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Abstract—In this paper, we derive for the first time analytical
expressions for the inphase/quadrature (I/Q) non-data-aided
(NDA) Cramér-Rao lower bounds (I/Q NDA CRLBs) of the
direction of arrival (DOA) estimates from square quadrature
amplitude (QAM)-modulated signals corrupted by additive white
circular complex Gaussian noise (AWCCGN) with any antenna
configuration. Yet the main contribution embodied by this paper
consists in deriving for the first time analytical expressions for the
NDA Fisher information matrix (FIM) and then for the stochastic
CRLB of the NDA DOA estimates in the case of square QAM-
modulated signals. It will be shown that in the presence of any
unknown phase offset (i.e., non-coherent estimation), the ultimate
achievable performance on the NDA DOA estimates holds almost
the same irrespectively of the modulation order. However, the
NDA CRLBs obtained in the absence of the phase offset (i.e.,
coherent estimation) vary, in the high SNR region, from one
modulation order to another.

Index Terms—QAM signals, DOA estimation, stochastic
Cramér-Rao lower bound (CRLB), ULA, UCA.

I. INTRODUCTION

IN estimation theory, the performance of any unbiased
estimator is often assessed by computing and plotting its

bias and variance as a function of the true SNR values. A
given unbiased estimator is usually said to outperform another,
over a given SNR range, if it exhibits lower variance. In this
context, a well known common lower bound for the variance
of unbiased estimators of an intended parameter is the CRLB.
It serves as a useful benchmark for practical estimators [2].
The CRLB is often numerically or empirically computed. But
even when a closed-form expression can be obtained, it is
usually complex and requires tedious algebraic manipulations.

Contrarily to the deterministic CRLB which is known to be
not achievable in the general case, the stochastic CRLB lends
itself as a more accurate bound that can be achieved asymp-
totically (in the number of measurements) by the stochastic
maximum likelihood (ML) estimator and hence there has been
much interest in developing this bound. In the context of DOA
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estimation, several works which deal with the computation
of the stochastic CRLB have been reported in the literature.
In fact, an explicit expression of the DOA CRLBs for real
Gaussian distributions was earlier derived in [3, 4] by Slepian
and Bangs. This work was later extended to circular complex
Gaussian distributions in [5]. The stochastic and deterministic
DOA CRLBs were also derived in [6], where both the signal
and noise are jointly circular Gaussian for the stochastic model
and deterministic and circular Gaussian for the deterministic
model, respectively. More recently, an explicit expression for
the stochastic DOA CRLB of noncircular Gaussian sources in
the general case of an arbitrary unknown Gaussian noise field
was derived in [7].

However, despite the very rich literature on the problem of
direction finding, there is not so much information about DOA
estimation from modulated sources, especially regarding the
bounds on estimation accuracy. In this context, we cite the
recent work [8] carried out by Delmas and Abeida who, for
the first time, successfully addressed this challenging problem,
but only for BPSK and QPSK signals. In another work related
to [8], the same authors derived the CRLBs of the DOA
parameters from BPSK-, QPSK- and MSK-modulated signals
corrupted by a nonuniform Gaussian noise [9]. But to the best
of our knowledge, no contribution has dealt so far with the
stochastic CRLB for higher-order modulated signals in DOA
estimation.

In this paper, we derive explicit expressions for the stochas-
tic inphase/quadrature (I/Q) CRLB of the NDA DOA estimates
from arbitrary square QAM-modulated signals. These novel
results generalize the elegant CRLB expressions for the DOA
estimates from both BPSK-and QPSK-modulated signals pre-
sented in [8] to higher-order square QAM modulations.

This paper is organized as follows. In Section II, we
introduce the system model that will be used throughout the
article.In Section III is devoted to the major contribution
embodied by this paper, where simple and explicit expressions
for both the NDA FIM and the stochastic I/Q NDA CRLB
of the DOA estimates from arbitrary square QAM-modulated
signals will be derived. Simulation results are presented in
Section IV and, finally, some concluding remarks are drawn
out in Section V. We mention that, throughout this paper,
matrices and vectors are represented by bold upper case and
bold lower case letters, respectively. Moreover, the operators
{.}∗, ℜ{.} and ℑ{.} return the conjugate, the real, and the
imaginary parts of any complex number, respectively.
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II. SYSTEM MODEL

Consider a linearly-modulated signal impinging on an arbi-
trary array of 𝑀 antennas. Over the observation interval, the
channel is supposed to be of a constant real gain coefficient
𝑆 and assumed to introduce an unknown distortion phase 𝜙.
We suppose that the received signal is AWCCGN-corrupted
with an overall noise power 𝜎2. Assuming a receiver with
ideal sample timing and perfect frequency synchronization,
the received signal at the output of the array matched filter
can be modeled as a complex signal as follows:

𝒚(𝑛) = 𝑆 𝑒𝑗𝜙 𝒂 𝑥(𝑛) +𝒘(𝑛), 𝑛 = 1, 2, . . . , 𝑁, (1)

where, at time index 𝑛, 𝑥(𝑛) is the transmitted symbol and
𝒂 is the steering vector parameterized by the scalar DOA
parameter 𝜃. For any planar antenna-array configuration, the
steering vector can be written as1:

𝒂 =
[
𝑒𝑗2𝜋𝑓0(𝜃), 𝑒𝑗2𝜋𝑓1(𝜃), . . . , 𝑒𝑗2𝜋𝑓𝑀−1(𝜃)

]𝑇
, (2)

where {𝑓𝑖(𝜃)}𝑖=0,2,...,(𝑀−1) are transformations of the scalar
DOA parameter 𝜃, which vary from one configuration to
another. In general, we have ∣∣𝒂∣∣2 = 𝑀 , where ∣∣.∣∣ returns
the second norm of any vector. The independent and iden-
tically distributed (iid) transmitted symbols {𝑥(𝑛)}𝑛=1,2,...,𝑁

are assumed to be independent from the noise components
{𝒘(𝑛)}𝑛=1,2,...,𝑁 . The noise components {𝒘(𝑛)}𝑛=1,2,...,𝑁

are modeled by independent and identically distributed (iid)
𝑀 -variate zero-mean complex circular Gaussian random
vectors with independent real and imaginary parts and
E{𝒘(𝑛)𝒘(𝑛)𝐻} = 𝜎2𝑰𝑀 , where 𝑰𝑀 is the (𝑀 ×𝑀)
identity matrix. 𝑁 stands for the number of the received
samples in the observation window. Moreover, to derive
standard CRLBs, the constellation energy is supposed to be
normalized to one, i.e., E{∣𝑥(𝑛)∣2} = 1, where E{.} refers
to the expectation of any random variable and ∣.∣ returns the
module of any complex number.

In this work, all the parameters 𝜎, 𝑆, 𝜙 and 𝜃 are assumed
deterministic but unknown and they are more conveniently
stacked in the following parameter vector:

𝜶 = [𝜎 𝑆 𝜙 𝜃]𝑇 , (3)

where the superscript 𝑇 stands for the transpose operator.
Moreover, we define the true SNR of the system as follows:

𝜌 =
𝑆2

𝜎2
. (4)

III. DERIVATION OF THE STOCHASTIC I/Q
NON-DATA-AIDED CRLB FOR DOA ESTIMATES FROM

SQUARE QAM TRANSMISSIONS

In this section, we assume that the transmitted symbols
are drawn from any 𝐿-ary square QAM constellation, i.e.,
𝐿 = 22𝑝 (𝑝 = 1, 2, 3, . . .). The transmitted symbols are
assumed independent and identically distributed (iid). We

1Note that {𝑓𝑖(𝜃)}𝑀−1
𝑖=0 should be fixed by choosing an origin of phase

due to the constant shift Δ𝜃 corresponding to the delay introduced by the
channel as the wave propagates form the source to the antenna array. But this
shift can always be included in the unknown phase offset, 𝜙, introduced by
the channel which is considered as nuisance parameter in the paper.

organize the derivations in three subsections. In Subsec-
tion III-A, we consider a general antenna-array configuration.
In Subsections III-B and III-C, we consider ULAs and UCAs,
respectively.

