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Abstract�This paper discusses the use of neural networks in 
an underground radio-localization system. In a highly ag-
gressive environment such as mines, reliability and robust-
ness are essential to any operational system. Using UWB as 
the physical wireless propagation medium and combined 
with fingerprinting-geolocation and neural networks, this 
work tends to overcome many of the problems encountered 
in indoor environments. Full description of the system and 
the adopted approach will help accentuate the role of neural 
networks in improving the overall performance. Moreover a 
comparison between MLP and RBF performance is pre-
sented, providing a clear evidence of the role and impor-
tance of the neural networks in offering good accuracy and 
precision to the final system.  

Index Terms�Indoor localization, LOS, NLOS, fingerprint-
ing-localization, ultra-wide-band (UWB), impulse response 
(IR), neural networks (NN), multi-layer perceptron (MLP), 
radial basis functions (RBF). 

I.  INTRODUCTION

In the last decade, and with the improvement in neural 
networks on both theoretical and hardware levels, a lot of 
effort was made for introducing them into practical appli-
cations. As a result, neural networks have been adopted in 
many systems. In this work, we try to benefit from neural 
network theory and capabilities in order to investigate the 
feasibility of an underground localization system. An 
emerging service with many domains of applications 
[1][2], indoor localization, nevertheless faces many chal-
lenges that have to do basically with the surroundings and 
the propagation properties of electromagnetic waves in 

those environments. 
The primary reason for this work is security in a min-

ing industry that is considered one of the most dangerous 
and hazardous professions with a very aggressive envi-
ronment. Additional applications would involve the use 
of the system in an efficient environment control scheme 
(energy, proper lighting, ventilation...) One major chal-
lenge in such environments (as in the case of indoor lo-
calization) is the absence of line of sight (LOS), which 
renders the typically used information like the RSS, 
TOA, or TDOA incorrect or not accurate because their 
values no longer echo the real distances travelled by the 
EM wave [3][4][5]. Another challenge is due to the very 
nature of the galleries that deteriorate the signal because 
of the multipath effect. In fact, underground surfaces are 
very rough, which causes severe multipath and fast fading 
phenomena and this represents the second major problem 
for wireless communication of any type and more impor-
tantly for localization that relies on time or power infor-
mation. A brief description of this issue will be presented 
thereafter when discussing the localization technique of 
choice. 

In addition to the previous considerations, many prac-
tical factors can and must be thought of when choosing 
the final system; factors like the total cost of the system, 
its coverage capabilities, its interoperability with other 
existing systems and techniques, etc. One should finally 
note that the accuracy and precision of the overall system 
are the key evaluation features. 

In accordance with what have been presented in this 
introduction, this paper will present a location finding 
system that is based on UWB and neural networks com-
bined together in order to overcome many of the dis-
cussed problems. After a description of the chosen local-Manuscript received December 1, 2008; revised March 6, 2009; ac-

cepted April 15, 2009. 
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ization technique, we will elucidate the use of UWB and 
of neural networks. Then a depiction of the conducted 
measurement campaigns and of the different scenarios 
will be provided. Subsequently results will be interpreted 
including an analysis of the overall system performance 
and the importance of neural networks. Finally some con-
cluding remarks will help bring this work to a close, and 
will offer some future perspectives. 

II.  LOCALIZATION TECHNIQUE

As previously mentioned, indoor environments present 
many challenges. Usually, to estimate a location, tradi-
tional systems perform triangulation using one out of 
three possible information parameters: time 
(TAO.TDOA), power (RSS), or angle (AOA). In the first 
case, by assuming EM wave traveling at the speed of 
light and by acquiring the time of flight from three1 dif-
ferent transmitters, we can estimate a point of presence of 
the receiver (user). Nevertheless with the absence of line 
of sight, the time delay will no longer represent the time 
consumed by direct flight. Many other factors contribute 
to this parameter and thus evaluation of the distance is 
erroneous. For the power (RSS) related algorithms, the 
theoretical concept relies on power loss due to travel. 
Therefore, by calculating the received power and compar-
ing it with the transmitted one, the total dissipated power 
can be estimated. Assuming that this power is due to 
path-loss, it is consequently proportional to the distance 
(first order or higher). Here again the absence of line of 
sight and more importantly multipath diversity and the 
numerous reflections due to the irregularities in the archi-
tecture makes the power loss information inaccurate, 
thereby resulting in high errors. Finally it is clear that due 
to NLOS, reverberation, and multipath, the angle of arri-
val cannot convey useful information. This led us to in-
vestigating the fingerprinting localization technique. 

