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Abstract—In this paper, infinite integrals involving the product
of Bessel functions of different arguments are solved in closed-
form. The obtained solutions form a framework for the error
probability analysis of wireless amplify and forward (AF) systems
with an arbitrary number of variable-gain relays operating
over independent but not necessarily identical Nakagami-m
fading channels. Here we show that the error probability can
be described by generalized hypergeometric functions, namely,
Gauss’s and Lauricella’s multivariate hypergeometric functions.
This work represents a significant improvement over previous
contributions and extends previous formulas pertaining to dual-
hop transmissions over identical Nakagami-m fading channels.
Numerical examples show an excellent match between simulation
and theoretical results.

Index Terms—Amplify and forward relaying, error probability,
multi-hop wireless transmission, Nakagami fading, hypergeomet-
ric Lauricella function.

I. INTRODUCTION

THE performance analysis of digital communication sys-
tems over fading environments has attracted a lot of re-

search endeavor over the recent past. The derivation of closed-
form expressions for key performance measures, namely the
average error probability, is central to such research. Such
closed-form results alleviate the need for Monte-Carlo sim-
ulations thereby enabling easy optimization of the overall
system performance. In particular, numerous studies have been
devoted to the performance analysis of multi-hop wireless
systems over fading channels. Recently, the multi-hop concept
has gained momentum in the context of cooperative wireless
systems where relaying is used as a form of spatial diversity
to overcome highly shadowed or deeply faded links [1]. The
main idea is that communication is achieved by relaying the
signal from the source to the destination via many intermittent
terminals in between called relays. With relays that merely
amplify and forward the incoming signal prior to relaying, AF
transmission is the simplest and the cheapest to implement.
Performance of such a system can be analyzed through the
theoretical evaluation of certain performance metrics, namely,
the average error probability. So far, despite many valuable
contributions [2]-[12], the error analysis of the dual-hop case
is still incomplete and there are no closed-form expressions for
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AF multihop systems with an arbitrary number of relays. In
[2], [3], Hasna and Alouini presented an error probability anal-
ysis for dual-hop relaying system over identical Nakagami-m
fading. Only recently have the authors in [4]-[6] considered
the non-identical case for dual-hop transmission, but merely
for integer values of the Nakagami-m fading parameter. Nev-
ertheless, in practical scenarios, the 𝑚 parameters often adopt
non-integer values [13], which exclude the generality of [4],
[5] and [6]. Other error analysis approaches bind the output
SNR of the multi-hop relay link. For instance, it was upper
bounded by the minimum value and the geometric mean of
the SNRs at the hops, in [7] and [8], respectively. So far,
there is no closed-form error probability analysis reported in
the literature for multihop relaying systems with an arbitrary
number of variable-gain relays over Nakagami-m fading. The
most valuable contributions in this context can be found in [9],
[10] and [12]. In reference [9], [10], the error probabilities
of multi-hop multi-branch wireless communication systems
are expressed as a double infinite integrals of the moment
generating function (MGF) of the reciprocal of the instan-
taneous received SNR per branch. Therefore, in principle,
exact evaluation of the error probability using the method in
[9], [10] requires numerical computation of double integrals,
which has been achieved by relying on the Gauss Quadrature
Rule in [11]. In the theoretical approach presented in [12], the
error probability performance of an AF multihop system is
evaluated using single-integral expressions obtained in terms
of the MGF of the reciprocal of the instantaneous received
SNR. The obtained single integral formula is unfortunately
not applicable to the multi-branch scenario, but it offers a
more tractable solution than [9], [10] for the evaluation of the
error probability of multihop transmissions. Motivated by the
above considerations, in the present contribution, we derive
for the first time this error probability in closed form. The
obtained framework applies to the multihop scenario and can
also be used to compute the exact formulas of the MGF of
the end-to-end SNR in the multibranch multihop context. Our
approach is inspired by [12] and generalizes both [2] and [4]. It
turns out that the average error probability belongs to a special
class of generalized hypergeometric series. These are the
Lauricella’s multivariate hypergeometric functions [14] of 𝑁
variables 𝐹 (𝑁)

𝐶 for which some quite substantial mathematical
apparatus is already known, like convergence properties and
some analytical continuation formulas. Although the results
are not expressible in common simple functions, they are at
least expressible in this known type of functions, a significant
improvement over previous results. In particular, new simple
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expressions for the error probability are derived in the dual-
hop case, which is to date the most investigated one in the
literature for its practical applications. The obtained formulas
involve Appell’s hypergeometric [14], Gauss’ hypergeometric
and Meijer’s-G [15] functions.
The remainder of this paper is organized as follows. First,
in section II, we derive closed-form solutions to the infinite
integral containing the product of Bessel functions. Based on
the obtained solutions, the error-rate performance for a variety
of modulation schemes of AF multihop relaying systems with
variable-gain relays is evaluated in section III. Section IV,
derives new error probability results for the dual-hop case and
shows how these results specialize for some less general fading
scenarios of interest. Some numerical results are provided in
section V. Finally, we conclude the paper while summarizing
the main results in section VI.

II. SOLUTION TO THE INFINITE INTEGRAL

This paper first addressees the calculation of the integrals

𝐼(𝜈, 𝜇, 𝑎,Λ, 𝛽) =

∫ ∞

0

𝑠𝜈𝐽𝜇
(
𝑎
√
𝑠
) 𝑁∏
𝑖=1

𝐾𝜆𝑖

(
𝑏𝑖
√
𝑠
)
𝑑𝑠 (1)

where

Λ = {𝜆1, ..., 𝜆𝑁} ,
𝛽 = {𝑏1, ..., 𝑏𝑁} ,

ℜ(𝑎), 𝜇 > 0,

𝑁 > 1. (2)

In (1), 𝐽𝜇(⋅) is the bessel function of the first kind and order 𝜇
[15, Eq. (8.440)], and 𝐾𝜆(⋅) is the modified bessel function of
the second kind and order 𝜆 [15, Eq. (8.485)]. The integral in
(1) occurs in a number of wireless applications including the
evaluation of the error probabilities and the ergodic capacity
of wireless multihop systems. Yet, to the best of the author’s
knowledge, a closed-form solution for this integral is not
known. Furthermore, a closed-form solution to the special case
of (1) obtained when 𝑁 = 2, that is

𝐼𝑠 (𝜈, 𝜇, 𝑎, 𝜆1, 𝜆2, 𝑏1, 𝑏2)

=

∫ ∞

0

𝑠𝜈𝐽𝜇
(
𝑎
√
𝑠
)
𝐾𝜆1

(
𝑏1
√
𝑠
)
𝐾𝜆2

(
𝑏2
√
𝑠
)
𝑑𝑠 (3)

is not widely known and seems to have been found only when
𝑏1 = 𝑏2 and 𝜆1 = 𝜆2 (see [16]). None of references [16] or
[15] gives a closed-form solution for either 𝐼 or 𝐼𝑠 . Nor does
Mathematica give a closed-form solution for 𝐼 or 𝐼𝑠. In this
paper, we derive an explicit and general solution to (1) for
any number 𝑁 > 1. Our analysis is only valid for real-valued
non-integer 𝜆𝑖. Nevertheless, practically, very similar results
can be obtained at 𝜆𝑖 and 𝜆𝑖+𝜖 for sufficiently small 𝜖 values.
By expressing the Bessel functions in terms of hypergeometric
functions, namely, using

𝐾𝜆(𝑧) = 2−𝜆−1Γ(−𝜆)𝑧𝜆0𝐹1(; 1 + 𝜆,
𝑧2

4
) +

2𝜆−1Γ(𝜆)𝑧−𝜆0𝐹1(; 1− 𝜆,
𝑧2

4
), (4)

and

𝐽𝜇(𝑧) =
1

Γ(𝜇+ 1)

(𝑧
2

)𝜇
0𝐹1

(
; 1 + 𝜇,−𝑧2

4

)
, (5)

where 0𝐹1(𝑎, 𝑏, 𝑧) denotes the confluent hypergeometric func-
tion [15], an alternative expression for 𝐼 is shown to be given
by

𝐼 (𝜈, 𝜇, 𝑎,Λ, 𝛽)=
𝑎𝜇

2𝜇Γ(𝜇+ 1)
×

∫ ∞

0

𝑠𝜈+
𝜇
2𝐾𝜆𝑁 (𝑏𝑁

√
𝑠)0𝐹1

(
;1+𝜇,−𝑎2𝑠

4

)𝑁−1∏
𝑖=1

[𝑉𝑖 +𝑊𝑖] 𝑑𝑠, (6)

where

𝑉𝑖 = 2𝜆𝑖−1Γ (𝜆𝑖)
(
𝑏𝑖
√
𝑠
)−𝜆𝑖

0𝐹1

(
; 1− 𝜆𝑖,

𝑏2𝑖 𝑠

4

)
, (7)

and

𝑊𝑖 = 2−𝜆𝑖−1Γ (−𝜆𝑖)
(
𝑏𝑖
√
𝑠
)𝜆𝑖

0𝐹1

(
; 1 + 𝜆𝑖,

𝑏2𝑖 𝑠

4

)
. (8)

