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Abstract—In this paper, we derive for the first time the an-
alytical expressions of the exact Cramér–Rao lower bounds
(CRLBs) of the carrier frequency and the carrier phase from
square quadrature amplitude modulated (QAM) signals, as-
suming the noise power and the signal amplitude to be completely
unknown. The signal is assumed to be corrupted by additive
white Gaussian noise (AWGN). The main contribution of this
paper consists in deriving the analytical expressions for the
non-data-aided (NDA) Fisher information matrix (FIM) for
higher-order square QAM-modulated signals. We prove that the
problem of estimating the synchronization parameters is sepa-
rable from the one of estimating the signal and the noise powers
by showing that the FIM is block diagonal. Besides, we show
analytically that the phase CRLB is higher than the frequency
CRLB, implying that it is much easier to estimate the frequency
than the distortion phase. It will be seen that the CRLBs differ
widely from one modulation order to another in the medium
SNR range. The newly derived expressions corroborate previous
attempts to numerically or empirically compute the considered
CRLBs as well as their asymptotical expressions derived only in
special SNR regions.

Index Terms—CRLB, MCRLB, NDA estimation, phase and fre-
quency estimation, QAM, synchronization.

I. INTRODUCTION

Q UADRATURE amplitude modulation (QAM) is a
relevant technique to convey data in modern digital
communications. Because the number of its transfer

constellation points remains high, it is possible to transmit
more bits per every position change. In this context, coherent
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receivers must in practice compensate for the phase and the
frequency offsets introduced by the channel using reliable
estimation techniques. These techniques are usually derived
assuming the signal amplitude and the noise power to be
either perfectly estimated or absolutely known at the receiver.
Roughly speaking, they can be mainly categorized into two
major categories: data-aided (DA) and non-data-aided (NDA)
estimators. In DA estimation, a priori known symbols are
transmitted to assist the estimation process. However, in the
NDA mode, the required parameters are blindly estimated
assuming the transmitted symbols to be completely unknown.
So far, many DA and NDA phase and frequency estimators
[2]–[4] have been reported in the literature where a given
unbiased estimator is usually said to outperform another one,
over a given SNR range, if it exhibits a lower variance. In this
context, it has been extremely useful in practice to determine a
common lower bound on the variance of unbiased estimators.
This bound serves mainly as a benchmark to evaluate the
achievable performance on the estimation of a given parameter.

The Cramér–Rao lower bound (CRLB) meets this require-
ment and is often used in signal processing. However, due to the
mathematical difficulty of the exact CRLB’s analytical deriva-
tion, several Cramér–Rao like bounds have been proposed such
as the asymptotic CRLB (ACRLB) [5], [6] and the modified
CRLB (MCRLB) [7]. The ACRLB of the phase and frequency
estimates, which refers to the approximate expression for the
exact CRLB but only for sufficiently high or low SNR values,
was investigated in [5], [6]. The MCRLB is another bound
which is simpler to evaluate but looser than the exact (true)
CRLB, especially in the low-SNR region. The MCRLB for
scalar parameter estimation was firstly introduced and derived
for synchronization parameters in [7], where the separate esti-
mation of the carrier frequency, the carrier phase and the time
epoch was considered. The MCRLB was extended to vector
parameter estimation in [8] where it was derived for the joint
estimation of the carrier frequency, the carrier phase and the
symbol epoch of a linearly-modulated signal, but assuming the
signal amplitude and the noise power to be perfectly known. In
practice, however, the latter two parameters are unknown to the
receiver and need to be estimated as well.