The fingerprinting localization concept is relatively 
new. It has been first proposed for dense urban areas 
tracking systems, and the results were comparable to the 
most advanced and more complicated outdoor localiza-
tion techniques. This technique is based on the notion of 
identifying a specified position by relying on some data 
that can represent this location. More precisely, it has the 
same concept as human fingerprinting. In a given area 
were the system needs to be implemented, different in-
formation can be used to construct a fingerprint that can 
identify different parts of the area [6][7][8]. The tech-
nique consists of two phases: the first comprises the 
choice of the appropriate data to constitute a fingerprint 
and subsequently to collect this information. The second 
phase consists of using the already built database in order 
to find locations in real time by comparing a target re-
lated signature (fingerprint) with the database content [9]. 

A.  UWB Fingerprint

Theoretically any information can be used as part of 
the signature with the limitation that this information is 
consistent, it helps forming a unique signature and it is 

�������������������������������������������������������������

1Additional transmitters provide higher precision. 

reproducible. This led to some works proposing different 
time-based or power-based signatures [9][10]. Here we 
use UWB and try to benefit from its advantages in build-
ing the fingerprint [11][12][13]. UWB allows high time 
resolution at the receiver, which is crucial on every level 
of a localization scheme [14][15]. This would also allow 
a better multipath resolvability [16].  Another feature that 
increases multipath resolvability is the very small cycle 
duration, which gives the receiver enough time between 
successive transmissions to clearly identify different cop-
ies (versions, components) of the same originally trans-
mitted signal. Additionally, the small cycle reduces any 
possible ISI effects. Moreover, the small cycle and high 
multipath resolvability permit higher collection of energy, 
regarded as a gain. Normally in narrow band transmis-
sions, any energy outside of the considered peak is lost. 
This is not the case with UWB, where energy can be 
gathered from different replicas of the same signal
[17],[18],[19], [20],[21]. Another important aspect in the 
choice of UWB is in fact its wide frequency range. In 
indoor environments, frequency selectivity is a typical 
behaviour of the channel. But the very large frequency 
span assures that most or part of the transmitted signal 
will reach the receiver. On the other hand, low frequency 
components tend to be more penetrating and have a better 
chance of overcoming an obstacle that can block the 
channel. 

Subsequently, UWB was selected as the basis of the 
fingerprint where the CIR2 would constitute the origin of 
the different signature components. To this end, multiple 
measurement campaigns have been conducted in the de-
sired environment, each representing a different scenario. 
The accumulated data was afterwards analyzed in order 
to identify a possible fingerprint. A final three-component 
signature was selected, two of which are directly synthe-
sized from the CIR and the third is related to both the 
measurement campaign and neural networks perform-
ance.  

Considering that the received UWB signal is presented 
by: 

( )
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With ( )na t being the path gain, ( )n tτ the path delay, 

and ( )N t the total number of multipath. This represents 

the summation of the different multipath components 
reaching the receiver. All parameters are time dependent 
including the total number of multipath.  

Considering that the channel variations are very slow 
with respect to the pulse repetition rate, the channel can 
then be seen as stationary and the above parameters will 
become time independent. The final received signal pres-
entation would be [12]: 
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2 Channel Impulse Response. 
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where n and
np  identify the different copies of the same 

originally transmitted pulse, ( )h t is the channel impulse 

response, ( )s t is the originally transmitted signal, and 

( )n t is the noise. The IR3 would be: 

1

( ) ( ).                  (4)
N

n n

n

h t a tδ τ

=

= −∑

This IR takes into consideration the multipath phenome-
non, and it can be used to derive many time, power, and 
frequency parameters that specify the characteristics of a 
given channel. The two CIR related signature compo-
nents are derived from this formula: 

1. The total multipath gain is represented by the fol-
lowing formula:�

2

1

.                              (5)
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It is one of the principle components of the IR. To-
tal multipath gain as the name indicates is highly 
related to the multipath phenomenon; consequently 
it is related to the architecture of the environment. 
Moreover, the total multipath gain is one of the ad-
vantageous parameters of UWB due to the previ-
ously discussed reasons concerning power collec-
tion in UWB. This is our first signature component.