A. General Antenna-Array Configuration

Considering the parameter vector defined in (3), the NDA
CRLB of the DOA estimates is explicitly defined as:

CRLB(𝜃) = [𝑰−1
NDA(𝜶)]4,4, (5)

where 𝑰NDA(𝜶) is the NDA Fisher information matrix 3whose
entries are defined as follows:

[𝑰NDA(𝜶)]𝑖,𝑗 = −E

{
∂2 ln(𝑃 [𝒀 ;𝜶])

∂𝛼𝑖∂𝛼𝑗

}
, 𝑖, 𝑗 = 1, 2, 3, 4; (6)

with 𝒀 being the matrix that contains all the received samples
on all the antenna elements during the observation interval,
i.e., 𝒀 = [𝒚(1), ⋅ ⋅ ⋅ ,𝒚(𝑁)] and 𝑃 [𝒀 ;𝜶] being the probability
density function (pdf) of 𝒀 parameterized by 𝜶.

First, we show (see appendix A) that the NDA FIM is block-
diagonal structured as follows:

𝑰NDA(𝜶) =

⎛⎝ 𝑰NDA
1 (𝜎, 𝑆) 0

0 𝑰NDA
2 (𝜙, 𝜃)

⎞⎠ . (7)

Moreover, since we assume the transmitted symbols to be iid,
then {𝒚(𝑛)}𝑛=1,2,...,𝑁 are i.i.d 𝑀 -dimensional random vari-
ables, and therefore the elements of the matrices 𝑰NDA

1 (𝜎, 𝑆)
and 𝑰NDA

2 (𝜙, 𝜃) are given by:

[𝑰NDA
1 (𝜎, 𝑆)]𝑖,𝑙 = −𝑁 E

{
∂2 ln(𝑃 [𝒚(𝑛);𝜶])

∂𝛼𝑖∂𝛼𝑙

}
, 𝑖, 𝑙 = 1, 2, (8)

[𝑰NDA
2 (𝜙, 𝜃)]𝑖,𝑙 = −𝑁 E

{
∂2 ln(𝑃 [𝒚(𝑛);𝜶])

∂𝛼𝑖+2∂𝛼𝑙+2

}
, 𝑖, 𝑙 = 1, 2. (9)

Actually, the analytical derivations of the eight elements
involved in (8) and (9) require tedious algebraic manipulations.
We now detail the major algebraic developments required for
the averaging step and then give the final results. In fact, under
the aforementioned assumptions and for any 𝐿-ary QAM
constellation, the NDA probability density function of the
received vector 𝒚(𝑛) parameterized by the parameter vector
𝜶, 𝑃 [𝒚(𝑛);𝜶] is obtained by averaging the DA probability
density function with respect to the points of the constellation
alphabet, 𝒞 = {𝑥1, 𝑥2, . . . , 𝑥𝐿}, to yield the following results:

𝑃 [𝒚(𝑛);𝜶] =
1

𝐿𝜋𝑀𝜎2𝑀

𝐿∑
𝑙=1

exp

{
−∣∣𝒚(𝑛) − 𝑆 𝑒𝑗𝜙 𝑥𝑙 𝒂∣∣2

𝜎2

}
.

(10)

Furthermore, it can be seen that (10) can be written as:

𝑃 [𝒚(𝑛);𝜶] = 𝑓𝑟𝑎𝑐1𝐿𝜋𝑀𝜎2𝑀 exp

{
−∣∣𝒚(𝑛)∣∣2

𝜎2

}
𝐷𝜶(𝑛), (11)

where 𝐷𝜶(𝑛) is given by:
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𝐷𝜶(𝑛)=
∑
𝑥𝑙∈𝒞

exp

{
−𝑆2𝑀 ∣𝑥𝑙∣2

𝜎2

}
exp

{
2𝑆ℜ{𝑒𝑗𝜙𝑥𝑙𝒚(𝑛)

𝐻𝒂}
𝜎2

}
.

(12)

In this section, considering only square QAM constellations,
i.e., 𝐿 = 22𝑝 (𝑝 = 1, 2, 3 . . .), we derive analytical expressions
for the CRLBs as functions of the true SNR values 𝜌. In
fact, the major advantage offered by the special case of these
square constellations is that, as shown hereafter, 𝐷𝜶(𝑛) and
therefore 𝑃 [𝒚(𝑛),𝜶] can be factorized, making it possible to
obtain analytical expressions, as a function of the true SNR
𝜌, for the FIM elements given by (8) and (9). Indeed, when
𝐿 = 22𝑝 for any 𝑝 ≥ 1, we have 𝒞 = {±(2𝑖− 1)𝑑𝑝 ± 𝑗(2𝑘−
1)𝑑𝑝}𝑖,𝑘=1,2,⋅⋅⋅ ,2𝑝−1 where 𝑗2 = −1 and 2𝑑𝑝 is the inter-
symbol distance in the I/Q plane. Note that 𝑑𝑝 is computed
using the assumption of a normalized-energy constellation.
That is: ∑22𝑝

𝑙=1 ∣𝑥𝑙∣2
22𝑝

= 1, (13)

which yields the following result:

𝑑𝑝 =
2𝑝−1√

2𝑝
∑2𝑝−1

𝑘=1 (2𝑘 − 1)2
. (14)

We prove, after some algebraic manipulations (see appendix
B) that 𝐷𝜶(𝑛) can be factorized as follows:

𝐷𝜶(𝑛) = 4𝐹𝜶(𝑈(𝑛))𝐹𝜶(𝑉 (𝑛)), (15)

where

𝐹𝜶(𝑡) =

2𝑝−1∑
𝑖=1

exp

{
−𝑆

2𝑀(2𝑖− 1)2𝑑2𝑝
𝜎2

}
×

cosh

(
(2𝑖− 1)𝑑𝑝𝑆𝑡

𝜎2

)
, (16)

and the real scalar random variables 𝑈(𝑛) and 𝑉 (𝑛) are
defined as:

𝑈(𝑛) = 2ℜ{𝑒𝑗𝜙𝒚(𝑛)𝐻𝒂}, (17)

𝑉 (𝑛) = 2ℑ{𝑒𝑗𝜙𝒚(𝑛)𝐻𝒂}. (18)

Consequently, from (11), 𝑃 [𝒚(𝑛);𝜶] follows as:

𝑃 [𝒚(𝑛);𝜶] =
4

𝐿𝜋𝑀𝜎2𝑀
exp

{
−∣∣𝒚(𝑛)∣∣2

𝜎2

}
×

𝐹𝜶(𝑈(𝑛))𝐹𝜶(𝑉 (𝑛)), (19)

and the log-likelihood function of the received samples re-
duces simply to:

ln(𝑃 [𝒚𝑛;𝜶]) = ln

(
4

𝐿𝜋𝑀

)
− 2𝑀 ln(𝜎) − ∣∣𝒚(𝑛)∣∣2

𝜎2
+

ln (𝐹𝜶(𝑈(𝑛))) + ln (𝐹𝜶(𝑉 (𝑛))) . (20)

First, we show in Appendix C that 𝑈(𝑛) and 𝑉 (𝑛) are
independent. Furthermore, by defining the complex scalar
random variable 𝜗(𝑛) = 𝑈(𝑛) + 𝑗𝑉 (𝑛) = 2 𝑒𝑗𝜙 𝒚(𝑛)𝐻𝒂
whose pdf is 𝑃 [𝜗(𝑛);𝜶] = 𝑃 [(𝑈(𝑛), 𝑉 (𝑛));𝜶], we have:

𝑃 [𝜗(𝑛);𝜶] = 𝑃 [𝑈(𝑛);𝜶]𝑃 [𝑉 (𝑛);𝜶]. (21)

We prove after tedious algebraic manipulations (see Appendix
D) the following result:

𝑃 [𝑈(𝑛);𝜶] =
1

2𝑝
√
𝜋𝑀𝜎2

exp

{
−𝑈(𝑛)

2

4𝑀𝜎2

}
𝐹𝜶(𝑈(𝑛)), (22)

𝑃 [𝑉 (𝑛);𝜶] =
1

2𝑝
√
𝜋𝑀𝜎2

exp

{
−𝑉 (𝑛)

2

4𝑀𝜎2

}
𝐹𝜶(𝑉 (𝑛)), (23)

implying that 𝑈(𝑛) and 𝑉 (𝑛) are actually independent and
identically distributed (iid) according to (22) and (23), re-
spectively. This interesting property will be used henceforth
to derive all the expectations.