In subsequent derivations, a more convenient expression for
the product involved in (6) will be given using the following
lemma. Let 𝑉1, ..., 𝑉𝑁 and 𝑊1, ...,𝑊𝑁 denote two sets of 𝑁
variables. Then, the following equality holds
Lemma 1:

𝑁−1∏
𝑖=1

(𝑉𝑖 +𝑊𝑖) =

𝑁−1∑
𝑖=0

∑
𝜏(𝑖,𝑁−1)

𝑁−1∏
𝑘=1

𝑉 𝑖𝑘𝑘 𝑊 1−𝑖𝑘
𝑘 , (9)

where 𝜏(𝑖, 𝑁−1) is the set of 𝑁−1-tuples such that 𝜏(𝑖, 𝑁−
1) = {(𝑖1, ..., 𝑖𝑁−1) : 𝑖𝑘 ∈ {0, 1},∑𝑁−1

𝑘=1 𝑖𝑘 = 𝑖}. Indeed, by
expanding the left side of (9), we can clearly notice that the
𝑖-th term can be viewed as

(
𝑁−1
𝑖

)
combinations of the product

of 𝑖𝑘 variables 𝑉𝑘 and 1 − 𝑖𝑘 variables 𝑊𝑘 . Note that, when
𝑉𝑘 and 𝑊𝑘 are equal, (9) reduces to the Newton’s binomial.
Using the above equality, (6) will be given by

𝐼 (𝜈, 𝜇, 𝑎,Λ, 𝛽) =
𝑎𝜇

2𝑁−1+𝜇Γ(𝜇+ 1)

𝑁−1∏
𝑘=1

(
𝑏𝑘
2

)𝜆𝑘

𝑁−1∑
𝑖=0

∑
𝜏(𝑖,𝑁−1)

{
𝑁−1∏
𝑘=1

(
2

𝑏𝑘

)2𝜆𝑘𝑖𝑘

Γ (𝜆𝑘)
𝑖𝑘Γ (−𝜆𝑘)1−𝑖𝑘

}
𝑀𝑖𝑗 ,(10)

where

𝑀𝑖𝑗=

∫ ∞

0

𝑠𝛿𝐾𝜆𝑁

(
𝑏𝑁

√
𝑠
)
0𝐹1

(
; 1 + 𝜇,−𝑎2𝑠

4

)
𝑁−1∏
𝑘=1

[
0𝐹1

(
; 1− 𝜆𝑘,

𝑏2𝑘𝑠

4

)]𝑖𝑘[
0𝐹1

(
; 1 + 𝜆𝑘,

𝑏2𝑘𝑠

4

)]1−𝑖𝑘
𝑑𝑠,

(11)

whereby 𝑗 stands for the 𝑗-th tuple of the set 𝜏(𝑖, 𝑁 −1), and

𝛿 = 𝜈 + 𝜇/2 +
(∑𝑁−1

𝑘=1 𝜆𝑘

)
/2 − ∑𝑁−1

𝑘=1 𝜆𝑘𝑖𝑘. The integral
𝑀𝑖𝑗 can be solved by expressing the Bessel 𝐾 integrand in
terms of Meijer’s G-functions [15, Eq. (9.301)], namely, using

𝐾𝜆𝑁 (𝑏𝑁
√
𝑠) = 𝐺2,0

0,2

(
𝑏2𝑁𝑠/4

∣∣∣∣ −
𝜆𝑁/2,−𝜆𝑁/2

)
/2. Then,

considering the change of variable 𝑧 = 𝑏2𝑁𝑠/4 yields

𝑀𝑖𝑗=

(
4

𝑏2𝑁

)𝛿+1∫ ∞

0

1

2𝑧
𝐺2,0

0,2

(
𝑧

∣∣∣∣ −
𝜉, 𝜉 − 𝜆𝑁

)
0𝐹1

(
;1+𝜇,−𝑎2𝑧

𝑏2𝑁

)

𝑁−1∏
𝑘=1

[
0𝐹1

(
; 1− 𝜆𝑘,

𝑏2𝑘𝑧

𝑏2𝑁

)]𝑖𝑘[
0𝐹1

(
; 1 + 𝜆𝑘,

𝑏2𝑘𝑧

𝑏2𝑁

)]1−𝑖𝑘

𝑑𝑧,

(12)
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where 𝜉 = 𝛿 + 𝜆𝑁/2 + 1. By further noticing that a single
integral representation for the multivariate Lauricella hyper-
geometric function 𝐹 (𝑛)

𝐶 (𝑎, 𝑏; 𝑐1, ..., 𝑐𝑛;𝑥1, ..., 𝑥𝑛) is given by
[14]

𝐹
(𝑛)
𝐶 (𝑎, 𝑏; 𝑐1, ..., 𝑐𝑛;𝑥1, ..., 𝑥𝑛)

=
1

Γ(𝑎)Γ(𝑏)

∫ ∞

0

𝐺2,0
0,2 (𝑡 ∣𝑎, 𝑏)

(
𝑛∏
𝑘=1

0𝐹1 (; 𝑐𝑘, 𝑥𝑘𝑡)

)
𝑑𝑡

𝑡
,(13)

one can easily recognize that 𝐼(𝜈, 𝜇, 𝑎,Λ, 𝛽) can be expressed
in terms of (13) as shown in (14) on the top of the next page.
Using the multiples series representation of the Lauricella’s
hypergeometric function [14, Eq. (A.1.4)]

𝐹
(𝑛)
𝐶 (𝑎, 𝑏; 𝑐1, ..., 𝑐𝑛;𝑥1, ..., 𝑥𝑛)

=

∞∑
𝑚1=0

...

∞∑
𝑚𝑛=0

(𝑎)𝑚1+...𝑚𝑛 (𝑏1)𝑚1+...𝑚𝑛

(𝑐1)𝑚1 ...(𝑐𝑛)𝑚𝑛

𝑥𝑚1
1 ...𝑥𝑚𝑛

𝑛

𝑚1!...𝑚𝑛
;

√
∣𝑥1∣+ ...+

√
∣𝑥𝑛∣ < 1, (15)

where (𝑎)𝑘 = Γ(𝑎 + 𝑘)/Γ(𝑘) denotes the Pochhammer
symbol, it can be noted that the convergence of the total sum
involved in (14) is governed by the threshold condition

∣𝑎2∣ <
(√

∣𝑏21∣+
√
∣𝑏22∣+ ...+

√
∣𝑏2𝑁 ∣

)2

. (16)

Hopefully, (14) can be extended to the complementary region
of (16) by applying the analytical continuation formula of
the Lauricella’s hypergeometric function 𝐹𝐶 [14]. Indeed, a
Lauricella function in the argument 𝑧𝑖 can be analytically
continued to a sum of two Lauricella functions in the argument
𝑧𝑖 = 𝑥𝑖/𝑥𝑛 for 𝑖 = 1, ..., 𝑛 − 1 and 𝑧𝑛 = 1/𝑥𝑛 according to
(17). Although the derived analytic continuation of (14) is
not shown here for lack of space, the former ensures that for
all 𝑎 > 0 and all admissible values of {𝑏𝑖}𝑁𝑖=1, the absolute
convergence of the series (14) is always guaranteed.
We now simplify (14) in an important case corresponding
to 𝑁 = 2. In such a setting, 𝐼 in (14) reduces to 𝐼𝑠
obtained as in (18), where 𝜉0 = 𝜈 + 𝜇/2 + 𝜆1 + 𝜆2/2 + 1,
𝜉1 = 𝜈 + 𝜇/2 + 𝜆2 − 𝜆1/2 + 1 and 𝐹4 = 𝐹

(2)
𝐶 is the fourth

Appel hypergeometric function which is defined as

𝐹4[𝛼, 𝛽; 𝛾, 𝛾
′, 𝑥, 𝑦]=

∞∑
𝑗=0

∞∑
𝑘=0

(𝛼)𝑗+𝑘(𝛽)𝑗+𝑘
(𝛾)𝑗(𝛾′)𝑘

𝑥𝑗

𝑗!

𝑦𝑘

𝑘!
, (19)

∣𝑥∣1/2 + ∣𝑦∣1/2 < 1.

