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Abstract—We propose a new two-stage approach to estimate the
nominal angles of arrival (AoAs) and the angular spreads (ASs)
of multiple locally scattered sources using a uniform linear array
(ULA) of sensors. In contrast to earlier works, we consider both
long- and short-term channel variations, typically encountered in
wireless links. In the first stage, we exploit sources independence
to blindly estimate the channel over several data blocks regularly
spaced by intervals larger than the coherence time but each, short
enough in length, to make time variations negligible within the
block duration. We, thereby, decouple the multisource channel pa-
rameters estimation problem in hand into parallel and indepen-
dent single-source channel parameters estimation subproblems. In
the second stage, for each spatially scattered source, we process the
corresponding sequence of quasi-independent channel realization
estimates as a new single-scattered-source observation over which
we apply Taylor series expansions to transform the estimation of
the nominal AoA and the AS of the corresponding scattered source
into a simple localization of two closely spaced, equi-powered, and
uncorrelated rays (i.e., point sources). To localize both rays, we pro-
pose new accurate and computationally simple closed-form expres-
sions for the mean value of the spatial harmonics and their separa-
tion by means of covariance fitting. An asymptotic performance
analysis is also provided to prove the efficiency of the proposed
estimators. Then, the AS and the nominal AoA of every source
are directly deduced. The whole proposed framework takes ad-
vantage of the capabilities of the preprocessing channel identifi-
cation step (to reduce the noise effect and decouple the estimation
of the channel parameters of every source from the others) and
the new simple and accurate closed-form estimators to accurately
retrieve the channel parameters even in the most adverse condi-
tions, mainly low signal-to-noise ratio (SNR), few sensors, no prior
knowledge of the angular distribution, and closely spaced sources,
as supported by simulations.

Index Terms—Angular spread, closely spaced sources, locally
scattered sources, long/short term wireless channel variations,
nominal angle of arrival, source localization.
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1. INTRODUCTION

N mobile communication systems, the performance of
I source localization algorithms is largely affected by the
multipath phenomenon. Indeed, on the uplink, the energy trans-
mitted by a single source (mobile terminal) reaches the receiver
within a cluster of rays after bouncing from several surrounding
scatterers. This phenomenon has a negative impact on classical
localization algorithms since the point source assumption no
longer holds [1]. In such context, the nominal angles of arrival
(AoAs) and the angular spreads (ASs) (defined as the standard
deviation of angular deviation around the nominal AoA of a
scattered source) are critical parameters in the design of SDMA
systems [2], [3], source localizers [4], and detectors [5].

Local scattering models have been recently investigated in
several works including [1]-[11]. Such models are of particular
interest in suburban areas and macro-cell environments where
scattering is caused by reflectors around the mobile terminals
while the base stations are usually deployed far from scattering.
In [2], [12], and references therein, it has been specified that the
AS values encountered in macro-cell environments are typically
lower than ten degrees. This fact is desirable since it justifies the
recourse to Taylor series expansions to alleviate the complexity
of estimating channel parameters. In contrast to some compu-
tationally complex approaches such as the maximum likelihood
(ML) [6], the dispersed signal parameter estimator (DISPARE)
[7], and the covariance fitting [11], a notable simplification has
been provided in [8]. Therein, the estimation of the AS and the
nominal AoA of a scattered source has been transformed into
the localization of two rays symmetrically positioned around
the nominal AoA. Subsequently, a classical localization algo-
rithm has been used to estimate both “virtual” AoAs and de-
duce the required parameters. The focus in [8] has been on
root-MUSIC [13] which was shown to provide better accuracy
with relatively low computational complexity compared to some
other point-source localization algorithms [14], [15]. Neverthe-
less, it has been established that the performance of such algo-
rithm (which is a polynomial version of the spectral MUSIC
[16]) deteriorates as the angular separation between the sources
of interest decreases [17], [18]. This fact becomes more signif-
icant when few sensors are deployed. Hence, the utilization of
this algorithm to localize both rays (corresponding to a single
spread source) in this context is somehow inappropriate in prac-
tical situations where the receiving end is equipped with few
sensors due to space or cost constraints. In the case of mul-
tiple spread sources, spatial spacing between sources has a key
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effect on ASs and nominal AoAs estimation, as it can be di-
rectly seen when approximating each scattered source by two
virtual rays [8]. Indeed, when the angular separation between
two spread sources decreases, their corresponding virtual rays
become closer and the resulting covariance matrix conditioning
deteriorates leading to severe degradation of the channel param-
eters estimation accuracy.