Now, as it can be seen from (20), due to the factorization of
the received samples pdf in (19), the log-likelihood function
involves the sum of two analogous terms: ln(𝐹𝜶(𝑈(𝑛))) and
ln(𝐹𝜶(𝑉 (𝑛))). This reduces the complexity of the derivation
of its second partial derivatives of (20) and make it possible
to obtain analytical expressions for their expected values,
which is generally the most challenging step in deriving NDA
CRLBs. Indeed, since 𝑈(𝑛) and 𝑉 (𝑛) are iid, then it follows
immediately that for 𝑖, 𝑙 = 1, 2, 3, 4:

E

{
∂2 ln (𝐹𝜶(𝑈(𝑛)))

∂𝛼𝑖∂𝛼𝑙

}
= E

{
∂2 ln (𝐹𝜶(𝑉 (𝑛)))

∂𝛼𝑖∂𝛼𝑙

}
.

In the sequel, as an example, we will detail the derivation of
E
{
∂2 ln(𝑃 [𝒚(𝑛);𝜶])

∂𝜃2

}
and the other terms, involved in (8) and

(9), can then be easily derived following the same derivation
lines. In fact, we have:

E

{
∂2 ln (𝑃 [𝒚(𝑛);𝜶])

∂𝜃2

}
= 2E

{
∂2 ln (𝐹𝜶 (𝑈(𝑛)))

∂𝜃2

}
,

2E

⎧⎨⎩𝐹𝜶

(
𝑈(𝑛), �̇�(𝑛), 𝑈(𝑛)

)
𝐹𝜶 (𝑈(𝑛))

⎫⎬⎭
−2E

⎧⎨⎩
�̇�𝜶

(
𝑈(𝑛), �̇�(𝑛)

)2

𝐹𝜶 (𝑈(𝑛))
2

⎫⎬⎭ , (24)

where

�̇�𝜶 =
∂ ln (𝐹𝜶)

∂𝜃
, (25)

𝐹𝜶 =
∂2 ln (𝐹𝜶)

∂𝜃2
, (26)

�̇�(𝑛) =
∂𝑈(𝑛)

∂𝜃
(27)

𝑈(𝑛) =
∂2𝑈(𝑛)

∂𝜃2
. (28)

It can be shown that:

E

⎧⎨
⎩
𝐹𝜶

(
𝑈(𝑛), �̇�(𝑛), 𝑈(𝑛)

)
𝐹𝜶 (𝑈(𝑛))

⎫⎬
⎭ = E

{
𝑈(𝑛)𝛿𝜶,1 (𝑈(𝑛))

}
+

E
{
�̇�(𝑛)2𝛿𝜶,2 (𝑈(𝑛))

}
, (29)

𝐸

⎧⎨
⎩
�̇�𝜶

(
𝑈(𝑛), �̇�(𝑛)

)2
𝐹𝜶 (𝑈(𝑛))2

⎫⎬
⎭ = E

{
�̇�(𝑛)2𝛿𝜶,1 (𝑈(𝑛))2

}
, (30)

where
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𝛿𝜶,1 (𝑈(𝑛)) =
𝑆𝑑𝑝

𝜎2𝐹𝜶 (𝑈(𝑛))

2𝑝−1∑
𝑖=1

𝑒
−𝑀𝑆2𝑑2𝑝(2𝑖−1)2

𝜎2 ×

(2𝑖− 1) sinh

(
(2𝑖− 1)𝑑𝑝𝑆

𝜎2
𝑈(𝑛)

)
, (31)

𝛿𝜶,2 (𝑈(𝑛)) =
𝑆2𝑑2𝑝

𝜎4𝐹𝜶 (𝑈(𝑛))

2𝑝−1∑
𝑖=1

𝑒
−𝑀𝑆2𝑑2𝑝(2𝑖−1)2

𝜎2 ×

(2𝑖− 1) cosh

(
(2𝑖− 1)𝑑𝑝𝑆

𝜎2
𝑈(𝑛)

)
. (32)

Therefore, the derivation of (24) requires explicit expressions
for (29) and (30). We begin by deriving the first term given
by (29). In fact, as shown in appendix E, we have:

𝑈(𝑛) = −∣∣�̇�∣∣2
𝑀

𝑈(𝑛) +
𝑗

2𝑀

(
𝒂𝐻�̈�− �̈�𝐻𝒂

)
𝑉 (𝑛) + 𝑧(𝑛),

with �̈� =
∂2𝒂

∂𝜃2
and:

𝑧(𝑛) = 𝑒𝑗𝜙𝒘(𝑛)𝐻 �̈�+ 𝑒−𝑗𝜙�̈�𝐻𝒘(𝑛) −
1

𝑀

[
𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂𝒂𝐻�̈�+ 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛)�̈�𝐻𝒂

]
.

Moreover, since 𝑈(𝑛) is independent from 𝑉 (𝑛) and 𝑧(𝑛)
(see appendices C and E) with E {𝑉 (𝑛)} = E {𝑧(𝑛)} = 0,
then after some algebraic manipulations (see appendix F for
more details), we obtain:

E
{
𝑈(𝑛)𝛿𝜶,1 (𝑈(𝑛))

}
= −4∣∣�̇�∣∣

2𝑆2𝑑2𝑝
2𝑝𝜎2

𝐴2;𝑝, (33)

where

𝐴𝑚;𝑝 =
2𝑝−1∑
𝑘=1

(2𝑘 − 1)𝑚, ∀𝑚 ∈ �. (34)

Moreover, �̇�(𝑛) and 𝑈(𝑛) are independent (see appendix C).
Therefore, we have:

E
{
�̇�(𝑛)2𝛿𝜶,2 (𝑈(𝑛))

}
= E

{
�̇�(𝑛)2

}
E {𝛿𝜶,2 (𝑈(𝑛))} ,

and we show that:

E
{
�̇�(𝑛)2

}
= 2∣∣�̇�∣∣2 𝜎2 + 2𝑆2 ∣𝒂𝐻�̇�∣2,

E {𝛿𝜶,2 (𝑈(𝑛))} =
2𝑆2𝑑2𝑝
2𝑝𝜎4

𝐴2;𝑝.

Hence, we obtain:

E
{
�̇�(𝑛)2𝛿𝜶,2 (𝑈(𝑛))

}
=

4∣∣�̇�∣∣2𝑆2𝑑2𝑝
2𝑝𝜎2

𝐴2;𝑝 +

4∣𝒂𝐻�̇�∣𝑆4𝑑2𝑝
2𝑝𝜎4

𝐴2;𝑝.

Finally, we deduce:

E

⎧⎨⎩𝐹𝜶

(
𝑈(𝑛), �̇�(𝑛), 𝑈(𝑛)

)
𝐹𝜶 (𝑈(𝑛))

⎫⎬⎭ =
4∣𝒂𝐻�̇�∣𝑆4𝑑2𝑝

2𝑝𝜎4
𝐴2;𝑝. (35)

Now, we will derive the second term given by (30). Once
again, using the independence of �̇�(𝑛) and 𝑈(𝑛) and changing
the variable 𝑈(𝑛)√

2𝑀𝜎
by 𝑡, (30) reduces to:

E

⎧⎨
⎩
�̇�𝜶

(
𝑈(𝑛), �̇�(𝑛)

)2
𝐹𝜶 (𝑈(𝑛))2

⎫⎬
⎭

=
𝑆2𝑑2𝑝
2𝑝−2𝜎4

(
𝜎2∣∣�̇�∣∣2 + 𝑆2∣𝒂𝐻�̇�∣

)
𝑄𝑝(𝜌),(36)

where

𝑄𝑝(𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑞2𝑝(𝜌, 𝑡)

ℎ𝑝(𝜌, 𝑡)
𝑒−

𝑡2

2 𝑑𝑡, (37)

with

𝑞𝑝(𝜌, 𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2𝑝𝑀𝜌 ×

(2𝑘 − 1) sinh
(
(2𝑘 − 1)𝑑𝑝

√
2𝑀𝜌 𝑡

)
, (38)

ℎ𝑝(𝜌, 𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2𝑝𝑀𝜌 cosh
(
(2𝑘 − 1)𝑑𝑝

√
2𝑀𝜌 𝑡

)
.

(39)

Finally, injecting (35) and (36) in (24), we obtain:

E

{
∂2 ln (𝑃 [𝒚(𝑛);𝜶])

∂𝜃2

}
= − 2𝜌

2𝑝−2
𝐼4,4,

where

𝐼4,4 = −2𝑝−2𝜌∣𝒂𝐻�̇�∣2 + 𝑑2𝑝
(∣∣�̇�∣∣2 + 𝜌∣𝒂𝐻 �̇�∣2)𝑄𝑝(𝜌).