The Appell functions [14] are well known, and numerical
routines for their exact computation are available in packages
such as Mathematica.

A. A Simplified Special Case of 𝐼

In the following, a simplified version of 𝐼 is obtained when
𝜆𝑖, 𝑖 = 1, ..., 𝑁 are constrained to take integers plus one-half
values, i.e., 𝜆𝑖 = 𝑛𝑖 + 1/2, where 𝑛𝑖 is an integer. In such a
setting, we have

𝐾𝜆𝑖

(
𝑏𝑖
√
𝑠
)
=√

𝜋

2𝑏𝑖
𝑒−𝑏𝑖

√
𝑠
𝑛𝑖∑
𝑝=0

Γ(𝑛𝑖 + 1 + 𝑝)

Γ(𝑛𝑖 + 1− 𝑝)Γ(𝑝+ 1)
(2𝑏𝑖)

−𝑝(
√
𝑠)−𝑝−

1
2 .

(20)

By inserting (20) into (1), 𝐼 can be written as

𝐼(𝜈, 𝜇, 𝑎,Λ, 𝛽) =
𝜋
2
𝑁/2∏𝑁
𝑖=1 𝑏𝑖

∫ ∞

0

𝑠𝜈−
𝑁
4 𝐽𝜇(𝑎

√
𝑠)𝑒−

∑𝑁
𝑖=1 𝑏𝑖

√
𝑠

𝑁∏
𝑖=1

𝑛𝑖∑
𝑝=0

Υ𝑖,𝑝(
√
𝑠)−𝑝𝑑𝑠, (21)

where

Υ𝑖,𝑝 =
Γ(𝑛𝑖 + 1 + 𝑝)(2𝑏𝑖)

−𝑝

Γ(𝑛𝑖 + 1− 𝑝)Γ(𝑝+ 1)
. (22)

The expression above encompasses the product of a set of
polynomials of 𝑥 =

√
𝑠. It is well known that the product

of a set of polynomials is another polynomial whose degree
is the sum of the degrees of the polynomials in the set and
the coefficient of 𝑥𝑝 in the resulting polynomial is the sum
of terms of the form

∏𝑁
𝑘=1 𝑏𝑘,𝑝𝑘 such that

∑𝑁
𝑘=1 𝑝𝑘 = 𝑝.

Consequently, we obtain
Lemma 2:

𝑁∏
𝑖=1

(
𝑛𝑖∑
𝑝=0

Υ𝑖,𝑝𝜉
−𝑝

)
=

𝑛Σ∑
𝑝=0

⎛
⎝ ∑
𝑤(𝑝,𝑁)

𝑁∏
𝑖=1

Υ𝑖,𝑝𝑖

⎞
⎠ 𝜉−𝑝, (23)

where 𝑛Σ =
∑𝑁
𝑖=1 𝑛𝑖 and 𝑤(𝑝,𝑁) is

the set of 𝑁 -tuples such that 𝑤(𝑝,𝑁) ={
(𝑝1, ..., 𝑝𝑁 ) : 𝑝𝑘 ∈ {0, 1, ..., 𝑛𝑘} ,

∑𝑁
𝑘=1 𝑝𝑘 = 𝑝

}
. Using

(23) and performing some algebraic manipulations, it follows
that (21) reduces to

𝐼(𝜈, 𝜇, 𝑎,Λ, 𝛽)=
𝜋
2
𝑁/2∏𝑁
𝑖=1 𝑏𝑖

𝑛Σ∑
𝑝=0

⎛
⎝ ∑
𝑤(𝑝,𝑁)

𝑁∏
𝑖=1

Υ𝑖,𝑝𝑖

⎞
⎠

∫ ∞

0

𝑠𝜈−
𝑁
4 −𝑝

2 𝑒−
∑𝑁

𝑖=1 𝑏𝑖
√
𝑠𝐽𝜇(𝑎

√
𝑠)𝑑𝑠. (24)

Then, with the help of [15, Eq. (6.621)], the integral in
(24) can be derived in closed form according to (25), where
𝐹 (𝑎, 𝑏; 𝑐;𝑥) is the Gauss hypergeometric function [15, Eq.
(9.10)].

B. A Simplified Special Case of 𝐼𝑠

A special case of 𝐼𝑠 corresponds to 𝑏1 = 𝑏2 = 𝑏 and 𝜆1 ∕=
𝜆2. In this case, making use of [15, Eq. (7.821.1)] along with
the identity

𝐾𝜆1(𝑏
√
𝑠)𝐾𝜆2(𝑏

√
𝑠)

=

√
𝜋

2
𝐺4,0

2,4

(
𝑏2𝑠

∣∣ 0,𝜆1+𝜆2

4 ,𝜆1−𝜆2

2 ,𝜆2−𝜆1

2 ,−𝜆1+𝜆2

2

)
, (26)

a closed form of 𝐼𝑠 is shown to be given by

𝐼𝑠(𝜈, 𝜇, 𝑎, 𝜆1, 𝜆2, 𝑏, 𝑏)

=

√
𝜋

2

(
4

𝑎2

)𝜈+1

𝐺4,1
4,4

(
4𝑏2

𝑎2

∣∣∣∣ −𝜈 − 𝜇
2 ,0,

1
2 ,−𝜈 + 𝜇

2
𝜆1+𝜆2

2 ,𝜆1−𝜆2

2 ,𝜆2−𝜆1

2 ,−𝜆1+𝜆2

2

)
.

(27)
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𝐼(𝜈, 𝜇, 𝑎,Λ, 𝛽) =

(
𝑎
𝑏𝑁

)𝜇∏𝑁−1
𝑘=1

(
𝑏𝑘
𝑏𝑁

)𝜆𝑘

2𝑁Γ(𝜇+ 1)

(
4

𝑏2𝑁

)𝜈+1 𝑁−1∑
𝑖=0

∑
𝜏(𝑖,𝑁−1)

Γ(𝜉)Γ(𝜉−𝜆𝑁 )

{
𝑁−1∏
𝑘=1

(
𝑏𝑁
𝑏𝑘

)2𝜆𝑘𝑖𝑘

Γ(𝜆𝑘)
𝑖𝑘Γ(−𝜆𝑘)1−𝑖𝑘

}

𝐹
(𝑁)
𝐶

⎛
⎜⎝𝜉, 𝜉−𝜆𝑁 , 1+𝜇, 1− 𝜆1︸ ︷︷ ︸

𝑖1

, 1 + 𝜆1︸ ︷︷ ︸
1−𝑖1

, ..., 1− 𝜆𝑁−1︸ ︷︷ ︸
𝑖𝑁−1

, 1 + 𝜆𝑁−1︸ ︷︷ ︸
1−𝑖𝑁−1

;− 𝑎2

𝑏2𝑁
,
𝑏21
𝑏2𝑁

, ...,
𝑏2𝑁−1

𝑏2𝑁

⎞
⎟⎠ . (14)

𝐹
(𝑛)
𝐶 (𝑎, 𝑏; 𝑐1, ..., 𝑐𝑛;𝑥1, ..., 𝑥𝑛) =

Γ(𝑐𝑛)Γ(𝑏− 𝑎)

Γ(𝑏)Γ(𝑐𝑛 − 𝑎)
(−𝑥𝑛)−𝑎𝐹 (𝑛)

𝐶 (𝑎, 1 + 𝑎− 𝑐𝑛; 𝑐1, ..., 𝑐𝑛−1, 1− 𝑏+ 𝑎; 𝑧1, ..., 𝑧𝑛) +

Γ(𝑐𝑛)Γ(𝑎− 𝑏)

Γ(𝑎)Γ(𝑐𝑛 − 𝑏)
(−𝑥𝑛)−𝑏𝐹 (𝑛)

𝐶 (𝑏, 1 + 𝑏− 𝑐𝑛; 𝑐1, ..., 𝑐𝑛−1, 1− 𝑎+ 𝑏; 𝑧1, ..., 𝑧𝑛) . (17)

𝐼𝑠 (𝜈, 𝜇, 𝑎, 𝜆1, 𝜆2, 𝑏1, 𝑏2) =

(
𝑎
𝑏2

)𝜇 (
𝑏1
𝑏2

)𝜆1
(

4
𝑏22

)𝜈+1

4Γ(𝜇+ 1)

{
Γ (𝜉0) Γ (𝜉0 − 𝜆2)Γ(−𝜆1)𝐹4

(
𝜉0, 𝜉0−𝜆2, 1+𝜇, 1+𝜆1,−𝑎2

𝑏22
,
𝑏21
𝑏22

)
+

(
𝑏2
𝑏1

)2𝜆1

Γ(𝜆1)Γ(𝜉1)Γ(𝜉1 − 𝜆2)𝐹4

(
𝜉1, 𝜉1 − 𝜆2, 1 + 𝜇, 1− 𝜆1,−𝑎2

𝑏22
,
𝑏21
𝑏22

)}
, (18)