2. The excess delay, frequently used to characterize 
the PDP4, is the second chosen parameter, with a 
mathematical representation : 
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Excess delay is in fact the delay of all received 
components relatively to the first received one. 
Moreover it is directly affected by multipath and 
energy loss conditions of the channel.

�

So in addition to the propagation characteristics of UWB 
that help overcome the aggressive environment of a mine, 
the choice of UWB related components of the signature 
further increase the efficiency of the system in that envi-
ronment. Both chosen parameters are related to the multi-
path and to the power loss behaviour of the channel. 

In fact, by using the fingerprinting technique, we are 
no longer tied to any defined propagation model of the 
channel in order to estimate and interpret time and power 
information. We limit our interest to the chosen parame-
ters and their relation with the position of their computa-
tion. Here comes the importance of using Neural Net-
works. MLP’s are known for their ability to estimate a 
given function [22], and to approximate it to a high order 
of accuracy if proper training was conducted. This is dis-
cussed in the following section. 

�������������������������������������������������������������

3 Impulse Response. 
4 Power Delay Profile.

B.  Neural Networks For Fingerprit Interpretation

The theoretical maximum error for a fingerprinting-
based system would be equal to: 

max .                          (7)
2
sepd

e =

with 
sepd  being the distance separating two consecutive 

measurement positions during the dataset building phase. 
We stress the fact that this is a theoretical maximum, be-
cause in real systems, errors have been found to be 
higher. In fact, any small change in the received data can 
lead to an error that is 3 times the theoretical one. But for 
neural networks, due to interpolation capabilities (and 
limited extrapolation) [23], the theoretical error can be 
zero, and as will be shown in the results section, the real 
obtained error is much smaller than those obtained using 
other algorithms. In order for the neural networks to pro-
vide such a performance, we need to find the best archi-
tecture with the most convenient training algorithm. In 
our case, we are not studying the convergence theory of 
neural networks; a trial and error approach has been 
adopted in order to find the best combination of both ar-
chitecture and training. Furthermore, once training has 
been adopted for a given neural network in a given sce-
nario, it does not need to be changed or re-processed dur-
ing the active real-time localization process, and this is 
one of the reasons why we adopted trial and error for 
finding a suitable combination.  

Another benefit to the use of neural networks is their 
ability to combine information and techniques. In data-
base search methods, the system would only use values of 
the fingerprint and find its nearest Euclidian distant entry 
in the database. On the other hand, given the fact that 
neural networks approximate functions, and given the 
fact that the used fingerprint components are to a large 
extent related to delay and power loss which in turn are 
related to distance, the neural network appears to be 
combining both received signal strength (RSS) and time 
delay (TDOA-TDA) based systems. The system can then 
be thought of as using a hybrid technique, but with the 
advantage of not requiring any additional computational 
time or power, and without increasing the complexity of 
the system itself. 

In concordance with the previous statements, it should 
be noted that neural networks would be having an impact 
on both phases of the fingerprinting technique. In the first 
phase, it influences the build-up of the dataset of signa-
tures as well as the signature itself. This is a mutual influ-
ence because the total number of a signature’s compo-
nents would influence the architecture of the neural net-
work starting from the input layer and up. Additionally, 
the training process would vary accordingly. In order to 
give a proof of the importance of the network architecture 
and training process, this work included a comparison of 
two different back propagation networks, namely: an 
MLP5, and an RBF6.  Both will use the same training and 
testing sets, but as will be seen, the final results will be 
�������������������������������������������������������������

5 Multilayer perceptron. 
6 Radial Basis Function.
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dissimilar. The same training process is used for all the 
RBF networks, but different algorithms are used for the 
MLPs in the different scenarios. On the other hand, the 
second phase of the fingerprinting algorithm, really con-
sists of the real-time localization, which in our case 
would be to use the test set in order to validate the per-
formance of the system. 

We should mention that a third component of the sig-
nature, a flag, is included. This flag indicates the good 
functioning of the neural network and will be discussed in 
the section describing the measurement campaigns.  

Finally, our network inputs consist of the three signa-
ture components previously discussed (total multipath 
gain, excess delay, flag), and the outputs are the (x, y) 
coordinates. All additional information on the neural 
networks architecture and learning algorithm will be 
stated when considering the corresponding scenario.