Deriving the remaining seven NDA FIM elements using
equivalent algebraic manipulations (see Appendix G for more
details), we obtain the following results:

𝑰NDA
1 (𝜎, 𝑆) =

2𝑁𝑀

2𝑝−2𝜎2

⎛⎝ 𝐼1,1
2𝑆
𝜎 [2

𝑝−2−𝐻𝑝(𝜌)]

2𝑆
𝜎 [2

𝑝−2−𝐻𝑝(𝜌)] 𝐹𝑝(𝜌)

⎞⎠ .

(40)

𝑰NDA
2 (𝜙, 𝜃) =

2𝑁𝜌

2𝑝−2

⎛⎝ 𝐼3,3 𝐼3,4

𝐼3,4 𝐼4,4

⎞⎠ , (41)

where

𝐼1,1 = 2𝑝−1 − 4 𝜌
[
𝐴2;𝑝𝑑

2
𝑝 −𝐺𝑝(𝜌)

] − 2 𝜌2𝑀𝑑4𝑝𝐴4;𝑝, (42)

𝐼3,3 = −2𝑝−2𝑀2𝜌+𝑀𝑑2𝑝 (1 +𝑀𝜌)𝑄𝑝(𝜌), (43)

𝐼3,4 = −𝑗�̇�𝐻𝒂
[
2𝑝−2𝑀𝜌− 𝑑2𝑝(1 +𝑀𝜌)𝑄𝑝(𝜌)

]
. (44)

In (40)-(42), 𝐹𝑝(𝜌), 𝐺𝑝(𝜌) and 𝐻𝑝(𝜌) are given by:

𝐹𝑝(𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑓2
𝑝 (𝜌, 𝑡)

ℎ𝑝(𝜌, 𝑡)
𝑒−

𝑡2

2 𝑑𝑡, (45)

𝐺𝑝(𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑔2𝑝(𝜌, 𝑡)

ℎ𝑝(𝜌, 𝑡)
𝑒−

𝑡2

2 𝑑𝑡, (46)

𝐻𝑝(𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑓𝑝(𝜌, 𝑡)𝑔𝑝(𝜌, 𝑡)

ℎ𝑝(𝜌, 𝑡)
𝑒−

𝑡2

2 𝑑𝑡, (47)
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where

𝑓𝑝(𝜌, 𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2
𝑝𝑀𝜌 ×[

(2𝑘 − 1)𝑑𝑝 𝑡 sinh
(
(2𝑘 − 1)𝑑𝑝

√
2𝑀𝜌 𝑡

)
−

(2𝑘 − 1)2𝑑2𝑝
√
2𝑀𝜌 cosh

(
(2𝑘 − 1)𝑑𝑝

√
2𝑀𝜌 𝑡

)]
, (48)

𝑔𝑝(𝜌, 𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2
𝑝𝑀𝜌 ×[

(2𝑘 − 1)𝑑𝑝 𝑡 sinh
(
(2𝑘 − 1)𝑑𝑝

√
2𝑀𝜌 𝑡

)
−

(2𝑘 − 1)2𝑑2𝑝

√
𝑀𝜌

2
cosh

(
(2𝑘 − 1)𝑑𝑝

√
2𝑀𝜌 𝑡

)]
. (49)

Recall that the FIM is block diagonal. Therefore, it can be
easily inverted to yield the expression for the NDA DOA
CRLB in non-coherent (NCO) estimation (i.e., in the presence
of an unknown phase offset), CRLBNCO

NDA, as follows:

CRLBNCO
NDA(𝜃) =

2𝑝−2
(
𝑀𝑑2𝑝(1 +𝑀𝜌)𝑄𝑝(𝜌)− 2𝑝−2𝑀2𝜌

)
2𝑁𝜌det

(
𝐼NDA
2 (𝜙, 𝜃)

)
(50)

where det(.) returns the determinant of any square matrix.
After some algebraic manipulations and using the identity
�̇�𝐻𝒂 = −𝒂𝐻�̇�, we obtain an explicit expression for the
CRLBNCO

NDA as follows2:

CRLBNCO
NDA(𝜃) =

𝐴2;𝑝

𝑁𝛾 𝜌 𝑄𝑝(𝜌)
, (51)

where the expressions of 𝐴2;𝑝 and𝑄𝑝(𝜌) are given by (34) and
(37), respectively, and 𝛾 is the “geometrical factor” 2�̇�𝐻Π⊥

𝒂 �̇�
with Π⊥

𝒂 = 𝑰𝑀 −𝒂𝒂𝐻/𝑀 and �̇� = ∂𝒂
∂𝜃 . It is then easy to see

that 𝛾 devolps to:

𝛾 = 2

(
∣∣�̇�∣∣2 − ∣𝒂𝐻 �̇�∣2

𝑀

)
, (52)

Recall the expression of the DA CRLB in case of non-coherent
estimation, CRLBNCO

DA (𝜃), that was earlier derived in [8] as
follows:

CRLBNCO
DA (𝜃) =

1

𝑁𝛾 𝜌
. (53)

Then we can relate the CRLBs, in the DA and NDA modes,
under non-coherent estimation as follows3:

CRLBNCO
NDA(𝜃) =

𝐴2;𝑝

𝑄𝑝(𝜌)
CRLBNCO

DA (𝜃), (54)

from which we notice that the NDA DOA CRLB is factorized
into the DA DOA CRLB and another term, the ratio 𝐴2;𝑝

𝑄𝑝(𝜌)
,

that depends only on the modulation order a priori and the
SNR 𝜌, not on the array geometry. This term reflects, in
fact, the complete ignorance of the transmitted symbols. We
will actually see a posteriori in Section V that this term

2Note also that replacing 𝑝 by 1 in (51) yields the same expression
recently presented by Delmas and Habti in [8] in the special case of 4-QAM
constellation.

3See [12] For further results about the relationship between the DA CRLBs
under coherent and non-coherent estimations

holds almost the same irrespectively of the modulation order.
Moreover, this ratio is strictly superior to one at low SNR
values and is almost equal to one in the high-SNR region.
This is because, in this SNR region, the useful signal is not
too much corrupted by the additive noise and consequently the
training symbols do not provide much additional information
about the DOA estimates.

In coherent (CO) estimation (i.e., absence of the phase offset
or assuming that the parameter 𝜙 is known or perfectly recov-
ered) the NDA DOA CRLB, CRLBCO

NDA, can be obtained by
simply inverting the second diagonal element of 𝑰NDA

2 (𝜙, 𝜃),
i.e., we have:

CRLBCO
NDA(𝜃) = − 1

E
{
∂2 ln(𝑃 [𝒚(𝑛);𝜶])

∂𝜃2

} . (55)

Notice, however, that coherent NDA estimation stems from an
idealistic scenario. Indeed, in an NDA scheme, the required
parameters are blindly estimated within an inherent phase am-
biguity. Hence, the phase offset cannot be recovered a priori.
Yet some pseudo-coherent estimation techniques enable its
recovery within phase ambiguities that keep the constellation
invariant by rotation [11]. For QAM-modulated transmissions,
the phase offset estimate would therefore be nominally of
the form 𝜙 = 𝜙 + 𝑘𝜋

2 where 𝑘 ∈ {0, 1, 2, 3} with equal
probability. Assuming this more realistic pseudo-coherent es-
timation scenario, we consider the transformed received vector
𝒚′(𝑛) = 𝒚(𝑛) 𝑒−𝑗ˆ𝜙 = 𝑆 𝑒𝑗Δ𝜙 𝒂 𝑥(𝑛) + 𝒘′(𝑛) where
Δ𝜙 = 𝜙 − 𝜙 and 𝒘′(𝑛) = 𝒘(𝑛) 𝑒−𝑗ˆ𝜙 for 𝑛 = 1, 2 . . . , 𝑁
are also iid 𝑀 -variate zero-mean complex circular Gaussian
random vectors with E{𝒘′(𝑛)𝒘′(𝑛)𝐻} = 𝜎2𝑰𝑀 . Hence, we
can easily prove that for 𝑘 = 0, 1, 2, 3, we have (56) at the
top of the next page, where

𝑈0(𝑛) = 2 ℜ{𝑒𝑗Δ𝜙𝒚′(𝑛)𝐻𝒂},
𝑉0(𝑛) = 2 ℑ{𝑒𝑗Δ𝜙𝒚′(𝑛)𝐻𝒂}.