𝐼(𝜈, 𝜇, 𝑎,Λ, 𝛽) =
𝜋
2
𝑁/2∏𝑁
𝑖=1 𝑏𝑖

𝑛Σ∑
𝑝=0

⎛
⎝ ∑
𝑤(𝑝,𝑁)

𝑁∏
𝑖=1

Υ𝑖,𝑝𝑖

⎞
⎠

(
𝑎

2
∑𝑁

𝑖=1 𝑏𝑖

)𝜇
Γ
(
𝜇+ 2𝜈 − 𝑁

2 − 𝑝+ 2
)

(∑𝑁
𝑖=1 𝑏𝑖

)2𝜈−𝑁
2 −𝑝+2

Γ(𝜇+ 1)

𝐹

(
𝜈 +

𝜇− 𝑁
2 − 𝑝

2
+ 1, 𝜈 +

𝜇− 𝑁
2 − 𝑝+ 3

2
, 𝜇+ 1,− 𝑎2

(
∑𝑁
𝑖=1 𝑏𝑖)

2

)
, (25)

III. APPLICATION: ERROR PROBABILITIES FOR AMPLIFY

AND FORWARD MULTI-HOP RELAYING SYSTEMS

Let us consider an 𝑁 -hop wireless communication system
where a source 𝑆 communicates with a destination 𝐷 trough
𝑁 − 1 intermediate terminals called relays. In the 𝑘-th time
slot, the 𝑘-th relay𝑅𝑘 receives the signal from the immediately
preceding relay and processes it by amplifying and forwarding
it to the next hop 𝑅𝑘+1. Denoting by 𝑦𝑘 the signal received
by 𝑅𝑘, we have

𝑦𝑘 = 𝑣𝑘𝑥𝑘−1 + 𝑛𝑘, 𝑘 = 1, ..., 𝑁, (28)

where 𝑣𝑘 is the fading gain of the channel between terminals
𝑅𝑘−1 and 𝑅𝑘, 𝑛𝑘 denotes the additive white Gaussian noise
received at the 𝑘-th terminal with power 𝑁0𝑘 , and 𝑥𝑘 denotes
the transmitted signal from the (𝑘 − 1)-th relay given by

𝑥𝑘 = 𝐴𝑘𝑦𝑘, 𝑘 = 1, ..., 𝑁 − 1, (29)

where 𝐴𝑘 is the amplification gain of the 𝑘-th terminal. The
end-to-end instantaneous received SNR is given by [8] as

𝛾 =

∏𝑁
𝑘=1 𝐴

2
𝑘𝛾𝑘∑𝑁

𝑘=1

∏𝑁
𝑗=𝑘+1 𝐴

2
𝑗𝛾𝑗

, (30)

where 𝛾𝑘 = 𝑃𝑘∣𝑣𝑘∣2/𝑁0𝑘 denotes the instantaneous received
SNR over the channel between terminals 𝑅𝑘−1 and 𝑅𝑘 in
which 𝑃𝑘 is the transmitter power from terminal 𝑅𝑘−1, 𝑘 =

1, ..., 𝑁. As seen in (30), the instantaneous received SNR in
an AF multihop transmission system depends on the relay
amplification gains and the fading channel gains. AF relays
can be classified into two categories, namely, variable-gain
relays and fixed-gain relays. In the first case, the relay uses
the channel information of the preceding hop to control the
relay gain. In contrast, systems with blind relays use amplifiers
with fixed gains resulting in a signal with variable power at
the relay output. In this paper, we consider the first type of
amplification gain which is generally chosen as

𝐴𝑘 =

√
𝑃𝑘

𝑃𝑘−1∣𝑣𝑘∣2 , 𝑘 = 1, ..., 𝑁 − 1. (31)

For this amplification gain, the relay amplifies its received
signal, regardless of the received noise power1. Plugging this
gain expression into (30), the end-to-end SNR is then given
by

𝛾 =

[
𝑁∑
𝑙=1

1

𝛾𝑙

]−1

. (32)

Since the reciprocal of the end-to-end instantaneous received
SNR 𝛾 is the sum of the inverse of the individual per-hop

1Since the amplification gain in systems with variable-gain relays is a
function of the channel state information (CSI), variable-gain relays are also
referred to as CSI-assisted relays [8], [9]
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SNRs [8], then, the MGF of 𝛾𝑉 = 1
𝛾 is the product of

the individual MGFs pertaining to the different hops, thus
implying

𝑀𝛾𝑉 (𝑠) =
𝑁∏
𝑙=1

𝑀 1
𝛾𝑙

(𝑠), (33)

where 𝑀 1
𝛾𝑙

(𝑠) is the MGF of the SNR on the 𝑙-th hop. In

Nakagami-m fading, 𝑀𝛾𝑉 (𝑠) is given by [2]

𝑀𝛾𝑉 (𝑠) = 2𝑁

⎛
⎜⎝ 𝑁∏
𝑙=1

(
𝑚𝑙

𝛾𝑙

)𝑚𝑙/2

Γ (𝑚𝑙)

⎞
⎟⎠ 𝑠

𝑚Σ
2

𝑁∏
𝑙=1

𝐾𝑚𝑙

(
2

√
𝑠𝑚𝑙
𝛾𝑙

)
,

(34)
whereby 𝛾𝑖 = E (𝛾𝑖), with E(⋅) denoting expectation, 𝑚𝑖 ≥
1/2 is the Nakagami-m factor of the 𝑖-th hop and 𝑚Σ =∑𝑁
𝑙=1𝑚𝑙 is defined for the sake of notational convenience.

In the sequel, considering AF multihop variable-gain relaying
systems with operation over Nakagami-m fading channels,
simple closed-form expressions for the error probabilities of
AF multi-hop systems with variable gain relays are derived.
Different modulation schemes are therefore considered, in-
cluding binary and arbitrary rectangular 𝑀 -QAM modula-
tions.

A. Binary Modulations

For different binary modulation schemes, the bit error
probability was recently derived in [12, Eq. (4b)] as a single
integral form given by

𝑃𝑒 =
1

2
− 𝜏𝜂/2

2Γ(𝜂)

∫ ∞

0

𝑠
𝜂
2−1𝐽𝜂(2

√
𝜏𝑠)𝑀𝛾𝑉 (𝑠)𝑑𝑠, (35)

where the parameters 𝜏 and 𝜂 depend on the type of mod-
ulation detection scheme given in [17, Tab. 8.1] and Γ(⋅, ⋅)
is the incomplete gamma function [15, Eq. (8.350.2)]. By
substituting appropriately (34) in (35) and using (1), 𝑃𝑒 can
be obtained as follows

𝑃𝑒 =
1

2
− 2𝑁−1𝜏𝜂/2

Γ(𝜂)

(
𝑁∏
𝑙=1

(𝑚𝑙

𝛾𝑙
)𝑚𝑙/2

Γ(𝑚𝑙)

)
×

𝐼

(
𝑚Σ + 𝜂

2
− 1, 𝜂, 2

√
𝜏 ,Λ, 𝛽

)
, (36)

where

Λ = {𝑚1,𝑚2, ...,𝑚𝑁} ,
𝛽 =

{
2

√
𝑚1

𝛾1
, ..., 2

√
𝑚𝑁
𝛾𝑁

}
. (37)

By properly substituting 𝐼 (⋅, ⋅, ⋅, ⋅, ⋅) by its expression in (14),
then after further manipulations, a closed-form expression of
the error probability is obtained according to (38), where
𝜉𝜂 = 𝑚Σ + 𝜂 − ∑𝑁−1

𝑘=1 𝑚𝑘𝑖𝑘. Note that equation (38) is
a new closed-form expression for the bit error probability
of binary modulations in AF relaying systems with vari-
able gain relays under non-identical Nakagami-m fading.
The values of the parameters 𝜂 and 𝜏 are, for example,
(𝜂, 𝜏) = (0.5, 1) for BPSK and (𝜂, 𝜏) = (0.5, 0.5) for
BFSK modulation. Moreover, using the alternative expression
of 𝐼 when 𝑚𝑖, 𝑖 = 1, .., 𝑁 are multiples of an integer plus
one half, a simpler expression of 𝑃𝑒 is obtained from (25)

according to the formulas shown in (39), where Υ′
𝑖,𝑝𝑖

=

(Γ(𝑛𝑖 + 1 + 𝑝𝑖)/Γ(𝑛𝑖 + 1− 𝑝𝑖)Γ(𝑝+ 1))
(
2
√
𝑚𝑖

𝛾𝑖

)−𝑝𝑖
.