To model the multipath propagation in the aforementioned
environments, it is commonly assumed that the received sig-
nals result from the superposition of a very large number of
identically distributed and uncorrelated (or more restrictively
independent) frontwaves originating from every transmitting
source [8]. This feature is termed as “incoherent source distri-
bution.” In practical applications, the wireless channel has a
certain coherence time and can be considered as static within
relatively small observation windows. This situation is plau-
sible and has been commonly exploited in several applications
including blind and pilot-signals-based channel estimation
algorithms (at least during the estimation process) [19]-[24],
etc., and to investigate the effect of local scattering on MUSIC
[16] in [1]. On the other hand, earlier works [4]-[11] focusing
on locally scattered sources’ ASs and nominal AoAs estima-
tion supposed that the channel varies at a fast rate (in some
references, e.g., [6], the channel is assumed to vary from one
snapshot to another). To meet such an assumption, one might
choose the sampling period larger than the channel coherence
time. In fact, with an appropriate selection of the sampling
instants, both slow and fast time variations can be exploited to
enhance parameters estimation in the case of multiple locally
scattered sources, as we show in this contribution.

This work is motivated by the need to develop a new simple
and accurate technique that estimates the ASs and the nom-
inal AoAs of multiple locally scattered sources even in adverse
conditions [low signal-to-noise ratio (SNR), few sensors, no
prior knowledge of the angular distribution, and closely spaced
sources]. To this end, we propose a new two-stage approach to
decouple the general problem in hand into independent and par-
allel single-source channel parameters estimation subproblems.
This decoupling is achieved by adding a blind channel iden-
tification preprocessing stage which is performed over several
data blocks regularly spaced by intervals larger than the coher-
ence time but each, short enough in length, to make time varia-
tions negligible within the block duration. In a second stage, for
each spread source, we process the corresponding sequence of
channel realization estimates as a new single-scattered-source
observation over which we apply Taylor series expansions to
transform the estimation of the nominal AoA and the AS of
the corresponding scattered source into the localization of two
closely spaced point sources as it has been suggested in [8]. To
localize both rays, we propose new simple and accurate closed-
form estimators of the mean value of the spatial harmonics and
their separation by means of covariance fitting. An asymptotic
performance of these estimators is also proposed. Finally, we
directly retrieve the AS and the nominal AoA of every source.

This paper is organized as follows. In Section II, we present
a thorough statement of the problem in hand including the data
model, the assumptions, and a description of the short and long-
term (or slow/fast) wireless channel behavior. In Section III, we
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investigate the blind channel estimation preprocessing stage. In
Section IV, we briefly review the Taylor series approximations
that have been commonly used in the context of local scattering.
We also provide some details about the two-ray approximate
data model developed in [8]. In Section V, we detail the new lo-
calization algorithm that applies for the case of two equi-pow-
ered point sources and present a theoretical investigation of its
performance. In Section VI, we present several numerical ex-
amples to illustrate the efficiency of the proposed approach. In
Section VII, we draw out some concluding remarks.

II. PROBLEM STATEMENT AND ASSUMPTIONS

We suppose N narrowband, stationary, ergodic, indepen-
dent, and non-Gaussian sources. Each source is scattered by
a large number of scatterers within its vicinity to generate
L wavefronts. This scenario is practical in the radio com-
munications context where every source models a mobile
terminal surrounded by scatterers [12], [25]. At instant ¢, the
considered sources, represented by an /N-dimensional vector
s(t) = [s1(t)---sn(t)]T, impinge on M sensors yielding an
M -dimensional observation vector x(t) = [z1(t) - - - zar(£)]7.
The channel is then modeled as an M x N matrix H(t), and
x(t) is expressed as

x(t) = H(t) s(t) + b(!) ()

where b(t) = [b1(t)...ba(¢)]T is an unknown noise vector
composed of M Gaussian i.i.d. zero-mean stationary signals
independent of the sources and with variance o7. The L
wavefronts generated from the nth source are impinging from
different directions (énl)1gzg L, assumed to be symmetrically
distributed around the nominal AoA, 6,,, on the sensors array.