III.  MEASUREMENT SCENARIOS

This work is about underground indoor localization 
and hence the measurement campaigns scheduled to build 
datasets for the proposed system were conducted in an 
underground mine at a level situated 40m beneath the 
surface. Such an environment presents many difficulties 
as for example unlevelled ground that limits mobility of 
the equipment. In order to conduct UWB measurements, 
a network analyzer was used. It would perform frequency 
sweeping over all the bandwidth of choice. The received 
sample is then translated into the time domain using 
IFFT. The measurement equipments included an UWB 
power amplifier at the transmitter and an LNA at the re-
ceiver end, in order to increase the range of the analyzer. 
Additionally, UWB omnidirectional antennas were used. 
Antennas where placed at 1.5m from ground, but due to 
the geology of the environment, most of the time the 
transmitter and the receiver were not at equal heights. All 
measurements were in the band going from 3 GHZ to 10 
GHZ, which is the entire UWB allowable band. During 
each sample measurement, the channel should be station-
ary and in fact due to the very short duration of a sweep 
the channel can be considered as such. Furthermore, in 
order to make the measurement sample as representative 
of the channel as possible, we used averaging over 10 
consecutive sweeps for the same location.  Measurements 
were taken at distances of 1 m apart, following a line 
crossing through the middle of the gallery. This distance 
from the transmitter antenna represents the ‘x’ compo-
nent. On the other hand, two additional measurements are 
conducted at the same ‘x’ but with 1 m meter away to the 
left and to the right of the center measurement in such a 
manner as to cover the width of the gallery. So at the 
same ‘x’ ordinate we have three different measurements 
located at different ‘y’ abscissa values. In order to study 
the performance of the localization system in different 
scenarios, both LOS and NLOS campaigns were con-
ducted. 

For the LOS case, the campaign covered a total dis-
tance of 40 meters after which the received signal became 
too weak so as to provide useful fingerprinting informa-
tion. Furthermore, during the analysis of the final dataset, 

we were constrained to use measurements going only up 
to 36m. “Fig. 1” below shows the topology of the gallery 
and the placement of the measurements.  

Fig.1 LOS measurement campaign. 

The NLOS campaign was conducted in the same con-
dition as for the LOS. Nevertheless, due to the higher 
power loss, it only extended to a distance of 36m after 
which the signal was completely overwhelmed by noise. 
Moreover, during the analysis phase, only measurements 
covering up to 27m proved to be utilizable.

Fig.2 NLOS measurement campaign. 

“Fig. 2” gives an insight into the actual measurement 
placements. In this campaign, the first 6 meters present a 
line of sight and a partial line of sight exists up to 9 me-
ters after which we have a complete absence of sight. 
Furthermore, the ground is unlevelled with a slope of 
more than 6 degrees. 

After the dataset was built, and during the treatment of 
the data, it was realized that due to the structure of the 
gallery combined with the placement of the measure-
ments, some samples had the same ‘y’ abscissa value for 
what is to become different fingerprints. This fact led to a 
deterioration of the learning ability of the neural network. 
In fact this network is exposed to different signatures but 
is supposed to give identical locations for them. More-
over, those similar ‘y’ values are contradictory with the 
uniqueness of the fingerprint concept. In order to over-
come this inconvenience, neural networks theory pro-
poses the use of a sentinel marker. This approach was 
used, where we incorporated an additional third compo-
nent –a flag– to the fingerprint. This flag has one of three 
values {1, 2, and 3}, indicating left, center and right cor-
respondingly. This proved to be very helpful in improv-
ing the performance of the network. 
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IV.  RESULTS AND INTERPRETATION

Usually to evaluate the performance of a localization 
system, there exist two principal parameters, namely: 
accuracy and precision. The first one refers to the differ-
ence between the real and estimated positions; it is usu-
ally the error between the two positions in meters or in 
centimetres. The second parameter is the percentage of 
time at which the given accuracy is respected. In order to 
evaluate our system with respect to both parameters, we 
will present the CDF7 functions of the error, this error 
being the difference between the real and estimated coor-
dinates of the locations. In this way, the graph plots will 
present different accuracies with their relative precisions.  
On the other hand, with the aim of further portraying the 
use of neural networks, their susceptibility to the different 
localization scenarios, and the importance of the training 
algorithms of choice, for each set of results we will indi-
cate the neural network architecture including the number 
of layers and the elements per layer. Then, we will indi-
cate the training algorithm that provided the network with 
the best outcome. It should be reminded that an additional 
comparison of RBF and MLP potentials for our system is 
included. 