Notice that (39) is expressed in terms of the Gauss hyperge-
ometric function 𝐹 (𝑎; 𝑏, 𝑐; 𝑧), which is widely available.

B. 𝑀 -Ary Modulations

An arbitrary rectangular𝑀𝐼×𝑀𝐽 QAM signal constellation
is assumed to be formed by drawing the in-phase and quadra-
ture components from two independent𝑀 -ary pulse amplitude
modulation (PAM) schemes, 𝑀𝐼 -ary PAM and 𝑀𝐽 -ary PAM,
respectively. The symbol error probability of the ensuing 𝑀 -
ary rectangular QAM (𝑀 = 𝑀𝐼𝑀𝐽 ) is [17]

𝑃𝑒=2

(
1− 1

𝑀𝐼

)
E (𝑄 (𝐴

√
𝛾))+2

(
1− 1

𝑀𝐽

)
E (𝑄 (𝐵

√
𝛾))

−4
(
1− 1

𝑀𝐼

)(
1− 1

𝑀𝐽

)
E (𝑄 (𝐴

√
𝛾)𝑄 (𝐵

√
𝛾)) , (40)

where 𝐴 =
√
6/ ((𝑀2

𝐼 − 1) + (𝑀2
𝐽 − 1) 𝜁) and 𝐵 =

√
𝜁𝐴

where where 𝜁 denotes the squared quadrature to in-phase
distance ratio. It is seen that the evaluation of (40) involves the
evaluations of two expectation forms, namely, the expectation
of the Gaussian-Q function and the expectation of the product
of two Gaussian-Q functions with different arguments. On the
basis of the prominent results presented in [12, Eq. (6c)]2 the
expectation of the Gaussian-Q function is obtained according
to

E (𝑄 (𝐴
√
𝛾)) =

1

2
− 1

2𝜋

∫ ∞

0

sin
(
𝐴
√
2𝑠

)
𝑠

𝑀𝛾𝑉 (𝑠)𝑑𝑠. (41)

After substituting 𝑀𝛾𝑉 (𝑠) by its expression in (34) and
making use of the identity

sin
(
𝐴
√
2𝑠

)
=

√
𝜋𝐴

√
𝑠√

2
𝐽 1

2

(
𝐴
√
2𝑠

)
, (42)

the expectation in (41) can be evaluated in closed form using
(1) according to

E (𝑄 (𝐴
√
𝛾)) =

1

2
− 2𝑁−1

√
𝐴√

𝜋
√
2

⎛
⎜⎝ 𝑁∏
𝑙=1

(
𝑚𝑙

𝛾𝑙

)𝑚𝑙/2

Γ (𝑚𝑙)

⎞
⎟⎠

𝐼

(
𝑚Σ

2
− 3

4
,
1

2
, 𝐴

√
2,Λ, 𝛽

)
, (43)

where 𝐼 (⋅, ⋅, ⋅, ⋅, ⋅) is obtained from (14) where Λ, 𝛽 are given
in (37). By properly substituting 𝐼 by its expression, we obtain
(44) shown on the top of the next page, where 𝜉𝑞 = 𝑚Σ +
1
2 −∑𝑁−1

𝑘=1 𝑚𝑘𝑖𝑘.
By substituting 𝐴 with 𝐵 in (44), we obtain the closed-

from solution for the second expectation with argument 𝐵 in
(40). Nevertheless, there are some challenges in the evaluation
of the expectation of the product of two Gaussian Q-functions
with different arguments, a process which involves the integra-
tion of the product of two Gaussian Q-functions with different
arguments. In [18], the authors sidestepped this hurdle by
introducing a simple and accurate exponential approximation

2It should be stressed that [12, Eq. (6c)] has a typo. It should read as in
(41).
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𝑃𝑒 =
1

2
−
𝜏𝜂

(∏𝑁
𝑙=1

(
𝑚𝑙 ¯𝛾𝑁
𝑚𝑁𝛾𝑙

)𝑚𝑙

Γ(𝑚𝑙)

)
2Γ(𝜂)Γ(𝜂 + 1)

𝑁−1∑
𝑖=0

∑
𝜏(𝑖,𝑁−1)

Γ(𝜉𝜂)Γ(𝜉𝜂 −𝑚𝑁 )

{
𝑁−1∏
𝑘=1

(
𝑚𝑁𝛾𝑘
𝑚𝑘𝛾𝑁

)𝑚𝑘𝑖𝑘

Γ(𝑚𝑘)
𝑖𝑘Γ(−𝑚𝑘)1−𝑖𝑘

}

𝐹
(𝑁)
𝐶

⎛
⎜⎝𝜉𝜂, 𝜉𝜂 −𝑚𝑁 , 1 + 𝜂, 1−𝑚1︸ ︷︷ ︸

𝑖1

, 1 +𝑚1︸ ︷︷ ︸
1−𝑖1

, ..., 1−𝑚𝑁−1︸ ︷︷ ︸
𝑖𝑁−1

, 1 +𝑚𝑁−1︸ ︷︷ ︸
1−𝑖𝑁−1

;−𝜏𝛾𝑁
𝑚𝑁

,
𝑚1𝛾𝑁
𝑚𝑁𝛾1

, ...,
𝑚𝑁−1𝛾𝑁
𝑚𝑁 ¯𝛾𝑁−1

⎞
⎟⎠ . (38)

𝑃𝑒 =
1

2
− 𝜏𝜂𝜋𝑁/2

2𝑚Σ+2𝜂+1Γ(𝜂)Γ(𝜂 + 1)

⎛
⎜⎜⎝ 𝑁∏
𝑖=1

(
𝑚𝑖

𝛾𝑖

)𝑚𝑖−1

2

Γ(𝑚𝑖)

⎞
⎟⎟⎠

𝑛Σ∑
𝑝=0

⎛
⎝ ∑
𝑤(𝑝,𝑁)

𝑁∏
𝑖=1

Υ′
𝑖,𝑝𝑖

⎞
⎠ Γ (2𝜂 + 𝑛Σ − 𝑝)(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)2𝜂+𝑛Σ−𝑝

𝐹

⎛
⎜⎝𝜂 +

𝑛Σ − 𝑝

2
, 𝜂 +

𝑛Σ − 𝑝+ 1

2
, 𝜂 + 1,− 𝜏(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)2

⎞
⎟⎠ , (39)

E(𝑄(𝐴
√
𝛾)) =

1

2
−
𝐴

(∏𝑁
𝑘=1

(
𝑚𝑘 ¯𝛾𝑁
𝑚𝑁𝛾𝑘

)𝑚𝑘

Γ(𝑚𝑘)

)
𝜋
√
2

𝑁−1∑
𝑖=0

∑
𝜏(𝑖,𝑁−1)

Γ (𝜉𝑞) Γ (𝜉𝑞 −𝑚𝑁 )

{
𝑁−1∏
𝑘=1

(
𝑚𝑁𝛾𝑘
𝑚𝑘𝛾𝑁

)𝑚𝑘𝑖𝑘Γ (𝑚𝑘)
𝑖𝑘 Γ (−𝑚𝑘)1−𝑖𝑘

}

𝐹
(𝑁)
𝐶

⎛
⎜⎝𝜉𝑞, 𝜉𝑞−𝑚𝑁 ,

3

2
, 1−𝑚1︸ ︷︷ ︸

𝑖1

, 1 +𝑚1︸ ︷︷ ︸
1−𝑖1

, ..., 1−𝑚𝑁−1︸ ︷︷ ︸
𝑖𝑁−1

, 1 +𝑚𝑁−1︸ ︷︷ ︸
1−𝑖𝑁−1

;−𝐴2𝛾𝑁
2𝑚𝑁

,
𝑚1𝛾𝑁
𝑚𝑁𝛾1

, ...,
𝑚𝑁−1𝛾𝑁
𝑚𝑁 ¯𝛾𝑁−1

⎞
⎟⎠ , (44)

of the product of two Gaussian Q-functions with different
arguments given by

𝑄(𝐴
√
𝑦)𝑄(𝐵

√
𝑦) ≃

2∑
𝑖,𝑗=1

𝑐𝑖𝑐𝑗𝑒
−(𝐴2𝑏𝑖+𝐵

2𝑏𝑗)𝑦, (45)

where {𝑐𝑖} = { 1
12 ,

1
4} and {𝑏𝑖} = { 1

2 ,
2
3}. The accuracy

of the above tight upper bound was also discussed in [18].
Based on the above approximation and proceeding by using
the McLauren series of 𝑒(⋅) given in [15, Eq. (1.211.1)], it can
be easily shown, using [15, Eq. (8.402)], that the expectation
of the product of two Gaussian Q-functions with different
arguments can be expressed as

