the pro-
posed techniques against the traditional linear least-squares
methods in terms of complexity. The resources utilization
provided therein for a Xilinx Virtex6 XC6VLX240T, a chip
from the same FPGA family adopted in our hardware setup,

are summarized in Table 4. In terms of slice logic usage, our
design outperforms the traditional least-squares methods. It is
worth mentioning here that the achieved gains are actually
much higher because the proposed implementation encom-
passes a lot more than a Doppler fitting method per se. Rather
it literally estimates the Doppler spread jointly with the SNR
and the wireless channel at the expense of an additional
computational burden and more FPGA resources. Another
work [42] implemented a Doppler ultrasound imaging system
on a Xilinx Virtex 5 FPGA, a smaller one compared to our
Virtex 6 that can still stand as a valid reference. Regard-
less of its application, the DSP complexity of the outlined
technique is comparable to ours. As reported by the authors,
this technique uses 3223 out of 69120 slice registers and
3199 out of 69120 slice LUTs, that is 4.67% and 4.62%
of the total available slices, respectively. FPGA resources
usage in [42] is comparable to ours. And that is without
accounting once again for the key fact that our design jointly
estimates the Doppler, the SNR, and the wireless channel.
These sample comparisons highlight the effectiveness of our
optimized design.

TABLE 3. On-chip power estimation and maximum operating frequency
results at 25◦C.

B. ENERGY CONSUMPTION
The saving in terms of resource utilization directly trans-
lates into a reduction of about 38% in dynamic power con-
sumption. This result was obtained using the Xilinx Power
Estimator (XPE) tool. For the sake of fairness, we estimated
the energy and power consumption at the same operating
frequency of 61.44 MHz and the results are summarized
in Table 3. There, the optimized highly-pipelined architecture
saves 6% in energy consumption compared to the unopti-
mized one. Moreover, the synthesis results show that the opti-
mized architecture achieves a maximum operating frequency
significantly higher than that of Unoptimized Architecture.

C. PROCESSING LATENCY
In this subsection, we focus on the processing latency which
is a very important performance metric in the FPGA design
trade-off. To do so, we compute the clock-cycle-accurate
latencies for the different processing blocks of the proposed
architecture and list the results in Table 5. We observe that
the ‘‘Channel Estimation’’, the ‘‘Noise Variance Estimation’’,
and the ‘‘SNR Estimation’’ modules require only 148, 135,
and 36 clock cycles, respectively. These relatively low laten-
cies are due to the highly-parallel and deeply-pipelined

VOLUME 7, 2019 69475

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

TABLE 4. Resource utilization results at N = 128, M = 8, and L = 3.

TABLE 5. Detailed design latency at 61.44 MHz FPGA speed with
N = 128, M = 8, L = 3, min = 0, max = 10000, coarse_step = 400,
and fine_step = 40.

HDL architectures. The number of required clock cycles
depends mainly on the local approximation-window-size (N)
since the inner product is the most expensive operation in
terms of execution time (i.e., latency). Similarly to the men-
tioned blocks, the ‘‘LLF-submodule’’ needs just 138 clock
cycles to calculate a valid output for each Doppler candidate
value. However, the whole ‘‘Doppler Spread Estimation’’
module takes up to 95% of the total processing time. This
is due the LLF function evaluation within this module at Q
different candidate values, according to the CTF approach
described previously, where:

Q =
⌊
max − min
coarse_step

+ 2×
coarse_step
fine_step

⌋
. (26)

In (26), Q represents the latency factor equal to 45 with our
setup.

During the estimation process, we considered the case
of M = 8 local approximation windows. Assuming an
online averaging, the global latency of the entire system

is approximately M times the latency of the local estima-
tion process. Running the design with an FPGA’s operating
frequency of 61.44 MHz, the entire proposed design takes
less than 1 msec to jointly estimate the channel coefficients,
the noise variance, the SNR, and the Doppler spread over
M = 8 local approximation windows of size N = 128.
Without implementing the CTF search technique, the hard-
ware design with the same configuration would have taken
4.570 msec to execute the whole estimation process.