On the other hand, it is well known that the MCRLB is a
good approximation of the exact CRLB only at high SNR levels
and that it becomes significantly loose at low and moderate
SNRs. Therefore, without the knowledge of the exact CRLB in
the latter SNR regions, it is impossible to evaluate and com-
pare the accuracy of a given unbiased NDA estimator with the
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fundamental performance limit. Consequently, several reported
works [9], [10] and the references therein dealt with either the
empirical/numerical computation or the analytical derivation of
the exact CRLB of the synchronization parameters, depending
on the SNR region. In fact, for QAM signals, the CRLBs for
the joint phase and frequency estimation were numerically com-
puted, from very complex expressions, at low SNR values and
empirically evaluated at moderate and high SNRs using Monte
Carlo evaluation [9]. For PSK signals, however, using a Taylor
series expansion of the log-likelihood function, approximate an-
alytical expressions for the carrier phase and frequency exact
CRLBs were derived in [10], but only in the low-SNR regime
(i.e., ACRLB). More so, in these two works [9], [10], the noise
power and the signal amplitude were also considered as per-
fectly known. The closed-form expressions of the exact CRLBs
pertaining to the joint estimation of the carrier phase, the car-
rier frequency, the signal amplitude and the noise power were
recently derived by Delmas in [11], but only in the particular
cases of BPSK/MSK and QPSK transmissions. However, con-
sidering higher-order QAM constellations, which are and will
be widely used in current and future high-speed communica-
tion technologies, there are no closed-form expressions for the
exact CRLBs of the carrier phase and frequency offset NDA
estimates. Thus, the new contribution embodied by this paper
will be the derivation of the analytical expressions for the NDA
CRLBs of the considered synchronization parameters from any
square QAM waveform over AWGN channels by further as-
suming the signal amplitude and the noise power to be com-
pletely unknown. Our new expressions generalize the elegant
expressions recently derived in [11] from the BPSK/MSK and
QPSK cases to higher-order square QAM signals. Besides, we
prove that we are actually dealing with two disjoint problems re-
garding the estimation of the carrier frequency and phase offsets,
on one hand, and the estimation of the signal amplitude and the
noise power on the other hand. The newly derived expressions
are of a great value in that they allow to quantify and analyze the
achievable performance on the carrier frequency and the carrier
phase NDA estimation from square QAM waveforms.

The rest of this paper is organized as follows. In Section II, we
introduce the system model that will be adopted throughout the
article. In Section III, we derive the closed-form expressions for
the different FIM elements and the corresponding NDA CRLBs
of any square QAM modulated signals. Some graphical repre-
sentations of the newly derived expressions and discussions will
be presented in Section IV. Finally, concluding remarks will be
drawn out in Section V.

II. SYSTEM MODEL

Consider a traditional digital communication system broad-
casting and receiving any square QAM-modulated signal. The
channel is supposed to be of a constant gain coefficient over
the observation interval. We assume a received signal which is
AWGN-corrupted with noise power . Assuming perfect time
synchronization, the received signal at the output of the matched
filter can be modelled as a complex signal as follows:

(1)

where, at time index is the transmitted symbol and
is the corresponding received sample. The noise component

is modelled by a zero-mean complex Gaussian random
variable with independent real and imaginary parts, each of
variance . is the total number of received samples in
the observation interval. Moreover, the transmitted symbols are
assumed to be independent and equiprobable.1 The parameters

and are the deterministic unknown carrier phase, carrier
frequency and signal amplitude, respectively. Furthermore, in
order to derive standard lower bounds, the constellation energy
is supposed to be normalized to one, i.e., where

and refer to the statistical expectation of any random
variable and the module of any complex number, respectively.
Denoting the transpose operator by the superscript , we define
the following unknown parameter vector:

(2)

The signal-to-noise ratio (SNR) of the system is defined as

(3)

We mention that, throughout this paper, denotes any random
variable while denotes its realization. Matrices and vec-
tors will be represented by bold upper and lower case letters,
respectively. and will also refer to the ex-
pectation with respect to any univariate random variable and
any bivariate random variable , respectively. We will
also denote by the complex number that verifies .
Moreover, the operators , and return the con-
jugate, the real, and the imaginary parts of any complex number,
respectively.

III. DERIVATION OF THE PARAMETERS’ NDA CRLBS IN

SQUARE QAM TRANSMISSIONS

In this section, we derive the analytical expressions of the
exact NDA CRLBs of the considered synchronization parame-
ters when the unknown transmitted signal is square QAM-mod-
ulated and AWGN-corrupted. This means that the transmitted
symbols are assumed to be drawn from any -ary square QAM
constellation, i.e., . As shown in [12],
the CRLB for vector parameter estimation is given by

(4)

where is defined in (2) and is the Fisher information ma-
trix (FIM) whose entries are defined as

(5)

where is the random variable whose realization is
and

is the probability density function (pdf) of parameterized
by when the transmitted symbols are completely unknown
(no training sequence). Usually, the derivation of the NDA
CRLB involves tedious algebraic manipulations. These mainly
consist in the derivation of the FIM elements which are often

1Note that, in this paper, we are dealing with stochastic CRLBs since the
transmitted sequence is assumed random.
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numerically tackled for higher-order modulations. However, in
this paper, we are able to derive for the first time their analytical
expressions in case of square QAM transmissions providing,
thereby, the analytical expressions of the considered NDA
CRLBs.