E (𝑄(𝐴
√
𝑦)𝑄(𝐵

√
𝑦))

=−
2∑

𝑖,𝑗=1

𝑐𝑖𝑐𝑗
√
𝑑𝑖𝑗

∫ ∞

0

𝑀𝛾𝑉 (𝑠)
𝐽1

(
2
√
𝑑𝑖𝑗𝑠

)
√
𝑠

𝑑𝑠, (46)

where 𝑑𝑖𝑗 = 𝐴2𝑏𝑖 + 𝐵2𝑏𝑗 . Hence, a closed-form expression
of (46) is obtained, using (1), as

E (𝑄(𝐴
√
𝑦)𝑄(𝐵

√
𝑦)) ≃ −2𝑁

⎛
⎜⎝

𝑁∏
𝑙=1

(
𝑚𝑙
𝛾𝑙

)𝑚𝑙/2

Γ (𝑚𝑙)

⎞
⎟⎠

2∑
𝑖,𝑗=1

𝑐𝑖𝑐𝑗
√

𝑑𝑖𝑗

𝐼

(
𝑚Σ − 1

2
, 1, 2

√
𝑑𝑖𝑗 ,Λ, 𝛽

)
. (47)

By properly substituting 𝐼 by its expression in (14), (47) can
be evaluated as in (48) shown on the top of the next page. It is
observed that employing (45) allows to evaluate (46) in closed
form. Moreover, owing to the structure of (45), the obtained

formulas, i.e., (44) and (48), have similar structures. This
fact facilitates further numerical calculations. In the special
fading condition corresponding to the case when the fading
parameters of the different hops 𝑚𝑖, 𝑖 = 1, ..., 𝑁 are odd
multiples of one half, alternative simpler expressions of (44)
and (48) could be obtained. In such a setting, applying (25)
to (41) and (46), respectively, yields (49) and (50) shown on
the next page.

Then, properly substituting (49) and (50) into (40) yields the
error probability expression for multi-hop AF transmissions
using an arbitrary 𝑀 -QAM modulation over Nakagami-m
fading with an odd multiple of one half fading parameter as
given in (51). For an arbitrary 𝑀𝐼 × 𝑀𝐽 rectangular QAM
constellation with Gray encoding, the error probability evalu-
ation only involves taking the expectation of the Gaussian-𝑄
function [19, Eq. (22)] according to

𝑃𝑒 =
2

log2(𝑀𝐼 ⋅𝑀𝐽)(
1

𝑀𝐼

log2(𝑀𝐼 )∑
𝑘=1

(1−2−𝑘)𝑀𝐼−1∑
𝑖=0

𝑃 (𝑖, 𝑘)E
(
𝑄

(√
2𝑤𝑖𝛾

))
+

1

𝑀𝐽

log2(𝑀𝐽 )∑
𝑝=1

(1−2−𝑝)𝑀𝐽−1∑
𝑗=0

𝑃 (𝑗, 𝑝)E
(
𝑄

(√
2𝑤𝑗𝛾

)))
,(52)

where 𝑤𝑘 = (2𝑘 + 1)2
(
3 log2(𝑀𝐼 ⋅𝑀𝐽)/

(
𝑀2
𝐼 +𝑀2

𝐽 − 2
))

and 𝑃 (𝑖, 𝑗) are expressions of 𝑀𝐼 and 𝑀𝐽 given in [19].
In this case, using (43), we immediately obtain a closed-
form expression for the error probability as given in (53). An
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E (𝑄(𝐴
√
𝑦)𝑄(𝐵

√
𝑦))≃−

⎛
⎝ 𝑁∏
𝑘=1

(
𝑚𝑘𝛾𝑁
𝑚𝑁𝛾𝑘

)𝑚𝑘

Γ(𝑚𝑘)

⎞
⎠𝑁−1∑
𝑖=0

∑
𝜏(𝑖,𝑁−1)

Γ

(
𝜉𝑞+

1

2

)
Γ

(
𝜉𝑞−𝑚𝑁 +

1

2

){𝑁−1∏
𝑘=1

(
𝑚𝑁𝛾𝑘
𝑚𝑘𝛾𝑁

)𝑚𝑘𝑖𝑘

Γ(𝑚𝑘)
𝑖𝑘Γ(−𝑚𝑘)1−𝑖𝑘

}

2∑
𝑖,𝑗=1

𝑐𝑖𝑐𝑗𝑑𝑖𝑗𝐹
(𝑁)
𝐶

⎛
⎜⎝𝜉𝑞 +

1

2
, 𝜉𝑞−𝑚𝑁 +

1

2
, 2, 1−𝑚1︸ ︷︷ ︸

𝑖1

, 1 +𝑚1︸ ︷︷ ︸
1−𝑖1

, ..., 1−𝑚𝑁−1︸ ︷︷ ︸
𝑖𝑁−1

, 1 +𝑚𝑁−1︸ ︷︷ ︸
1−𝑖𝑁−1

;−𝑑𝑖𝑗𝛾𝑁
𝑚𝑁

,
𝑚1𝛾𝑁
𝑚𝑁𝛾1

, ...,
𝑚𝑁−1𝛾𝑁
𝑚𝑁 ¯𝛾𝑁−1

⎞
⎟⎠ . (48)

E(𝑄(𝐴
√
𝛾)) =

1

2
− 𝐴𝜋

𝑁
2 −1

2𝑚Σ+ 1
2

⎛
⎜⎜⎝𝑁∏
𝑖=1

(
𝑚𝑖

𝛾𝑖

)𝑚𝑖−1

2

Γ(𝑚𝑖)

⎞
⎟⎟⎠

𝑛Σ∑
𝑝=0

⎛
⎝ ∑
𝑤(𝑝,𝑁)

𝑁∏
𝑖=1

Υ′
𝑖,𝑝𝑖

⎞
⎠ Γ(𝑛Σ − 𝑝+ 3

2 )(∑𝑁
𝑖=1

√
𝑚𝑖

𝛾𝑖

)𝑛Σ−𝑝+ 3
2

𝐹

⎛
⎜⎝𝑛Σ − 𝑝+ 3

2

2
,
𝑛Σ − 𝑝+ 5

2

2
,
3

2
,− 𝐴2(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)2

⎞
⎟⎠ . (49)

E (𝑄(𝐴
√
𝑦)𝑄(𝐵

√
𝑦)) ≃ − 𝜋

𝑁
2

2𝑚Σ+2

⎛
⎜⎜⎝𝑁∏
𝑖=1

(
𝑚𝑖

𝛾𝑖

)𝑚𝑖−1

2

Γ(𝑚𝑖)

⎞
⎟⎟⎠ 2∑
𝑖,𝑗=1

𝑐𝑖𝑐𝑗𝑑𝑖𝑗

𝑛Σ∑
𝑝=0

⎛
⎝ ∑
𝑤(𝑝,𝑁)

𝑁∏
𝑖=1

Υ′
𝑖,𝑝𝑖

⎞
⎠

Γ (𝑛Σ − 𝑝+ 2)(∑𝑁
𝑖=1

√
𝑚𝑖

𝛾𝑖

)𝑛Σ−𝑝+2𝐹

⎛
⎝𝑛Σ − 𝑝

2
+ 1,

𝑛Σ − 𝑝+ 1

2
+ 1, 2,− 𝑑𝑖𝑗

(
∑𝑁
𝑖=1

√
𝑚𝑖

𝛾𝑖
)2

⎞
⎠ . (50)

𝑃𝑒 =

(
1− 1

𝑀𝐼

)
+

(
1− 1

𝑀𝐽

)
− 𝜋

𝑁
2 −1

2𝑚Σ+ 1
2

⎛
⎝𝑁∏
𝑖=1

(𝑚𝑖

𝛾𝑖
)

𝑚𝑖−1

2

Γ(𝑚𝑖)

⎞
⎠ 𝑛Σ∑
𝑝=0

⎛
⎝ ∑
𝑤(𝑝,𝑁)