VI. EXPERIMENTAL RESULTS
The ultimate objective of this work is a first hardware real-
ization and integration of the outlined joint SNR and Doppler
spread ML estimator. In the previous section, we proved that
the proposed design meets the required specifications while
ensuring a satisfactory cost/performance trade-off. In this
section, we analyze the SDR-integrated prototype’s perfor-
mance in terms of estimation accuracy under realistic prop-
agation scenarios. To do so, we embed the produced FPGA
core of the estimator in the baseband chain depicted in Fig. 2.
The whole system is implemented in the miniBEE4 SDR
platform. Between the RF TX and the RF RX ports, we install
the EB Propsim F8 channel emulator in order to mimic realis-
tic wireless channels within real-time propagation scenarios.
This integrated channel emulator enables building, defining,
and customizing wireless channel models by configuring
several parameters such as mobile velocity, gains and attenu-
ations, path-loss, etc.

To assess the performance of our hardware prototype in
terms of estimation accuracy, we perform a comparative
study between two setups using the normalized mean square
error (NMSE) as a performance metric:

i) MATLAB simulations: the estimation results are
obtained using MATLAB floating-point simulations.
The wireless channel is generated using MATLAB
scripts;

ii) EB Propsim - mBEE4 SDR real-time emulations:
this setup represents the full hardware version of our
FPGA-embedded estimator. The reconfigurable RF
interface is provided by the host mBEE4 SDR platform,
and the wireless channel is emulated using the EB
Propsim F8 channel emulator.

In all simulations, the NMSE is computed over Mc =

10000 Monte-Carlo runs. We start by studying the effect of
the maximum Doppler frequency (fD) on the performance
of the channel coefficients estimation in setup ii. There,
the channel is emulated by EB Propsim for different maxi-
mum Doppler frequencies. Simultaneously, on-the-fly chan-
nel estimation is performed by the miniBEE4 SDR. In Fig. 8,
we can see that the proposed hardware prototype managed
to successfully identify the channel and to track its varia-
tions for the entire set of the proposed Doppler frequencies.
In high-mobility scenarios, channel estimation becomes a
challenging issue due to the channel’s fast time variations.
Despite this fact, Fig. 8.c confirms the ability of the proposed
FPGA-embedded estimator to correctly identify and track

69476 VOLUME 7, 2019

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

FIGURE 8. Estimated vs. real channel at (a) fD = 400 Hz, (b) fD = 800 Hz,
and (c) fD = 1200 Hz.

FIGURE 9. SNR NMSE obtained from EB Propsim - mBEE4 SDR real-time
emulations against MATLAB-based simulations as function of the
average SNR, with fD = 200 Hz and L = 3.

highly time-varying channels, i.e., where the user mobility
can reach 500 Km/h in Fig. 8(c) as required in future 5G
mobile communication systems.

In Figs. 9 and 10, we study the impact of the average
(i.e., long-term) SNR on the ‘‘instantaneous SNR’’ and the
Doppler spread estimation performance, respectively, with

FIGURE 10. Doppler NMSE obtained from EB Propsim - mBEE4 SDR
real-time emulations against MATLAB-based simulations as function of
the average SNR, with fD = 200 Hz and L = 3.

both MATLAB floating-point and EB Propsim-miniBEE4
SDR setups. The average SNR is defined as follows:

SNR =
E
{
|x(n)|2

}
2σ 2

n
, (27)

in which E {.} denotes the expectation over all transmitted
symbols. But since the constellation energy is assumed to be
normalized to one, i.e., E

{
|x(n)|2

}
= 1, the average SNR is

simply given by:

SNR =
1

2σ 2
n
. (28)

Fig. 9 suggests that the NMSE curves for both hardware
and software versions coincide and follow the same trend
over a wide range of practical average SNRs, i.e., between
−10 and 20 dB. This confirms the validity of the proposed
SNR estimator hardware design and validates its real-time
performance under real-world operating conditions.