GRNN8 (RBF) are used in general to approximate 
functions. They are easier to construct and easier to train 
than the MLPs. In fact, their architecture consists of one 
hidden layer, with radial activation functions. This layer 
has as many elements as the number of inputs, and thus it 
will have the same number of elements for our different 
scenarios. GRNN also has an output layer with linear 
activation functions. This layer also has as many elements 
as the inputs. So in general, this architecture for the 
GRNN networks is the same in all the analysis. 

Normally two sets of results can be analyzed, the error 
for the training data set and the one for the testing data 
set. The first set is seen by the network during the learn-
ing process while the second is only used for testing. 

A.  First Scenario (LOS)

In the case of LOS campaign, the adopted MLP had 2 
hidden layers with respectively ‘8’ and ‘12’ elements. 
The learning algorithm was based on Bayesian regulari-
zation which is normally known for its high generaliza-
tion capabilities. The following figures give the CDF for 
both ‘x’ and ‘y’ coordinates for the training and testing 
values. 

Fig.3: CDF for the error in ‘x’, MLP training, LOS. 

�������������������������������������������������������������

7 Cumulative Distribution Function. 
8 General Regressive Neural Networks.

For the ‘x’ coordinate (as shown in “Fig. 3”), and by 
using the training set to which the network has been pre-
viously exposed, the error is of less than 0.5m accuracy 
for a less than70% precision. 

Fig.4: CDF for the error in ‘x’, MLP testing, LOS. 

The maximum error for this case is of 2.7m for 2% of the 
cases. On the other hand, for the test data (“Fig. 4”) to 
which the network is being exposed for the first time, the 
error is bellow 0.5m for more than 75% of the cases. This 
clearly shows the capability of the network to generalize, 
and further proves that the error obtained for the training 
set is not due to memorization. 
Similar results can be observed for the ‘y’ coordinate in 
“Fig. 5” and “Fig. 6” with an error of 0.5m in 80% of the 
cases for the training and testing data. 

Fig.5: CDF for the error in ‘y’, MLP training, LOS.

Fig.6: CDF for the error in ‘y’, MLP testing, LOS. 

It should be mentioned that the maximum real ‘y’ value is 
26 m in comparison to a 36 m for x. This can partially 
explain the higher precision in ‘y’, but in fact the ratio of 
error to maximum coverage distances is relatively identi-
cal. 

For the GRNN network, the architecture has been dis-
cussed previously but it remains to mention that the 
spread which provided the best results was equal to 
‘0.1524’. 

 The error was larger than the one for the MLP net-
work where in this case the accuracy of 0.5m had a preci-
sion of only 51% for training data. The error was even 
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worse for the real time testing dataset. Another deteriora-
tion found for GRNN is that the maximum error for the 
test dataset is not bound by the maximum error of the 
training phase. “Fig. 7 to 10” below show GRNN results. 

Fig.7: CDF for the error in ‘x’, GRNN training, LOS.

Fig.8: CDF for the error in ‘x’, GRNN testing, LOS. 

Fig.9: CDF for the error in ‘y’, GRNN training, LOS. 

Fig.10: CDF for the error in ‘y’, GRNN testing, LOS. 

B.  Second Scenario (NLOS)

In this case, one can expect less performance com-
pared to the LOS case. In this scenario, the maximum 
distance with analyzable data was 27 m. In fact, for dis-
tances up to 20 m the error was very small and the per-
formance deteriorates significantly between 20 m and 27 
m. 

The MLP network that gave the best results had ‘7’ 
elements in the first hidden layer and ‘12’ in the second 
one. The training algorithm in this case used the scaled 

conjugate gradient (SCG) with a total of 800 iterations. 
The scaled gradient is very efficient in the training proc-
ess. “Fig. 11 through 14” show the CDF’s of the error for 
the different coordinates. 

For data previously seen by the network (training 
data), the system presents an accuracy of 0.2m with a 
74% precision (“Fig.11”). The maximum error is of 
0.79m for 2% of the cases, the medium error is of 
0.1825m, a very good result for NLOS. 

Fig.11: CDF for the error in ‘x’, MLP training, NLOS. 