𝑁∏
𝑖=1

Υ′
𝑖,𝑝𝑖

⎞
⎠{(

1− 1

𝑀𝐼

)
𝐴Γ

(
𝑛Σ − 𝑝+ 3

2

)
(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)𝑛Σ−𝑝+ 3
2

𝐹

⎛
⎜⎝𝑛Σ − 𝑝+ 3

2

2
,
𝑛Σ − 𝑝+ 5

2

2
,
3

2
,− 𝐴2(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)2

⎞
⎟⎠+

(
1− 1

𝑀𝐽

)
𝐵Γ

(
𝑛Σ − 𝑝+ 3

2

)
(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)𝑛Σ−𝑝+ 3
2

𝐹

⎛
⎜⎝𝑛Σ − 𝑝+ 3

2

2
,
𝑛Σ − 𝑝+ 5

2

2
,
3

2
,− 𝐵2(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)2

⎞
⎟⎠−√

2𝜋

(
1− 1

𝑀𝐼

)(
1− 1

𝑀𝐽

)

Γ (𝑛Σ − 𝑝+ 2)(∑𝑁
𝑖=1

√
𝑚𝑖

𝛾𝑖

)𝑛Σ−𝑝+2

2∑
𝑖,𝑗=1

𝑐𝑖𝑐𝑗𝑑𝑖𝑗𝐹

⎛
⎜⎝𝑛Σ − 𝑝

2
+ 1,

𝑛Σ − 𝑝+ 1

2
+ 1, 2,− 𝑑𝑖𝑗(∑𝑁

𝑖=1

√
𝑚𝑖

𝛾𝑖

)2

⎞
⎟⎠

}
. (51)

𝑃𝑒 = 1− 2𝑁√
𝜋 log2(𝑀𝐼 ⋅𝑀𝐽)

⎛
⎜⎝ 𝑁∏
𝑙=1

(
𝑚𝑙

𝛾𝑙

)𝑚𝑙/2

Γ(𝑚𝑙)

⎞
⎟⎠
(

1

𝑀𝐼

log2(𝐼)∑
𝑘=1

(1−2−𝑘)𝐼−1∑
𝑖=0

𝑃 (𝑖, 𝑘)
√
𝑤𝑖𝐼

(
𝑚Σ − 3/2

2
,
1

2
, 2
√
𝑤𝑖,Λ, 𝛽

)
+

1

𝑀𝐽

log2(𝑀𝐽 )∑
𝑝=1

(1−2−𝑝)𝑀𝐽−1∑
𝑗=0

𝑃 (𝑗, 𝑝)
√
𝑤𝑗𝐼

(
𝑚Σ − 3/2

2
,
1

2
, 2
√
𝑤𝑗 ,Λ, 𝛽

))
. (53)

alternative simpler expression of (53) is also obtained using
(49).

IV. DUAL-HOP AF TRANSMISSION OVER

NON-IDENTICAL NAKAGAMI-M FADING

In some practical applications, a dual-hop transmission, i.e.,
𝑁 = 2, may be sufficient [2]. In this context, many authors
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𝑃𝑒 =
1

2
−

(
𝜏𝛾2
𝑚2

)𝜂 (
𝑚1𝛾2
𝑚2𝛾1

)𝑚1

𝜂𝐵(𝑚2, 𝜂)

{
𝐵 (𝑚1 + 𝜂,−𝑚1)

𝐵 (𝑚2 + 𝜂,𝑚1)
𝐹4

(
𝑚1 +𝑚2 + 𝜂,𝑚1 + 𝜂, 1 + 𝜂, 1 +𝑚1,−𝜏𝛾2

𝑚2
,
𝑚1𝛾2

𝑚2𝛾1

)
+

(
𝑚2𝛾1
𝑚1𝛾2

)2𝑚1

𝐹4

(
𝑚2 + 𝜂, 𝜂, 1 + 𝜂, 1−𝑚1,−𝜏𝛾2

𝑚2
,
𝑚1𝛾2

𝑚2𝛾1

)}
. (54)

have considered the error probability evaluation over non-
identical Nakagami-m fading. So far, closed-form expressions
are only available for integer values of the fading parameter,
i.e. 𝑚𝑖, 𝑖 = 1, 2 ∈ 𝑁 [4], [5]. Nevertheless, in practical
scenarios, the 𝑚 parameters often take non-integer values [13].
In this work, we derive the error probability expressions in
the 𝑚-complementary region of [4], i.e. 𝑅∖𝑁 . This allows
applications of our analytical results over a larger range of
the fading parameter values, thereby highlighting again the
significance of this work. Using (18), the bit error probability
for binary modulation of an AF dual-hop transmission is
obtained as in (54) shown on the top of this page. where
𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)/Γ(𝑎 + 𝑏) is the beta function [15,
Eq. (8.384.1)]. The above new expression of the bit error
probability is valid for any non-integer value of 𝑚𝑖, 𝑖 = 1, 2.
Another case, also not handled before, corresponds to identical
ratios {𝑚𝑙/𝛾𝑙}2𝑙=1 across the different hops, a scenario which
includes as well the identically distributed fading [2], [3] as a
special case. Defining 𝑚/𝛾 = {𝑚𝑙/𝛾𝑙}2𝑙=1 and applying (27)
yield

𝑃𝑒=
1

2
−

(
𝑚
𝜏𝛾

)𝑚1+𝑚2
2 √

𝜋

Γ(𝜂)Γ(𝑚1)Γ(𝑚2)
×

𝐺4,1
4,4

(
4𝑚

𝜏𝛾

∣∣∣∣ 1− 𝜂 − 𝑚1+𝑚2

2 , 0, 12 , 1− 𝑚1+𝑚2

2
𝑚1+𝑚2

2 , 𝑚1−𝑚2

2 , 𝑚2−𝑚1

2 ,−𝑚1+𝑚2

2

)
. (55)

By setting 𝑚 = 𝑚1 = 𝑚2 and 𝜂 = 𝜏 = 1, we obtain an
equivalent alternative representation for Hasna and Alouini’s
main result [2, Eq. (12)]. To prove the concordance of the two
formulas, we use the Meijer’s-G function property in [15, Eq.
(9.31.1)] along with the identity

𝐺3,1
3,3

(
𝑧

∣∣∣∣ 𝑎, 𝑐, 𝑎+ 1
𝑏, 𝑑, 𝑎

)
=

Γ(𝑏−1)Γ(𝑑−1)

Γ(𝑐−𝑎)
𝑧𝑎(

1− 2𝐹1

(
𝑏− 𝑎, 𝑑− 𝑎, 𝑐− 𝑎,−1

𝑧

))
.

(56)

For completeness, it is worthwhile to mention that [2, Eq.
(12)] can also be deduced from (54) by applying the analytical
continuation formula of the Lauricella function followed by
some algebraic manipulations using the Burchnall formulas
[20, Eq. (37)],

𝐹4(𝛼, 𝛽; 𝛾, 𝛾
′;𝑥, 𝑥)

=4𝐹3

(
𝛼, 𝛽,

1

2
(𝛾 + 𝛾′),

1

2
(𝛾 + 𝛾′ − 1); 𝛾, 𝛾, 𝛾 + 𝛾′ − 1; 4𝑥

)
,

(57)

where 𝑝𝐹𝑞(⋅) is the generalized hypergeometric function [15,
Eq. (9.14.1)]. In turn, the generalized hypergeometric func-
tion 4𝐹3 reduces to a simpler one when its parameters are

constrained properly as

4𝐹3 (𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑏1, 𝑎3, 𝑎4, 𝑧) = 2𝐹1 (𝑎1, 𝑎2, 𝑏1, 𝑧) , (58)

where 𝐹 (𝑎, 𝑏, 𝑐, 𝑧) is the Gauss hypergeometric function [15,
Eq. (9.14.2)]. Hence, applying (17), (57) and (58) to (54),
when 𝑚 = 𝑚1 = 𝑚2, 𝛾 = 𝛾1 = 𝛾2 and 𝜂 = 𝜏 = 1, yields [2,
Eq. (12)].
For 𝑀 -ary modulations and still using 𝐼𝑠 in (18), the expecta-
tion of the Gaussian-Q function in (43), reduces when 𝑁 = 2
to equation (59) shown on the next page. Moreover, when
identical ratios 𝑚/𝛾 = {𝑚𝑙/𝛾𝑙}2𝑙=1 are observed across the
two hops, the expectation of the Gaussian-Q functions can be
rewritten according to (27)

E(𝑄(𝐴
√
𝛾)) =

1

2
− 1

Γ(𝑚1)Γ(𝑚2)
×

(
2𝑚

𝐴2𝛾

)𝑚1+𝑚2
2

𝐺4,1
4,4

(
8𝑚

𝐴2𝛾

∣∣∣∣ 1
2 − 𝑚1+𝑚2

2 ,0, 12 ,1− 𝑚1+𝑚2

2
𝑚1+𝑚2

2 ,𝑚1−𝑚2

2 ,𝑚2−𝑚1

2 ,−𝑚1+𝑚2

2

)
.