Consequently, we have for any 𝑘 ∈ {0, 1, 2, 3}:

𝑃 [𝒚′(𝑛);𝜶] =
1

4

3∑
𝑘=0

𝑃

[
𝒚′(𝑛)∣Δ𝜙 = 𝑘𝜋

2
;𝜶

]
,

= 𝑃
[
𝒚′(𝑛)∣Δ𝜙 = 𝑘

𝜋

2
;𝜶

]
. (57)

In pseudo-coherent estimation, the NDA CRLB CRLBPCO
NDA is

therefore given by:

CRLBPCO
NDA(𝜃) = − 1

E

{
∂2 ln (𝑃 [𝒚′(𝑛);𝜶])

∂𝜃2

} . (58)

We can easily show from (19), (56) and (57) that 𝑃 [𝒚′(𝑛);𝜶]
and 𝑃 [𝒚(𝑛);𝜶] have the same form. Then, from (55) and (58),
replacing 𝒚(𝑛) by 𝒚′(𝑛) and following the same derivation
lines used previously, we establish that the NDA CRLBs in
both coherent and pseudo-coherent estimations are the same:

CRLBCO
NDA(𝜃) = CRLBPCO

NDA(𝜃) =
2𝑝−2

2𝑁𝜌Ψ𝜌(𝜃)
, (59)

where

Ψ𝜌(𝜃) = −2𝑝−2𝜌∣𝒂𝐻�̇�∣2 + 𝑑2𝑝(∣∣�̇�∣∣2 + 𝜌∣𝒂𝐻�̇�∣2)𝑄𝑝(𝜌). (60)
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𝑃
[
𝒚′(𝑛)∣Δ𝜙 = 𝑘

𝜋

2
;𝜶

]
=

1

𝐿𝜋𝑀𝜎2𝑀
×

𝐿∑
𝑙=1

exp

{
−∣∣𝒚′(𝑛)− 𝑆 𝑒𝑗Δ𝜙 𝑥𝑙 𝒂∣∣2

𝜎2

}
=

4

𝐿𝜋𝑀𝜎2𝑀
exp

{
−∣∣𝒚′(𝑛)∣∣2

𝜎2

}
× 𝐹𝜶(𝑈0(𝑛))𝐹𝜶(𝑉0(𝑛)) (56)

We mention here that no obvious relation can be drawn
between CRLBCO/PCO

NDA in (59) and the DA CRLB in coherent
estimation that was earlier derived in [8] as follows:

CRLBCO
DA(𝜃) =

1

2 𝑁 𝜌 ∣∣�̇�∣∣2 . (61)

Note that, although the expressions of the NDA CRLBs given
by (51) and (59) are valid for any antenna configuration, we
will subsequently elaborate more on the the expressions of
these bounds for the most popular antenna-array configura-
tions, namely ULAs and UCAs. Indeed, by further examining
the exact expressions of 𝛾, ∣∣�̇�∣∣2 and ∣𝒂𝐻�̇�∣2 involved in (51)
and (60), some interesting results on the achievable perfor-
mance will be revealed regarding these special configurations.

B. Uniform Linear Array (ULA) Configuration

For a uniform linear array (ULA), the steering vector is
given by:

𝒂 =
[
1, 𝑒𝑗𝜋 sin(𝜃), 𝑒2𝑗𝜋 sin(𝜃), . . . , 𝑒𝑗(𝑀−1)𝜋 sin(𝜃)

]𝑇
.

Consequently, from (52), 𝛾ULA can be written as:

𝛾ULA = 2𝜋2 cos2(𝜃)

⎛⎜⎜⎜⎜⎜⎝
𝑀−1∑
𝑘=1

𝑘2 −

(
𝑀−1∑
𝑘=1

𝑘

)2

𝑀

⎞⎟⎟⎟⎟⎟⎠ ,

= 𝜋2𝑀(𝑀2 − 1)

6
cos2(𝜃). (62)

Therefore, in the special case of a ULA configuration, we
obtain the explicit expression as a function of 𝜃 for the NDA
CRLB in non-coherent estimation as follows:

CRLBNCO
NDA(𝜃) =

6×𝐴2;𝑝

𝑁𝑀(𝑀2 − 1)𝜋2 cos2(𝜃)𝜌𝑄𝑝(𝜌)
. (63)

Moreover, for a ULA configuration, ∣𝒂𝐻�̇�∣2 and ∣∣�̇�∣∣2 are
given explicitly by:

∣𝒂𝐻�̇�∣2 = 𝜋2 cos2(𝜃)

(
𝑀−1∑
𝑘=1

𝑘

)2

,

= 𝜋2𝑀
2(𝑀 − 1)2

4
cos2(𝜃).

∣∣�̇�∣∣2 = 𝜋2𝑀(𝑀 − 1)(2𝑀 − 1)

6
cos2(𝜃).

Consequently, from (59) and (60), we obtain, for a ULA
configuration, the following expression for the NDA CRLB

with coherent/pseudo-coherent estimation:

CRLBCO/PCO
NDA (𝜃) = 3× 2𝑝−1

(
𝑁𝑀(𝑀 − 1)𝜋2𝜌 cos2(𝜃) ×[

− 3𝑀(𝑀 − 1)𝜌2𝑝−2 + 𝑑2𝑝

(
2(2𝑀 − 1) +

3𝑀(𝑀 − 1)𝜌
)
𝑄𝑝(𝜌)

])−1

. (64)

Therefore, it can be seen from (63) and (64) that for both
non-coherent and coherent estimations, the CRLB is an even
function of 𝜃 and minimal for 𝜃 = 0 since 𝜃 ∈ [−𝜋

2 ,
𝜋
2

]
,

thereby reflecting the symmetry of the ULA around the
broadside axis.

C. Uniform Circular Array (UCA) Configuration

For a uniform circular array (UCA), the steering vector is
given by [10]:

𝒂 =

[
𝑒

𝑗𝜋 cos(𝜃)
2 sin(𝜋/𝑀) , 𝑒

𝑗𝜋 cos(𝜃−2𝜋/𝑀)
2 sin(𝜋/𝑀) , . . . , 𝑒

𝑗𝜋 cos(𝜃−2(𝑀−1)𝜋/𝑀)
2 sin(𝜋/𝑀)

]
. (65)

Hence, from (52), 𝛾UCA is expressed as:

𝛾UCA =
𝜋2

2 sin2
(
𝜋
𝑀

) ×⎛⎜⎜⎜⎜⎜⎝
𝑀−1∑
𝑘=0

sin2
(
𝜃 − 2𝑘𝜋

𝑀

)
−

(
𝑀−1∑
𝑘=1

sin

(
𝜃 − 2𝑘𝜋

𝑀

))2

𝑀

⎞⎟⎟⎟⎟⎟⎠ .

Using the identities sin
(
𝜃 − 2𝑘𝜋

𝑀

)
= ℑ

{
𝑒𝑗(𝜃−

2𝑘𝜋
𝑀 )

}
,

cos
(
𝜃 − 2𝑘𝜋

𝑀

)
= ℜ

{
𝑒𝑗(𝜃−

2𝑘𝜋
𝑀 )

}
and

𝑀−1∑
𝑘=0

𝑒
2𝑗𝑘𝜋
𝑀 = 0, we

show that 𝛾UCA reduces simply to:

𝛾UCA =
𝑀𝜋2

4 sin2
(
𝜋
𝑀

) , (66)

Moreover, for a UCA configuration, ∣𝒂𝐻 �̇�∣2 and ∣∣�̇�∣∣2 are
given, respectively, by:

∣𝒂𝐻 �̇�∣2 =
𝜋2

4 sin2
(
𝜋
𝑀

) (𝑀−1∑
𝑘=1

sin

(
𝜃 − 2𝑘𝜋

𝑀

))2

= 0.

∣∣�̇�∣∣2 =
𝑀𝜋2

8 sin2
(
𝜋
𝑀

) ,
=

𝛾UCA

2
.
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Fig. 1. DA and NDA CRLBs for the DOA estimates, 4-QAM, 𝑁 = 1.
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Fig. 2. DA and NDA CRLBs for the DOA estimates, 16-QAM, 𝑁 = 1.