The NMSE of the estimated Doppler frequency versus the
average SNR for the considered setups is depicted in Fig. 10.
There, we can see that both curves basically follow the same
trend albeit the presence of a negligible NMSE mismatch
of about 4 × 10−2 versus the whole range of long-term
SNR. Such performance mismatch is due to the hardware
imperfections introduced by the fixed-point representation of
the signals within the FPGA, the miniBEE4 SDR DAC/ADC
quantization errors and resolution, the EB Propsim chan-
nel emulator, and the interconnections between the setup
equipments.

In Fig. 11, we compare the hardware-based real-time
Doppler NMSE to its MATLAB counterpart versus the
true Doppler. The latter is fixed in the considered setups
through the EB Propsim channel emulator user interface and
in the MATLAB simulation code. The results confirm that
the hardware-based real-time results obtained on the SDR

VOLUME 7, 2019 69477

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

FIGURE 11. NMSE of the Jakes’ Doppler frequency estimation using EB
Propsim - mBEE4 SDR real-time emulations against MATLAB-based
simulations vs. the real Doppler frequency, at SNR = 0 dB.

platform are equivalent to those obtained offline through
idealized MATLAB-based simulations even in harsh propa-
gation conditions (i.e., SNR = 0 dB) and, over a wide range
of practical Doppler values. Again, the discrepancy between
the two curves is mainly due to the hardware imperfections
introduced by the FPGA, the RF-front end, and the channel
emulator. Indeed, we observe from Fig. 11 that these imper-
fections have worse effects at small Doppler values. This is in
part due to the fact that decreasing the SNR (due for instance
to quantization errors and hardware-inherent thermal noise)
affects the estimation of small Doppler values more than it
does for large ones [15].

To be more specific, the hardware imperfections intro-
duced by the miniBEEE4 platform coupled with the Anite’s
EB Proposim channel emulator are either of electronic and/or
RF nature [43]. In fact, the electronic cluster consists of
thermal and flicker noise components resulting from elec-
trons motion and the latter are inevitable sources of signal
corruption. Moreover, LUT-mapping and fixed-point data
representation introduce quantization errors which are folded
in the overall additive noise, thereby resulting in an SNR
deterioration. Besides, according to [44], phase noise, front-
end components’ non-linearities, and IQ-imbalance are con-
sidered as the most important phenomena that degrade the
performance of wireless communication systems. Based on
the system model presented in [44] and [45], the baseband
hardware received signal, corrupted by the hardware noise
component is given by:

ỹ[n] = K1y[n]+ K2y∗[n]+ DC + nth + nf + nq, (29)

where K1 = (1+Ge−j8)/2 and K2 = (1−Ge−j8)/2 denote
the non-linearity and IQ-imbalance coefficients represented
by the gain mismatch G and the phase error 8, respectively.
DC is the complex DC-offset introduced by the entire system
on the constellation while nth, nf , and nq denote the thermal,

flicker, and quantization noises, respectively, assumed to be
zero-mean and mutually uncorrelated.

As evidenced by (29), hardware imperfections decrease
the effective SNR at the receiver side and induce a modified
channel model, i.e., h̃ = K1h+K2h∗. Obviously, this channel
modification affectsmany intrinsic channel properties such as
its perceived Doppler spread at the receiver side. Ultimately,
this may also dramatically increase the bit error rate (BER)
of the system, thereby decreasing the intended quality of
service. More appropriate methods that better mitigate or
account for these hardware imperfections will be developed
and then implemented and tested in hardware in a future
work.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed and developed the FPGA design,
the hardware implementation, the SDR integration, and the
experimental validation in real-world operating conditions of
a joint DA ML estimator for the SNR and Doppler spread
parameters. This joint estimator is most suitable for future 5G
wireless communication systems that deploy context-aware
cognitive transceivers. We have produced a proof of concept
that validates unambiguously the very high accuracy, cost
efficiency, and robustness of this very promising joint estima-
tor despite the presence of hardware impairments. Through
this work, we have explored the whole FPGA prototyping
process from the design to the integration and experimen-
tal testing in real-world conditions. A top-down approach
was adopted to design an optimized and flexible datapath
and a robust control unit. A highly-efficient and deeply-
pipelined reconfigurable HDL architecture was built using a
model-based framework, then integrated on a SDR platform,
and tested in real-world propagation conditions produced
by a powerful channel emulator. The proposed architecture
requires a relatively very small FPGA area to host the joint
estimator, thus allowing new extensions in compliance with
industry standards. In future works, we plan to develop effi-
cient hardware prototypes for other modules of the CTR, [6]
then integrate them to build and showcase a fully operational
version in real-time OTA conditions.