(60)

Moreover, the expectation of the product of two Gaussian-Q
functions with different arguments can be derived as in (61).
The derivation of the error probability expression of 𝑀 -QAM
modulations is then straightforward using (40).

V. COMPUTATIONAL METHODS AND NUMERICAL

EXAMPLES

The aim of this section is to analyze the utility, accuracy,
and numerical stability of the frameworks developed in the
previous sections. All the results shown here have been ana-
lytically obtained by the direct evaluation of the expressions
developed in this paper: either (38), (44), (48), (54), (60) and
(61) for non-integer values of 𝑚, or (39), (49), (50) for integer
plus one half values. The evaluation of these formulas involves
the computation of some special hypergeometric functions,
namely, the hypergeometric Lauricella functions.

A. Computational Methods

The third Lauricella function 𝐹
(𝑛)
𝐶 is typically computed

with a finite summation approximating the infinite summation
given in (15) as

𝐹
(𝑛)
𝐶 (𝑎, 𝑏; 𝑐1, ..., 𝑐𝑛;𝑥1, ..., 𝑥𝑛)

=

𝑞𝑚𝑎𝑥∑
𝑞=0

(𝑎)𝑞(𝑏)𝑞
∑

Ω(𝑞,𝑛)

𝑛∏
𝑘=1

𝑥𝑞𝑘𝑘
(𝑐𝑘)𝑞𝑘𝑞𝑘!

, (62)

where Ω(𝑞, 𝑛) is the set of 𝑛-tuples such that Ω(𝑞, 𝑛) =
{(𝑞1, ..., 𝑞𝑛) : 𝑞𝑘 ∈ {0, 1, ..., 𝑞},∑𝑛

𝑘=1 𝑞𝑘 = 𝑞}. If a large
𝑞𝑚𝑎𝑥 is required to obtain the desired accuracy, then (62)
may have a high computational complexity. However, by
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E(𝑄(𝐴
√
𝛾))=

1

2
−

√
𝐴𝛾1√

𝑚1𝐵(12 ,𝑚2)

[(
𝑚2𝛾1
𝑚1𝛾2

)𝑚2 𝐵(𝑚2 +
1
2 ,−𝑚2)

𝐵(𝑚2 +
1
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(61)

reformulating the integral form of the Lauricella function in
(13) such that it encompasses a term of exp(−𝑡) [17, Ch.
2], the integral in (13) can be evaluated using the numerical
integration method given in [21, Eq. (25.4.45)] for a variety
of fading channel models. Then, one obtains

𝐹
(𝑛)
𝐶 (𝑎, 𝑏; 𝑐1, ..., 𝑐𝑛;𝑥1, ..., 𝑥𝑛)≈ cos(𝜋(𝑎 − 𝑏))

2𝑎+𝑏−2Γ(𝑎)Γ(𝑏)

𝑁𝑝∑
𝑘=1

𝑤𝑘𝑡
𝑎+𝑏−1
𝑘

!!𝐺2,1
1,2

(
2𝑡𝑘

∣∣∣∣ 1
2

𝑏− 𝑎, 𝑎− 𝑏

)(
𝑛∏
𝑘=1

0𝐹1

(
; 𝑐𝑘, 𝑥𝑘

𝑡2𝑘
4

))
, (63)

where 𝑡𝑘 and 𝑤𝑘 are, respectively, the 𝑘-th zero and weight
of the Laguerre polynomial of order 𝑁𝑝 [21, Eq. (25.4.45)].
Numerical results show that for 𝑁𝑝 = 30, this approximation
provides a relative error for the average error rate below 0.3%.
Notice that the other hypergeometric functions involved in
this paper, namely, the Meijer’s-G, Gauss hypergeometric and
Appel functions are implemented in most popular computing
softwares such as Matlab and Mathematica.

B. Numerical Results

In Fig. 1 we have reported the bit error probability induced
by 16-QAM and QPSK modulations in a multihop variable
gain relaying system with 𝑁 = 2, 4. The identical and non-
identical distributed fading cases are analyzed with an overall
system fading severity 𝑚Σ =

∑𝑁
𝑖=1𝑚𝑖 fixed to 𝑁 . For the

identical Nakagami case, all the hops undergo Rayleigh fading
with 𝑚𝑖 = 1, 𝑖 = 1, ..., 𝑁 . For the non-identical case, the dif-
ferent hops may be subject to worse or better fading conditions
than the identical case, such as 𝑚𝑖 ∈ {0.5, 1.5}𝑖=1,...,𝑁 . Since
our analysis is only valid for non-integer fading parameters,
then all the Rayleigh-case results were obtained using [22,
Eq. (14)]. The error performance of the non-identical case
are computed using (49) and (53) as well as the comparison
with simulations. We can see a very good match over the
range of SNRs of interest. As expected, we can observe that
the error probability increases with the number of hops. It
turns out that, although the overall system fading severity is
the same, better performances are achieved when the different
hops undergo identical fading. This is due to the fact that the
AF multihop channel is a cascaded one and can be modeled as
the product of 𝑁 statistically independent Nakagami-m fading
amplitudes. Therefore, the effect of a bad fading condition in

one hop deteriorates the overall system performance even in
the presence of a better fading condition in the following or
preceding hops. Hence, the relay link is dominated by the
more severely faded hop. This comment further corroborates
the generality and usefulness of the analytical frameworks
introduced in this paper, since real multihop channels are most
likely non-identically distributed.
For multihop systems with variable gain relays under identical
Nakagami fading with non-integer 𝑚, the error probability
results are plotted in Fig. 2 for BFSK modulation. The BEP
computations were performed using (38) and the computa-
tional methods in (63). As expected, the error performance
improves as the fading severity decreases. In Fig. 3 we
investigate the effect of power imbalance between the hops in
a dual-hop BPSK transmission over non-identical Nakagami-
m fading. The error probability is plotted against the first
hop average SNR for 𝑚1 = 𝑚2 = 1.5 and 𝑚1 = 0.7and
𝑚2 = 1.5. The higher average SNR resulting from one of the
relays may be due to a Line Of Sight (LOS) signal component
between the source terminal and the relay, or equivalently
between the relay and the destination. Such a situation may
occur in a cell-site scheme. Here, good accuracy is retained
by the analytical models (54), which turn out to be not only
very accurate but also numerically stable. Moreover, we can
easily figure out that, such imbalance may be either beneficial
or harmful for the overall system performance. Indeed, for
𝛾2 > 𝛾1, it is advantageous compared to the balanced case,
otherwise, it is detrimental.
Fig. 4 compares the exact bit error probabilities of BPSK
multihop systems with variable-gain relays with the lower
bound given in [8, Eq.(25)]. It can be seen that the proposed
bounds lose their tightness with increasing SNR and, therefore,
are definitely inappropriate for the estimation of the error per-
formance of multi-hop systems operating over non-identical
Nakagami fading. This was also stipulated by the authors of
[8].
Overall, the aforementioned numerical results unambiguously
confirm the high accuracy and huge utility of the proposed
framework for error probability analysis of AF multi-hop
systems over not necessarily identical Nakagami-m fading
conditions.
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Fig. 1. Bit error probabilities for different QPSK and 16-QAM AF multihop
transmission systems with variable-gain relays in identical and non identical
Nakagami-m fading.
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Fig. 2. Bit error probabilities vs. average SNR per hop for BFSK and
different values of the fading parameter and number of hops 𝑁 = 2, 3.

VI. CONCLUSION

In this paper, we have developed an analytical framework
for the analysis of error probabilities of AF multihop variable
gain relaying systems over Nakagami-m fading channels. The
numerical examples show the accuracy and usefulness of the
proposed new error probability expressions along three main
contributions:

1) We have proposed new solutions for infinite integral
forms involving the product of Bessel functions. Theses
solutions have been shown useful to the evaluation
of the error probabilities of multihop systems with
arbitrary number of variable-gain relays operating over
Nakagami-m fading. The obtained formulas establish a
connection, hitherto unknown, between the error proba-
bilities and the Lauricella’s functions.

2) In the special case of an odd multiple of one half fading
parameters, simpler expressions for the error probabili-
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Fig. 3. Bit error probabilities for different BPSK AF multihop transmission
systems with variable-gain relays over non identical Nakagami fading with
unbalanced SNR.
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Fig. 4. Comparison between the exact bit error probability and the lower
bound given in [8] for different BPSK AF multihop relaying systems with
variable gain relays.

ties, involving the Gauss hypergeometric function, have
been obtained.

3) As far as the dual-hop case is concerned, it is shown
in this special case of interest that the new error prob-
ability formulas reduce to previously known results in
the literature. Moreover, these new formulas generalize
previously known results pertaining to AF transmissions
over non-identical fading with integer parameter.
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