Consequently, from (51), (59) and (60), we obtain, for a
UCA configuration, the same expressions for the NDA CRLBs
for coherent/pseudo-coherent and noncoherent estimation as
follows:

CRLBCO/PCO
NDA (𝜃) = CRLBNCO

NDA(𝜃) =
4 sin2

(
𝜋
𝑀

)
𝑁𝑀𝜋2𝜌

𝐴2;𝑝

𝑄𝑝(𝜌)
. (67)

Thus, we conclude from (67) that, contrarily to the ULA
configuration, the a priori knowledge of the phase offset
with a UCA configuration does not bring any additional
CRLB performance gain. Moreover, we see that the true
DOA parameter does not appear in the final CRLB expression
implying that the achievable performance for a UCA is the
same for any 𝜃, thereby reflecting the circular symmetry of
the UCA.

IV. GRAPHICAL REPRESENTATIONS

In this section, we provide some graphical representations
of the NDA and the DA CRLBs of both coherent and
noncoherent DOA estimations as a function of the SNR for
different modulation orders, different values of the number of
antennas 𝑀 and for a fixed DOA parameter 𝜃 = 0. Unless
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Fig. 3. DA and NDA CRLBs for the DOA estimates, 256-QAM, 𝑁 = 1.

specified otherwise, the receiving antennas are assumed to be
distributed as a ULA.

In Fig. 1, we consider the same expression for the steering
vector adopted in [8]:

𝒂 = [1, 𝑒𝑗𝜃, 𝑒2𝑗𝜃, . . . , 𝑒𝑗(𝑀−1)𝜃]𝑇 ,

just for comparison purposes. It can be verified there that for
𝑝 = 1 there is a perfect agreement between our analytical
expressions and those derived in the special case of QPSK by
Delmas and Abeida in [8]. Furthermore, we see from Figs. 1,
2 and 3 that, for relatively high SNR values, the DOA CRLBs
obtained in coherent estimation, CRLBCO/PCO, are lower than
those obtained when all the parameters are assumed to be
unknown, CRLBNCO. This is hardly surprising since the more
information we exploit, the lower is the bound. In fact, the
knowledge of the phase offset is obviously more informative
about the unknown DOA parameter at high SNR values.
Moreover, we clearly see that the difference between these
two CRLBs decreases as the modulation order 𝑝 increases.
We also see from these figures that the non-coherent DA
CRLB, CRLBNCO

DA , of the DOA estimates is lower than the
CRLBCO/PCO

NDA only for low SNR values when the useful signal
is too much corrupted by the additive noise. However, for high
SNR values, the phase offset becomes more informative about
the DOA parameter than the training symbols.

In addition, it can be seen that the CRLBs decrease when
the number of receiving antennas 𝑀 increases. In fact, the
more antennas we have, the more samples we receive and
consequently the more information we exploit. Moreover, we
notice from these figures that the achievable performance on
the DOA estimates holds almost the same irrespectively of
the modulation order. This can be analytically explained by
examining the explicit expressions of the considered CRLBs
in (54). Indeed, the modulation order 𝑝 (or 𝐿 = 22𝑝) appears
only in the ratio 𝐴2;𝑝

𝑄𝑝(𝜌)
which turns out as shown in Fig. 4

to be almost the same for all the considered square QAM
constellations (i.e., 𝑝 = 1, 2, 3, 4).

In Fig. 5, we compare the DOA CRLBs for both ULA
and UCA antenna-array configurations. We see from this
figure that the achievable performance on the DOA estimates
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Fig. 4. Ratio 𝐴2;𝑝/𝑄𝑝(𝜌) for 𝑝 = 1, 2, 3 and 4, 𝑀 = 8.
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Fig. 5. DA and NDA CRLBs for the DOA estimates with ULA and UCA
configurations, 𝑝 = 2, 𝑁 = 1, 𝑀 = 8.

depends on the geometrical configuration of the 𝑀 receiving
antenna elements. In fact, for a fixed number of antennas 𝑀 ,
we prove that the CRLBs obtained for a ULA configuration
are lower than the CRLBs obtained with a UCA for any value

of 𝜃 ∈ [−𝜃c, 𝜃c] with 𝜃c = arccos

(√
3

2 sin2( 𝜋
𝑀 )(𝑀−1)(𝑀+1)

)
.

UCAs are, however, more used in practice. Indeed, the major
advantage of UCAs is their 360 degrees azimuthal coverage
which is necessary in many applications such as wireless
communications, radar and sonar and their almost invariant
directional pattern. This is in strong contrast with the widely
studied ULA that only covers 180 degrees.

V. CONCLUSION

In this paper, we developed for the first time analytical
expressions for the stochastic CRLBs of the NDA DOA
estimates from arbitrary square QAM-modulated signals. We
elaborated further on the DA DOA CRLBs for any linearly-
modulated signal. The received samples are assumed to be
corrupted by additive white circular complex Gaussian noise.
We proved that the achievable performance on the NDA DOA
estimates in the presence of an unknown phase offset holds

almost the same irrespectively of the modulation order and that
it depends on the geometrical configuration of the antenna-
array. However, the CRLBs obtained in the absence of the
phase offset differ from one modulation order to another,
in the high SNR region. Moreover, they are lower than the
DA CRLBs for non-coherent estimation. In either case, the
CRLBs depend in general on the DOA and the antenna-array
geometry. With a UCA, we showed that the CRLBs no longer
depend on the DOA due to its circular symmetry. With a ULA,
we showed that the CRLBs are even functions of the DOA
that reach their minima at broadside direction due to the ULA’s
axial symmetry around it.

APPENDIX A - PROOF OF THE DIAGONAL STRUCTURE OF

THE NDA FIM

We have for 𝑖 = 1, 2:

E

{
∂2 ln (𝑃 [𝒚(𝑛);𝜶])

∂𝛼𝑖∂𝜙

}
= E {𝑉 (𝑛)𝐴𝑖 (𝑈(𝑛))} ,

E

{
∂2 ln (𝑃 [𝒚(𝑛);𝜶])

∂𝛼𝑖∂𝜃

}
= E

{
�̇�(𝑛)𝐵𝑖 (𝑈(𝑛))

}
,

where {𝐴𝑖}𝑖=1,2 and {𝐵𝑖}𝑖=1,2 are four transformations of the
scalar random variable 𝑈(𝑛). Moreover, 𝑉 (𝑛) and 𝑈(𝑛) are
independent. Therefore, 𝑉 (𝑛) and any other transformation of
𝑈(𝑛) will be independent. Hence, we have:

E

{
∂2 ln (𝑃 [𝒚(𝑛);𝜶])

∂𝛼𝑖∂𝜙

}
= E {𝑉 (𝑛)}E {𝐴𝑖 (𝑈(𝑛))} .

In addition, since ℑ{𝑥(𝑛)} is zero mean and 𝒘(𝑛) is a zero-
mean complex Gaussian random vector, then from (74) 𝑉 (𝑛)
is also zero mean. Hence, [𝑰NDA(𝜶)]1,3 = [𝑰NDA(𝜶)]2,3 = 0.
We also have:

�̇�(𝑛) = 2ℜ{
𝑒𝑗𝜙 𝒚(𝑛)𝐻 �̇�

}
,

= 𝑆
(
𝑥(𝑛)∗𝒂𝐻�̇�+ 𝑥(𝑛)�̇�𝐻𝒂

)
+

𝑒𝑗𝜙𝒘(𝑛)𝐻 �̇�+ 𝑒−𝑗𝜙�̇�𝐻𝒘(𝑛).

Using �̇�𝐻𝒂+𝒂𝐻 �̇� = 0 derived from ∣∣𝒂∣∣2 =𝑀 , we obtain:

�̇�(𝑛) = 𝑆�̇�𝐻𝒂ℑ{𝑥(𝑛)}+ 𝑒𝑗𝜙𝒘(𝑛)𝐻 �̇�+ 𝑒−𝑗𝜙�̇�𝐻𝒘(𝑛). (68)

Now, from (73) and (68), it can be shown that 𝑈(𝑛) and

�̇�(𝑛) are independent with E
{
�̇�(𝑛)

}
= 0. Therefore,

[𝑰NDA(𝜶)]1,4 = [𝑰NDA(𝜶)]2,4 = 0. Consequently, the NDA
FIM is a block diagonal matrix.