In fact, under the assumptions made so far and for any -ary
QAM constellation (i.e., for arbitrary integer ),
it can be seen that the pdf of the received sample parame-
terized by , in the NDA mode, is given by:

(6)

where, referring to the constellation alphabet by is
given by

(7)

It is seen for (7) that the major advantage offered by the square
QAM constellations is that can be factorized, making
it possible to obtain simpler analytical expressions, as a function
of the true SNR, , and the modulation order,2 , for the FIM el-
ements given by (5). Indeed, when for any , we
have where

is the intersymbol distance in the I/Q plane. Recall that,
in order to derive standard CRLBs, the square QAM constel-
lation energy is always supposed to be normalized to one, i.e.,

. Therefore, is derived using the following
formula:

(8)

which yields the following result:

(9)

To begin with, we show in Appendix A that is factorized
as follows3:

(10)

where and are defined as

(11)

(12)

2The actual modulation order is� � � but we refer to it as � in this paper,
for simplicity.

3Note that similar factorization was also used in [13] in the framework of
NDA SNR estimation, but in the absence of the frequency offset. This new fac-
torization approach is exploited differently in this paper in the presence of im-
perfect frequency synchronization.

and is given by

(13)
Then, injecting (10) in (6), it can be shown that can
be factorized as follows:

(14)

Moreover, since the transmitted symbols are assumed to be in-
dependent, then the corresponding AWGN-corrupted received
samples are independent and the pdf of the received vector

, parameterized by , is
given by

(15)

Finally, the log-likelihood function of the received vector is
given by

(16)

Therefore, due to the new factorization of the received sam-
ples pdf in (15), the log-likelihood function in (16) involves the
sum of two analogous terms. This reduces the complexity of the
derivation of its second partial derivatives and ultimately their
expected values.

Then, we show that and (whose realizations are
and , respectively) are two independent and identically
distributed random variables. This interesting property will
be henceforth used to derive all the expectations. Indeed, ex-
ploiting the fact that , it can be
shown that , given by (14), can be written as follows:

(17)

where

(18)

(19)

Moreover, since
and since is assumed to be
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deterministic, we have and
therefore it follows from (17) that

(20)

Hence, the joint distribution of and is factorized into their
elementary pdfs and, consequently, these are two independent
random variables which are identically distributed according to
(18) and (19).

Now, we partition the parameter vector into
two parameter vectors and , and we
show that the FIM, , is block-diagonal structured. In fact,
it can be seen from (16) that averaging
with respect to yields the following result:

(21)

In addition, we have

(22)

(23)

where

(24)

We note also that averaging with respect to the univariate com-
plex random variable is equivalent to averaging with respect
to the bivariate real random variable , i.e.,

. Therefore, using these properties and injecting
(22) and (23) in (21), we obtain the following result:

(25)

Furthermore, it can be seen from (11) and (12) that4

. Consequently, we obtain
the following result:

(26)

4This is because the transmitted symbols are assumed equally likely drawn
from a symmetric constellation and the noise is zero-mean. This implies that
������� � ������� � �.