Fig.12: CDF for the error in ‘x’, MLP testing, NLOS. 

As for the testing set, “Fig.12” shows a degraded per-
formance where it is expected that SCG is less perform-
ing than the Bayesian on the generalization level. The 
accuracy is of 0.5m for 67% precision. This error is, 
however, very close to that of the LOS scenario error. 

Fig.13: CDF for the error in ‘y’, MLP training, NLOS. 

Fig.14: CDF for the error in ‘y’, MLP testing, NLOS. 
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The error in ‘y’ follows the same behaviour as the one 
in ‘x’, with a 0.195m for 80% of the cases (“Fig.13”), and 
a maximum error of 0.59m for 2% for the training set. As 
for the testing set, “Fig. 14” shows an acceptable accu-
racy of 0.5m for a precision of 60%. The maximum error 
in this case is 1.1m for 7%. 

In the case of the GRNN network, having the same ar-
chitecture as previously (LOS case), the spread value 
used here is 0.1456. In this scenario as for the LOS one, 
GRNN does not provide a better performance than the 
MLP. In this case, however, GRNN has better results 
than in the LOS case. 

Fig.15: CDF for error in ‘x’, GRNN training, NLOS 

For the ‘x’ coordinate, the training set presents an error 
of 0.6m for 80% of the cases, the maximum error being 
1.5m with a precision of 2% (“Fig.15”).

Fig.16: CDF for error in ‘x’, GRNN testing, NLOS 

As for the testing set, the values in “Fig. 16” are of 0.6m 
for 60% precision. It is clear that in this scenario, GRNN 
network has a comparable performance to that of the 
MLP. Moreover, in this scenario, the generalization ca-
pabilities of the GRNN are much better than for LOS one 
and this can be seen by looking at the testing set error. 
The results for the ‘y’ coordinate, shown thereafter, fur-
ther support this statement. 

Fig.17: CDF for error in ‘y’, GRNN training, NLOS 

Fig.18: CDF for error in ‘y’, GRNN testing, NLOS 

The results obtained by using training data present an 
accuracy of 0.4m with a precision of 73% (“Fig. 17”). 
The maximum error is 1.5m with 8% of recurrence. On 
the other hand, results obtained by using the testing data 
have a value of 0.65m error for 70% of the time (“Fig. 
18”).  

According to the previous set of results and interpreta-
tions, one can see a small difference between the results 
obtained by using training and testing sets, but the com-
bined performance of both is comparable and even better 
than most of the results found in the literature and espe-
cially for a medium with very high multipath. If we look 
at the results in [7] we see a 25% percentile of 1.92 m, 
which is excessively high when compared to our case of 
less than 0.5m for more than 75% percentile for LOS, we 
should mention here that in [7] they are covering a wider 
area but the maximum covered distance is of around only 
7m more than the 36 meters we covered.  On the other 
hand if we compare our results to those obtained in [10], 
although the authors are using the same system as ours, 
their system performance is lower than ours especially if 
we look at the overall percentiles for error, where the 
authors report an error of less than 2 meters for 80% of 
the cases, we should keep in mind that in [10] the dis-
tance covered was almost twice as ours. We were not able 
to compare our results with any NLOS results because 
both of these reference systems only discuss LOS results.  

The high performance of our proposed system in this 
hostile underground environment is due to the use of 
UWB and neural networks. In fact the use of neural net-
works directly impacts the performance of the entire sys-
tem by allowing a better interpretation of the parameters. 
If we look at the LOS and NLOS cases, although we are 
using the same parameters in order to localize the target, 
the performance is relatively stable, which surpasses clas-
sical systems expectations. In fact, for other systems, a 
degradation of more than 30% is observed for NLOS 
scenarios. Additionally, neural networks provide a better 
performance for the fingerprinting technique, where in 
the classical case and using database search techniques, 
the system extensively deteriorates for new data. This is 
overcome by using the generalization and interpolation 
properties of neural networks. 

V.  CONCLUSION

The overall performance surpasses many of the ex-
pected results for indoor localization. This is mainly due 
to the combination of UWB and neural networks, a com-
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bination that provides better propagation characteristics 
of the wireless transmitted signal, in addition to a better 
interpretation of the signature parameters due to the neu-
ral networks. This way, the system overcomes many of 
the difficulties encountered in such environments. 
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