APPENDIX B - FACTORIZATION OF 𝐷𝜶(𝑛)

We denote by 𝒞 = {𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐22(𝑝−1)} the subset of the
alphabet points that lie in the top right quadrant of the con-
stellation, i.e., 𝒞 = {(2𝑖− 1)𝑑𝑝+ 𝑗(2𝑘− 1)𝑑𝑝}𝑖,𝑘=1,2,⋅⋅⋅ ,2𝑝−1 .
Then, we have 𝒞 = 𝒞 ∪ (−𝒞) ∪ 𝒞∗ ∪ (−𝒞∗). Consequently,
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(12) is rewritten as follows:

𝐷𝜶(𝑛) =
∑
𝑐𝑘∈𝒞

exp

{
−𝑆

2𝑀 ∣𝑐𝑘∣2
𝜎2

}
×

(
exp

{
2𝑆ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝑐𝑘𝒂}

𝜎2

}
+

exp

{
2𝑆ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙(−𝑐𝑘)𝒂}

𝜎2

}
+

exp

{
2𝑆ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝑐∗𝑘𝒂}

𝜎2

}
+

exp

{
2𝑆ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙(−𝑐∗𝑘)𝒂}

𝜎2

})
. (69)

Then using the fact that 𝑒𝑥 + 𝑒−𝑥 = 2 cosh(𝑥), we obtain:

𝐷𝜶(𝑛) = 2
∑
𝑐𝑘∈𝒞

exp

{
−𝑆

2𝑀 ∣𝑐𝑘∣2
𝜎2

}
×

(
cosh

(
2𝑆ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝑐𝑘𝒂}

𝜎2

)
+

cosh

(
2𝑆ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝑐𝑘∗𝒂}

𝜎2

))
. (70)

Moreover, we have cosh(𝑥) + cosh(𝑦) =
2 cosh(𝑥+𝑦

2 ) cosh(𝑥−𝑦
2 ), and using the fact that

𝑐𝑘 + 𝑐∗𝑘 = 2ℜ{𝑐𝑘} and 𝑐𝑘 − 𝑐∗𝑘 = 2𝑗ℑ{𝑐𝑘}, (70) is
rewritten as follows:

𝐷𝜶(𝑛) = 4
∑
𝑐𝑘∈𝒞

exp

{
−𝑆2𝑀 ∣𝑐𝑘∣2

𝜎2

}
×

cosh

(
2𝑆ℜ{𝑐𝑘}ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝒂}

𝜎2

)
×

cosh

(
2𝑆ℑ{𝑐𝑘}ℑ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝒂}

𝜎2

)
, (71)

= 4
2𝑝−1∑
𝑖=1

2𝑝−1∑
𝑘=1

exp

{
−𝑆2𝑀((2𝑖− 1)2 + (2𝑘 − 1)2)𝑑2𝑝

𝜎2

}
×

cosh

(
2𝑆(2𝑖− 1)𝑑𝑝ℜ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝒂}

𝜎2

)
×

cosh

(
2𝑆(2𝑘 − 1)𝑑𝑝ℑ{𝒚(𝑛)𝐻𝑒𝑗𝜙𝒂}

𝜎2

)
. (72)

Finally, after splitting the two sums in (72), we obtain the
expression of 𝐷𝜶(𝑛) given by (15).

APPENDIX C - PROOF OF THE INDEPENDENCE OF U(N)
AND V(N)

We have:

𝑈(𝑛) = 2 ℜ{𝑒𝑗𝜙 𝒚(𝑛)𝐻𝒂},
𝑉 (𝑛) = 2 ℑ{𝑒𝑗𝜙 𝒚(𝑛)𝐻𝒂}.

Since 𝒚(𝑛) = 𝑆 𝑒𝑗𝜙 𝑥(𝑛) 𝒂+𝒘(𝑛), we show that:

𝑈(𝑛) = 2𝑆𝑀ℜ{𝑥(𝑛)}+ 𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂+ 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛), (73)

𝑉 (𝑛) = 𝑗
[
2𝑗𝑆𝑀ℑ {𝑥(𝑛)} − 𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂+ 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛)

]
. (74)

As previously assumed in [8], we take into account
the hypothesis of the independence of ℜ{𝑥(𝑛)}
and ℑ{𝑥(𝑛)}. We also verify that 𝑥(𝑛) and the
couple (𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂 + 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛), 1𝑗 (𝑒

𝑗𝜙𝒘(𝑛)𝐻𝒂 −
𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛))) are independent and that 𝑥(𝑛)∗

and (𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂 + 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛), 1𝑗 (𝑒
𝑗𝜙𝒘(𝑛)𝐻𝒂 −

𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛))) are independent as well. Moreover, the
two terms of the couple (𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂 + 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛) and
1
𝑗 (𝑒

𝑗𝜙𝒘(𝑛)𝐻𝒂 − 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛))) are uncorrelated Gaussian
random variables and therefore independent. Hence, 𝑈(𝑛)
and 𝑉 (𝑛) are independent.

APPENDIX D - PROOF OF (22) AND (23)

We have from (1)

𝒚(𝑛) = 𝑆 𝑒𝑗𝜙 𝒂 𝑥(𝑛) +𝒘(𝑛), 𝑛 = 1, 2, . . . , 𝑁.

Then, we obtain

2𝑒𝑗𝜙 𝒚(𝑛)𝐻𝒂 = 2𝑆𝑀𝑥(𝑛)∗ + 2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂.

Otherwise, 2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂 can be written as

2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂 = 2𝑒𝑗𝜙
𝑀∑
𝑖=1

𝑤𝑖(𝑛)
∗𝑎𝑖,

where 𝑤𝑖(𝑛) and 𝑎𝑖 are the 𝑖,th components of 𝒘(𝑛) and 𝒂,
respectively. Therefore, 2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂 is a zero-mean Gaussian
random variable whose variance is given by

var(2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂) = 4var

(
𝑒𝑗𝜙

𝑀∑
𝑖=1

𝑤𝑖(𝑛)
∗𝑎𝑖

)
,

= 4E

{(
𝑀∑
𝑖=1

𝑤𝑖(𝑛)
∗𝑎𝑖

)(
𝑀∑
𝑘=1

𝑤𝑘(𝑛)𝑎
∗
𝑖

)}
,

= 4E

{
𝑀∑
𝑖=1

∣𝑎𝑖∣2𝑤𝑖(𝑛)
∗𝑤𝑖(𝑛)

}
,

= 4

𝑀∑
𝑖=1

E{∣𝑎𝑖∣2}E{𝑤𝑖(𝑛)
∗𝑤𝑖(𝑛)}

= 4𝑀𝜎2.

Therefore, the pdf of the random variable 2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂 is
written as follows

𝑃 [2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂] =
1

4𝜋𝑀𝜎2
exp

{
−∣2𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂∣2

4𝑀𝜎2

}
.(75)

Consequently, we obtain the pdf of the random variable
𝜗(𝑛) = 2 𝑒𝑗𝜙 𝒚(𝑛)𝐻𝒂

𝑃 [𝜗(𝑛)∣𝑥(𝑛)] =
exp

{
− ∣2𝑒𝑗𝜙𝒚(𝑛)𝐻𝒂−2𝑆𝑀𝑥(𝑛)∣2

4𝑀𝜎2

}
4𝜋𝑀𝜎2

,

=
1

4𝜋𝑀𝜎2
exp

{
−𝑈(𝑛)

2 + 𝑉 (𝑛)2

4𝑀𝜎2

}
×

exp

{
−𝑆

2𝑀 ∣𝑥(𝑛)∣2
𝜎2

}
×

exp

{
2𝑆ℜ{𝑒𝑗𝜙𝑥(𝑛)𝒚(𝑛)𝐻𝒂}

𝜎2

}
, (76)
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where 𝑈(𝑛) and 𝑉 (𝑛) are given by (17) and (18), respectively.
Averaging (76) with respect to the symbols 𝑥(𝑛), we obtain
the following result

𝑃 [𝜗(𝑛);𝜶] =
1

4𝜋𝐿𝑀𝜎2
exp

{
−𝑈(𝑛)2 + 𝑉 (𝑛)2

4𝑀𝜎2

}
𝐷𝜶(𝑛),

(77)

where 𝐷𝜶(𝑛) is given by (12). We also have from (15) that
𝐷𝜶(𝑛) is factorized as follows:

𝐷𝜶(𝑛) = 4𝐹𝜶(𝑈(𝑛))𝐹𝜶(𝑉 (𝑛)), (78)

where

𝐹𝜶(𝑡)=

2𝑝−1∑
𝑖=1

exp

{
−𝑆2𝑀(2𝑖− 1)2𝑑2𝑝

𝜎2

}
cosh

(
(2𝑖− 1)𝑑𝑝𝑆𝑡

𝜎2

)
.