ACKNOWLEDGMENT
The authors would like to acknowledge CMC Microsystems
for the provision of products and services that facilitated this
research, including CAD tools and prototyping platforms.

REFERENCES
[1] C. Liang and F. R. Yu, ‘‘Wireless network virtualization: A survey, some

research issues and challenges,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 358–380, 1st Quart., 2015.

[2] M. E. Hoque, Advanced Applications of Rapid Prototyping Technology in
Modern Engineering. Rijeka, Croatia: InTech, 2011.

[3] Nokia. (2014). 5G Use Case and Requirements—White Paper. [Online].
Available: resources.alcatel-lucent.com/asset/200010

[4] S. E. Elayoubi, M. Fallgren, P. Spapis, G. Zimmermann,
D. Martin-Sacristan, C. Yang, S. Jeux, P. Agyapong, L. Campoy,
Y. Qi, and S. Singh, ‘‘5G service requirements and operational use
cases: Analysis and METIS II vision,’’ in Proc. IEEE Eur. Conf. Netw.
Commun. (EuCNC), Jun. 2016, pp. 158–162.

69478 VOLUME 7, 2019

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

[5] W. H. Chin, Z. Fan, and R. Haines, ‘‘Emerging technologies and research
challenges for 5G wireless networks,’’ IEEE Wireless Commun., vol. 21,
no. 2, pp. 106–112, Apr. 2014.

[6] I. Mrissa, F. Bellili, S. Affes, and A. Stéphenne, ‘‘A context-aware
cognitive SIMO transceiver for enhanced throughput on the downlink
of LTE HetNet,’’ Wireless Commun. Mobile Comput., vol. 16, no. 11,
pp. 1414–1430, Aug. 2016.

[7] T. Yoo, N. Jindal, and A. Goldsmith, ‘‘Multi-antenna downlink channels
with limited feedback and user selection,’’ IEEE J. Sel. Areas Commun.,
vol. 25, no. 7, pp. 1478–1491, Sep. 2007.

[8] J. C. Ikuno, M. Wrulich, and M. Rupp, ‘‘System level simulation of LTE
networks,’’ in Proc. IEEE 71st Veh. Technol. Conf. (VTC-Spring), Taipei,
Taiwan, May 2010, pp. 1–5.

[9] M. D. Austin and G. L. Stuber, ‘‘Velocity adaptive handoff algorithms
for microcellular systems,’’ IEEE Trans. Veh. Technol., vol. 43, no. 3,
pp. 549–561, Aug. 1994.

[10] G. Park, D. Hong, and C. Kang, ‘‘Level crossing rate estimation with
Doppler adaptive noise suppression technique in frequency domain,’’
in Proc. IEEE 58th Veh. Technol. Conf. (VTC-Fall), vol. 2, Oct. 2003,
pp. 1192–1195.

[11] S. Mohanty, ‘‘VEPSD: A novel velocity estimation algorithm for next-
generation wireless systems,’’ IEEE Trans. Wireless Commun., vol. 4,
no. 6, pp. 2655–2660, Nov. 2005.

[12] K. E. Baddour and N. C. Beaulieu, ‘‘Robust Doppler spread estimation
in nonisotropic fading channels,’’ IEEE Trans. Wireless Commun., vol. 4,
no. 6, pp. 2677–2682, Nov. 2005.

[13] C. Tepedelenlioglu and G. B. Giannakis, ‘‘On velocity estimation and
correlation properties of narrow-band mobile communication channels,’’
IEEE Trans. Veh. Technol., vol. 50, no. 4, pp. 1039–1052, Jul. 2001.