More generally, we show that the expected values of the second
derivatives with respect to an element of and an element of

are all equal to zero. This can be formally written in the
following succinct form:

(27)

Thus, the FIM associated with the square QAM modulated sig-
nals has a block diagonal structure:

(28)

where is the FIM pertaining to the NDA estimates of the
carrier frequency and phase offsets, and is the FIM asso-
ciated with the unknown nuisance parameters. Due to the block
diagonal structure of the global FIM, , the two parameter
vectors and are decoupled. Hence, we prove here, for
the first time, over QAM transmissions, that we deal with two
separate problems regarding the estimation of the synchroniza-
tion parameters on one hand and the estimation of the signal am-
plitude and the noise power on the other. Therefore, the NDA
CRLBs of the phase and frequency estimates (which correspond
to the first and the second diagonal elements of ) do not
involve the elements of . Hence, we conclude that ren-
dering the signal amplitude and the noise power unknown does
not affect the ultimate estimation error of the synchronization
parameters. Therefore, the existing synchronization algorithms
that were derived assuming the perfect knowledge of these two
nuisance parameters ( and ) will ultimately exhibit the same
performance, in practical scenarios where their perfect estima-
tion/knowledge is much easier said than done. Moreover, al-
though the block diagonal structure of the global FIM allows
the derivation of the frequency and phase NDA CRLBs, even
without deriving , we refer the reader to [13] for the ex-
pression of which was derived in the framework of SNR
estimation. Thus, in the sequel, we will only derive the elements
of the matrix which allows the derivation of the CRLBs
for the synchronization parameters of interest. To that end, we
will only detail the derivation of the first diagonal element of

, for the sake of briefness, and the derivation of its re-
maining entries follows readily in the same way. In fact, since

and are identically distributed, it can be shown that

(29)
To derive the expression of , we
need to derive the second derivative of with respect
to as follows:

(30)

where is given by (24) and is defined as

(31)
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Hence, straightforward algebraic manipulations yield the fol-
lowing result:

(32)

Next, for convenience, we will use the following ones:

(33)

(34)

Thus, averaging (32) with respect to and using the fact that
and are independent, we obtain

(35)

After deriving the different expectations involved in (35), as de-
tailed in Appendix B, we obtain the final expression of the first
diagonal element of as follows:

(36)

where and are defined as

(37)

(38)

with

(39)

(40)

Then, using equivalent manipulations to derive the other ele-
ments of , we obtain the following result:

(41)

We notice from (41) that the FIM associated with the synchro-
nization parameters, , depends on the time index .
Hence, we have different loose bounds as varies. We are
interested in the tightest (highest) bound which can be shown
to be achieved by choosing in the middle of the observation
interval. Hence, when the joint estimator is analyzed relative to
the middle of the observation interval (i.e., ),

becomes diagonal and the frequency and phase pa-
rameters are decoupled. In this case, after inverting , we
obtain the closed-form expressions for the CRLBs of the joint
estimation of the parameters as follows:

(42)

(43)

(44)

(45)

Note that the expressions of the MCRLBs of the frequency and
phase estimates given by

(46)

(47)

were earlier derived in [8] for any linearly-modulated signal
assuming the signal amplitude and the noise to be perfectly
known. We emphasize, however, that these expressions are also
applicable in our model where we assume the signal amplitude
and the noise power to be unknown nuisance parameters. In-
deed, as warranted by the block-diagonal structure of the FIM
in (28), these two parameters are decoupled from the unknown
phase and frequency.

We also mention that the newly derived expressions in
(42) to (45) allow the immediate evaluation of the frequency
and phase CRLBs, contrarily to the very complex approach
earlier introduced in [9]. Besides, we note from (43) and
(45) that the CRLBs of the carrier frequency and the carrier
phase are proportional to their MCRLBs within the same
factor . This means that rendering the
symbols completely unknown affects the ultimate estimation
accuracy of these two parameters in the same way. We note also
that this common factor depends only on the modulation order
and the SNR. In the next section, this factor will be shown by
simulations to converge asymptotically to 1 versus the SNR,
regardless of the modulation order, thereby confirming that the
MCRLB is a good approximation of the CRLB at high SNRs.

Finally, it is worth noting that the analytical expressions for
the CRLBs as a function of the true SNR, established in (42) to
(45), generalize the elegant CRLB expressions derived in [11]
for a QPSK constellation to higher-order square QAM modula-
tions. In fact, it can be verified that the closed-form expressions
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Fig. 1. CRLB���/MCRLB��� = CRLB���/MCRLB��� versus SNR.

of the FIM derived in [11, eqs. (3)–(6)] for QPSK signals cor-
respond to the special case of in the general expressions
derived in this paper.