Therefore, from (15), (21) and (77), we obtain the expres-
sions of 𝑃 [𝑈(𝑛);𝜶] and 𝑃 [𝑉 (𝑛);𝜶] given by (22) and (23),
respectively.

APPENDIX E - DERIVATION OF 𝑈(𝑛) AND PROOF OF THE

INDEPENDENCE OF 𝑈(𝑛) AND 𝑧(𝑛)

We have:

𝑈(𝑛) =
∂�̇�(𝑛)

∂𝜃
= 2ℜ{

𝑒𝑗𝜙 𝒚(𝑛)𝐻 �̈�
}
.

Using 𝒚(𝑛) = 𝑆 𝑒𝑗𝜙 𝑥(𝑛) 𝒂+𝒘(𝑛), we show that:

𝑈(𝑛) = 𝑆
(
𝑥(𝑛)∗𝒂𝐻 �̈�+ 𝑥(𝑛)�̈�𝐻𝒂

)
+

𝑒𝑗𝜙𝒘(𝑛)𝐻 �̈�+ 𝑒−𝑗𝜙�̈�𝐻𝒘(𝑛). (79)

Then, replacing 𝑥(𝑛) by 𝑈(𝑛)−𝑗𝑉 (𝑛)
2𝑀𝑆 − 𝑒−𝑗𝜙 𝒘(𝑛)𝐻𝒂

𝑀𝑆 in (79)
and using the identity �̈�𝐻𝒂+𝒂𝐻�̈�+2∣∣�̇�∣∣2 = 0 derived from
∣∣𝒂∣∣2 =𝑀 , we obtain:

𝑈(𝑛) = −∣∣�̇�∣∣2
𝑀

𝑈(𝑛) +
𝑗

2𝑀

(
𝒂𝐻�̈�− �̈�𝐻𝒂

)
𝑉 (𝑛) + 𝑧(𝑛),

with

𝑧(𝑛) = 𝑒𝑗𝜙𝒘(𝑛)𝐻 �̈�+ 𝑒−𝑗𝜙�̈�𝐻𝒘(𝑛)−
1

𝑀

(
𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂𝒂𝐻�̈�+ 𝑒−𝑗𝜙𝒂𝐻𝒘(𝑛)�̈�𝐻𝒂

)
.

By denoting 𝑧′(𝑛) = 𝑒𝑗𝜙 𝒘(𝑛)𝐻𝒂 + 𝑒−𝑗𝜙 𝒂𝐻𝒘(𝑛) and
𝑧′′(𝑛) = 𝑒𝑗𝜙 𝒘(𝑛)𝐻 �̈�+ 𝑒−𝑗𝜙 �̈�𝐻𝒘(𝑛), we verify that 𝑧(𝑛),
𝑧′(𝑛) and 𝑧′′(𝑛) are zero-mean Gaussian distributed with

E {𝑧′(𝑛)𝑧(𝑛)} = E {𝑧′(𝑛)𝑧′′(𝑛)} −
1

𝑀
E
{
𝑧′(𝑛)(𝑒𝑗𝜙𝒘(𝑛)𝐻𝒂𝒂𝐻�̈�+

𝑒−𝑗𝜙 𝒂𝐻𝒘(𝑛)�̈�𝐻𝒂)
}
,

= −2∣∣�̇�∣∣2 𝜎2 − 1

𝑀
(−2𝑀 ∣∣�̇�∣∣2 𝜎2)

= 0.

Consequently, 𝑧′(𝑛) and 𝑧(𝑛) are independent random vari-
ables. Since ℜ{𝑥(𝑛)} and 𝑧(𝑛) are also independent, 𝑈(𝑛)
and 𝑧(𝑛) are independent.

APPENDIX F - PROOF OF (33)

We have:

E
{
𝑈(𝑛)𝛿𝜶,1 (𝑈(𝑛))

}
= −∣∣�̇�∣∣2

𝑀

∫ +∞

−∞
𝑈(𝑛)𝛿𝜶,1 (𝑈(𝑛))×
𝑃 [𝑈(𝑛);𝜶]𝑑𝑈(𝑛),

where∫ +∞

−∞
𝑈(𝑛)𝛿𝜶,1 (𝑈(𝑛))𝑃 [𝑈(𝑛);𝜶]𝑑𝑈(𝑛) =

𝑆𝑑𝑝√
𝜋𝑀2𝑝𝜎3

×
2𝑝−1∑
𝑖=1

𝑒−
𝑀𝑆2𝑑2𝑝(2𝑖−1)2

𝜎2 (2𝑖− 1)Γ(𝑖)
𝜶 , (80)

with

Γ(𝑖)
𝜶 =

∫ +∞

−∞
𝑈(𝑛) 𝑒

−𝑈(𝑛)2

4𝑀𝜎2 sinh

(
(2𝑖− 1)𝑑𝑝𝑆

𝜎2
𝑈(𝑛)

)
𝑑𝑈(𝑛),

= 4𝑀𝑆𝜎
√
𝜋𝑀𝑑𝑝(2𝑖− 1) exp

{
𝑀𝑆2𝑑2𝑝(2𝑖− 1)2

𝜎2

}
. (81)

Hence, injecting (81) in (80) we obtain:

E
{
𝑈(𝑛)𝛿𝜶,2 (𝑈(𝑛))

}
= −4∣∣�̇�∣∣

2𝑆2𝑑2𝑝
2𝑝𝜎2

𝐴2,𝑝.

APPENDIX G - OTHER ALGEBRAIC MANIPULATIONS TO

DERIVE THE NDA FIM

Using the regularity condition

∂

∂𝛼𝑘

∫
𝑃 [𝒚(𝑛);𝜶]𝑑𝒚(𝑛) =

∫
∂𝑃 [𝒚(𝑛);𝜶]

∂𝛼𝑘
𝑑𝒚(𝑛),

which is fulfilled for any finite mixtures of Gaussian distri-
butions, we have E

{
∂ ln(𝑃 [𝒚(𝑛);𝜶])

∂𝜎

}
= 0. Furthermore, we

have

E

{
∂ ln (𝑃 [𝒚(𝑛);𝜶])

∂𝜎

}
= −2𝑀

𝜎
+

2

𝜎3
E
{∣∣𝒚(𝑛)∣∣2}+

2E

{
∂ ln (𝐹𝜶(𝑈(𝑛)))

∂𝜎

}
.

Thus, we obtain:

E
{∣∣𝒚(𝑛)∣∣2} =𝑀 𝜎2 − 𝜎3 E

{
∂ ln (𝐹𝜶(𝑈(𝑛)))

∂𝜎

}
.

This identity enables us to derive the term [𝑰NDA
1 (𝜎, 𝑆)]1,1.

To derive [𝑰NDA
2 (𝜙, 𝜃)]1,2, we show that �̇�(𝑛), 𝑉 (𝑛) and

𝑈(𝑛) are independent and hence we have:

E
{
�̇�(𝑛)𝑉 (𝑛)

}
= −𝑗�̇�𝐻𝒂

(
2𝑆2 𝑀 + 2 𝜎2

)
.

Moreover, we consider

�̇� (𝑛) =
∂𝑉 (𝑛)

∂𝜃
= 2ℑ{𝑒𝑗𝜙𝒚(𝑛)𝐻 �̇�} =

𝑗�̇�𝐻𝒂

𝑀
𝑈(𝑛) + 𝑟(𝑛),

with

𝑟(𝑛) =
𝑗

𝑀
(𝑒𝑗𝜙 𝒘(𝑛)𝐻𝒂𝒂𝐻�̇�− 𝑒−𝑗𝜙 �̇�𝐻𝒘(𝑛)�̇�𝐻𝒂)−

𝑗(𝑒𝑗𝜙 𝒘(𝑛)𝐻 �̇�− 𝑒−𝑗𝜙 �̇�𝐻𝒘(𝑛)).

In addition, it can be seen that 𝑟(𝑛) is zero-mean Gaussian
distributed with E{𝑧(𝑛)𝑟(𝑛)} = 0.
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