[14] O.Mauritz, ‘‘A hybrid method for Doppler spread estimation [mobile radio
systems],’’ in Proc. IEEE 59th Veh. Technol. Conf. (VTC-Spring), vol. 2,
May 2004, pp. 962–965.

[15] F. Bellili and S. Affes, ‘‘A low-cost and robust maximum likeli-
hood Doppler spread estimator,’’ in Proc. IEEE GLOBECOM, Atlanta,
GA, USA, Dec. 2013, pp. 4325–4330.

[16] F. Bellili, R. Meftehi, S. Affes, and A. Stéphenne, ‘‘Maximum likeli-
hood SNR estimation of linearly-modulated signals over time-varying flat-
fading SIMO channels,’’ IEEE Trans. Signal Process., vol. 63, no. 2,
pp. 441–456, Jan. 2015.

[17] M. F. Brejza, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, ‘‘A high-
throughput FPGA architecture for joint source and channel decoding,’’
IEEE Access, vol. 5, pp. 2921–2944, 2017.

[18] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,
‘‘A flexible FPGA-based quasi-cyclic LDPC decoder,’’ IEEE Access,
vol. 5, pp. 20965–20984, 2017.

[19] A. Li, P. Hailes, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,
‘‘1.5 Gbit/s FPGA implementation of a fully-parallel turbo decoder
designed for mission-critical machine-type communication applications,’’
IEEE Access, vol. 4, pp. 5452–5473, 2016.

[20] X. Cai, M. Zhou, and X. Huang, ‘‘Model-based design for software defined
radio on an FPGA,’’ IEEE Access, vol. 5, pp. 8276–8283, 2017.

[21] T. H. Pham, S. A. Fahmy, and I. V. McLoughlin, ‘‘An end-to-end multi-
standard OFDM transceiver architecture using FPGA partial reconfigura-
tion,’’ IEEE Access, vol. 5, pp. 21002–21015, 2017.

[22] M. Petrova, A. Achtzehn, and P. Mähönen, ‘‘System-oriented commu-
nications engineering curriculum: Teaching design concepts with SDR
platforms,’’ IEEE Commun. Mag., vol. 52, no. 5, pp. 202–209, May 2014.

[23] S. G. Bilén, ‘‘Software-defined radio: A new paradigm for integrated
curriculum delivery,’’ IEEE Commun. Mag., vol. 52, no. 5, pp. 184–193,
May 2014.

[24] D. Kuswidiastuti, S. Suwadi, T. Suryani, and D. Elvia, ‘‘Implementation
and performance analysis of convolution codeon WARP (wireless open
access research platform),’’ JAVA Int. J. Elect. Electron. Eng., vol. 13, no. 1,
pp. 1–6, 2016.

[25] Free Software Foundation, Inc. (2009). GNU Radio—The GNU Software
Radio. [Online]. Available: http://www.gnu.org/software/gnuradio

[26] S. Donthi and R. L. Haggard, ‘‘A survey of dynamically reconfigurable
FPGA devices,’’ inProc. 35th Southeastern Symp. Syst. Theory, Mar. 2003,
pp. 422–426.

[27] M. Ahmadian, Z. J. Nazari, N. Nakhaee, and Z. Kostic, ‘‘Model based
design and SDR,’’ in Proc. 2nd IEE/EURASIP Conf. DSPenabledRadio,
Sep. 2005, pp. 1–8.

[28] BEEcube. (2016). FPGA Based Rapid Prototyping Platforms for
Telecommunications. [Online]. Available: www.beecube.com/uploads/
6/3/4/9/63495763/beecube_brochure_web.pdf

[29] (2014). Challenges and Solutions in Prototyping 5G Radio
Access Network. [Online]. Available: www.usdatavault.com/library/
5gwhitepaper.pdf

[30] Anite. (2008). Scalable Tool for Radio Channel Emulation EB
Propsim F8. [Online]. Available: www.gigacomp.ch/pdfs/EB_Propsim_
F8_Datasheet.pdf

[31] Study on Scenarios and Requirements for Next Generation Access Tech-
nologies, Version 14.0.0, document (TR) 38.913, 3rd Generation Partner-
ship Project (3GPP), 2016.