IV. GRAPHICAL REPRESENTATIONS

In this section, for different modulation orders and for each
parameter, we provide graphical representations of the CRLB to
the MCRLB ratio5 in Fig. 1 and of the CRLBs in Figs. 2 and 3.
The window observation size is set to .

Beforehand, we note that the even integrand function
involved in (38) takes extremely small values as

increases. Its integral over can be therefore ac-
curately approximated by a finite integral over a finite support

, for which the Riemann integration method (simple
summation) can be adequately used. In our simulations, it
should be noted that and a summation step of 1
provided very accurate values for the infinite integral and that
the CRLB curves obtained in this paper are identical to those
previously presented in [9]. In fact, as shown in Fig. 1, it can
be verified that our analytical expressions for the CRLB to the
MCRLB ratios and their numerical and empirical values com-
puted previously in ([9], Fig. 2) are in very good agreement for
the considered constellations (QPSK, 16-QAM and 64-QAM
signals).

Moreover, from Fig. 1, we notice that at low SNR values the
MCRLB is a looser bound compared to the true CRLB. In fact,
for relatively large observation window sizes ( in our
case), the MCRLB almost equals the DA CRLB (known data
sequence), which is itself known to be smaller than the NDA
CRLB (unknown data sequence). Whereas at high SNR values,
we notice that the MCRLB is tightly close to the CRLB as their
ratio converges asymptotically to 1. Consequently, as the

5As seen from (43) and (45), the ratio of the CRLB to the MCRLB is the same
for the phase and the frequency and is hence plotted in Fig. 1 for both.

Fig. 2. CRLB��� versus SNR when � � ���.

Fig. 3. CRLB��� versus SNR when � � ���.

CRLBs and the MCRLBs coincide in this SNR region, it is more
interesting to use the latter as a benchmark to evaluate the per-
formance of unbiased estimators at high SNR values. As de-
picted in Figs. 2 to 3, we notice indeed that the CRLBs for dif-
ferent modulation orders coincide at high SNR values, as the
MCRLBs themselves do not depend on the modulation order,
as shown in (46)–(47).

V. CONCLUSION

In this paper, we derived for the first time the analytical
expressions of the NDA CRLBs of the carrier frequency and
phase offsets from square QAM signals. The signal and noise
powers were considered as unknown nuisance parameters and
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we confirmed that their perfect knowledge does not bring any
additional information regarding the estimation of the consid-
ered synchronization parameters. These lower bounds serve as
benchmarks for the achievable performance of actual unbiased
estimators. We confirmed that the MCRLB is a good approx-
imation of the true CRLB in the high-SNR region. Therefore,
using the MCRLB in this SNR region is more interesting since
it is simpler to evaluate. Furthermore, we showed that the
frequency and the phase CRLBs computed using our analytical
expressions are identical to those computed empirically or
numerically in [9]. Finally, our proposed analytical expressions
coincide with those recently derived in closed-form, but only
for QPSK signals [11], thereby providing an elegant gener-
alization to arbitrary square QAM-modulated transmissions,
so timely for the understanding of fundamental limits on the
estimation accuracy of key channel parameters in today’s and
future high-data-rate transmission applications.

APPENDIX A
PROOF OF THE FACTORIZATION OF IN (10)

Denoting by the subset of the alphabet points that lie in the
top-right quadrant of the constellation, i.e.,

, we have
and we rewrite (7) as follows:

(48)

Then using the fact that , we obtain

(49)

Moreover, we have
, and using the fact

that and , (49) is rewritten
as follows:

(50)

Now using the fact that
, the term is rewritten as fol-

lows:

(51)

Finally, splitting the two sums in (51), it can be shown that
is factorized as follows:

(52)

where and and are defined in (11), (12), and
(13), respectively.

APPENDIX B
PROOF OF (36)

We have

(53)

Recall that , and hence we obtain

(54)

Likewise, averaging with respect to given by
(18) and inverting the sum and the integral signs, we are
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able to derive and
as follows:

(55)

(56)

(57)

We simplify (57) by changing by and we obtain the
following result:

(58)

where and are defined in (37) and (38) respectively.
Then we inject (54), (55), (56) and (58) into (35) and we obtain:

(59)

Finally, plugging (59) into (29), the first diagonal element of
follows immediately as

(60)
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