[32] G. DeMicheli, Synthesis and Optimization of Digital Circuits. New York,
NY, USA: McGraw-Hill, 1994.

[33] T. Peng, Y. Zhou, and C. Hu, ‘‘An efficient design of FPGA-based sample
rate converting filter in software defined radio,’’ in Proc. Int. Conf. Com-
mun. Technol. (ICCT), 2013, pp. 634–638.

[34] Xilinx. (2016). Divider Generator v5.1, LogiCORE IP Product Guide.
[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/_div_gen/v5_1/pg151-div-gen.pdf

[35] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
‘‘High-level synthesis for FPGAs: From prototyping to deployment,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[36] J. E. Volder, ‘‘The CORDIC trigonometric computing technique,’’ IRE
Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, 1959.

[37] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution: HSPA and
LTE for Mobile Broadband. New York, NY, USA: Academic, 2010.

[38] M. Pedersoli, A. Vedaldi, and J. Gonzàlez, ‘‘A coarse-to-fine approach
for fast deformable object detection,’’ in Proc. IEEE CVPR, Jun. 2011,
pp. 1353–1360.

[39] MATLAB Fixed-Point Tool, MathWorks, Natick, MA, USA, 2013.
[40] O. A. Pfänder, R. Nopper, H.-J. Pfleiderer, S. Zhou, and A. Bermak,

‘‘Configurable blocks for multi-precision multiplication,’’ in Proc. IEEE
DELTA, Jan. 2008, pp. 478–481.

[41] W. Yan and H. Chen, ‘‘Time-shared fitting method of Doppler parame-
ters and the implementation on FPGA,’’ in Proc. IET Int. Radar Conf.,
Apr. 2013, pp. 1–5.

[42] A. Page and T. Mohsenin, ‘‘An efficient & reconfigurable FPGA and
ASIC implementation of a spectral Doppler ultrasound imaging system,’’
in Proc. IEEE 24th Int. Conf. Appl.-Specific Syst., Architectures Proces-
sors, Jun. 2013, pp. 198–202.

[43] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication.
Berlin, Germany: Springer, 2004.

[44] T. Schenk, RF Imperfections in High-Rate Wireless Systems: Impact and
Digital Compensation. Berlin, Germany: Springer, 2008.

[45] J. Tubbax, A. Fort, L. V. der Perre, S. Donnay, M. Engels, M. Moonen,
and H. D. Man, ‘‘Joint compensation of IQ imbalance and frequency
offset in OFDM systems,’’ in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), vol. 4, Dec. 2003, pp. 2365–2369.

HAITHEM HAGGUI received the M.Sc. degree
from the École de technologie supérieure (ÉTS),
University of Quebec, Montreal, QC, Canada,
in 2012, where he is currently pursuing the Ph.D.
degree with the Institut National de la Recherche
Scientifique (INRS). His current research inter-
ests include FPGA and ASIC implementation,
software-defined radio (SDR), digital signal pro-
cessing, and wireless communications.

VOLUME 7, 2019 69479

H. Haggui et al.: FPGA-SDR Integration and Experimental Validation of a Joint DA ML SNR and Doppler Spread Estimator

SOFIÈNE AFFES (S’95–SM’05) received the
Diplôme d’Ingénieur in telecommunications and
the Ph.D. degree (Hons.) in signal processing
from Télécom ParisTech (ENST), Paris, France,
in 1992 and 1995, respectively. He was a Research
Associate with INRS, Montreal, QC, Canada,
until 1997; an Assistant Professor, until 2000; and
an Associate Professor, until 2009. He is currently
a Full Professor and the Director of PERWADE,
a unique M$4 million research-training program

on wireless in Canada involving 27 partners from eight universities
and ten industrial organizations. He has been twice a recipient of the
Discovery Accelerator Supplement Award from NSERC (2008–2011)
and (2013–2016). From 2003 to 2013, he was the Canada Research
Chair in wireless communications. Since 2017, he has been holding the
Cyrille-Duquet Research Chair in telecommunications. In 2006, 2015,
and 2017, he has served as the General Co-Chair or Chair of the 64th
IEEE VTC’2006-Fall, the 15th IEEE ICUWB’2015, and the 28th IEEE
PIMRC’2017 co-located with the 28th IEEE 5G Summit, respectively, all
held in Montreal, QC, Canada. He received the IEEE VTC Chair Recogni-
tion Award from the IEEE VTS and the IEEE ICUWB Chair Recognition
Certificate from the IEEEMTT-S for exemplary contributions to the success
of both events, in 2008 and 2015, respectively. He has previously served as
an Associate Editor for the IEEE TRANSACTIONSONWIRELESSCOMMUNICATIONS,
the IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS ON

SIGNAL PROCESSING, the Journal of Electrical and Computer Engineering
(Hindawi), and the Journal of Wireless Communications and Mobile Com-
puting (Wiley). He currently serves as a member of the Editorial Board of
theMDPI Sensors Journal and the Advisory Board of theMDPI Multidisci-
plinary Journal Sci.

FAOUZI BELLILI received the B.Eng. degree
(Hons.) in electrical engineering from Tunisia
Polytechnic School, in 2007, and the M.Sc.
and Ph.D. degrees (Hons.) from the National
Institute of Scientific Research (INRS), Univer-
sity of Quebec, Montreal, QC, Canada, in 2009
and 2014, respectively. From 2014 to 2016,
he was a Research Associate with INRS-EMT,
where he coordinated a major multi-institutional
NSERC Collaborative R&D (CRD) project on

5th-Generation (5G) Wireless Access Virtualization Enabling Schemes
(5G-WAVES). From 2016 to 2018, he was a Postdoctoral Fellow with the
University of Toronto, ON, Canada. He is currently an Assistant Professor
with the Department of Electrical and Computer Engineering, University of
Manitoba, Winnipeg, MB, Canada. His research focuses on statistical and
array signal processing for wireless communications and 5G-enabling tech-
nologies. He received the very prestigious NSERC PDF Grant (2017–2018).
He was also a recipient of another prestigious PDF Scholarship offered over
the same period (but declined) from the Fonds de Recherche du Quebec
Nature et Technologies (FRQNT). Hewas also awarded the INRS Innovation
Award for the year 2014/2015, the very prestigious Academic Gold Medal
of the Governor General of Canada (2009–2010), and the Excellence Grant
of the Director General of INRS (2009–2010). He received the Award of
the Best M.Sc. Thesis in INRS-EMT (2009–2010), and twice—for both
the M.Sc. and Ph.D. programs—the National Grant of Excellence from the
Tunisian Government. In 2011, he received theMerit Scholarship for Foreign
Students from the Ministere de l’Education, du Loisir et du Sport (MELS) of
Quebec, Canada. He serves regularly as a TPC member for the major IEEE
conferences and acts as a Reviewer for many international scientific journals
and conferences.

69480 VOLUME 7, 2019

	INTRODUCTION
	SYSTEM MODEL AND MATHEMATICAL FORMULATION
	DA ML DOPPLER SPREAD ESTIMATOR
	DA ML SNR ESTIMATOR

	HARDWARE SETUP
	THE BEECUBE MINIBEE4 SDR PLATFORM
	BEECUBE PLATFORM STUDIO (BPS)
	THE EB PROPSIM FS8 CHANNEL EMULATOR

	PROPOSED HARDWARE ARCHITECTURE
	SYSTEM SPECIFICATIONS
	SYSTEM-LEVEL ARCHITECTURE
	DA ML SNR ESTIMATOR
	ML DOPPLER SPREAD ESTIMATOR
	FUNCTIONAL SIMULATION OF THE DESIGN

	DESIGN TRADE-OFF
	FPGA RESOURCE UTILIZATION
	ENERGY CONSUMPTION
	PROCESSING LATENCY

	EXPERIMENTAL RESULTS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	HAITHEM HAGGUI
	SOFIÈNE AFFES
	FAOUZI BELLILI