Hence, the nth channel matrix column is expressed as [1]-[11]
L ~
b, (t) = yu(t)alfn(t) + O (t)] ()
1=1

where a represents the steering vector whose expression
strongly depends on the geometry of the sensors array. In this
paper, we consider only the case of a ULA. Hence, a(f) is
expressed as

3(6) _ |:1 ej27'rn sin(6) o ejZ(M—l)ﬂ'n sin(ﬁ)]T (3)

where « is the sensors separation in wavelengths, and (-)7
denotes the transpose operator. Typically, we have k = 1/2.
Fig. 1 is an illustration of the data model in presence of two
sources. In the case of an incoherent source distribution with
Rayleigh fading (for a large number of scatterers), the channel
gains (fynl)lglg 1, are assumed to be uncorrelated, zero-mean
complex Gaussian random variables. Actually, v,,; and 0~n1 fully
characterize the [th wavefront generated from the nth source,
and are the realizations of the stochastic processes ~y,, and én
respectively. We also assume as in [8] that 5n 1S zero-mean
and symmetrically distributed with small standard deviation.
As stated earlier, this hypothesis is practical in macrocell
environments. Eventually, we suppose that the nominal AoAs
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Fig. 1. An illustration of the local scattering model; case of two sources and a
ULA of three sensors at the receiver.

(9n)1gn§ N are invariant (time-independent) in all our pro-
cessing, as in [1]-[11]. The latter assumption is plausible if we
suppose that the sources are sufficiently far from the receiver
and slowly moving as in the radio communication environ-
ments. Our objective in this paper is to estimate (0,,)1<n<n
and the ASs (7, )1<n<n Which are the standard deviations of
(an)lgnSN .

In several situations, the mobile terminal’s speed is low
leading the wireless channel spatial properties to be slowly
changing. In other words, the random variables 0,, and v, are
slowly varying. In the bottom of Fig. 2, we see that within
a short data block, the ray’s magnitude can be assumed as
constant. The same slow variations behavior is observed with
the other parameters characterizing the ray. This special feature
of the channel has been exploited in several works including
[19]-[24], etc. On the other hand, the channel remarkably
changes between two distant-enough blocks (i.e., when sep-
arated by durations larger than the coherence time). In what
follows, we will use 7., T’, T, and K to denote the channel co-
herence time, the data blocks separation, the length of each data
block, and the total number of data blocks, respectively. Note
that all these quantities are normalized by the sampling period.
The overall number of snapshots will be denoted 7', = KT In
order to have the channel time variations negligible within each
block duration but independent between each two consecutive
data blocks, the following condition should be satisfied:

T<T.<T. 4)

In this paper, we take advantage of both aspects of short/long-
term channel variations. Indeed, we first estimate the channel
over K T-length data blocks. Then, we combine all the esti-
mates to retrieve the ASs and the AoAs as illustrated in Fig. 2
and explained later.

III. PREPROCESSING: BLIND CHANNEL IDENTIFICATION

Since the sources are independent, we use blind channel iden-
tification (through independent component analysis) as a pre-
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processing step in order to decouple the multisource channel
parameters (ASs and nominal AoAs) estimation problem into
N independent and parallel subproblems. Hence, the perfor-
mance of the proposed method strongly depends on this stage.
Precisely, a fast convergent and accurate channel estimation al-
gorithm is required to have less computational complexity and
acceptable accuracy with a limited number of snapshots. A com-
parison of different blind channel identification (or equivalently
blind source separation) techniques can be found in [26]. This
preprocessing step has two main advantages: i) it transforms the
general multisource problem in hand into the estimation of the
AS and nominal AoA of every source separately, and ii) in case
of colored Gaussian noise, the channel realizations can be es-
timated using fourth-order statistics [20], rendering the estima-
tion of the ASs and the AoAs by the second stage possible in
such a case, in contrast with previous techniques.

We run the blind channel identification algorithm that will
be noted BCI in the sequel over each of the K blocks (cf.
Fig. 2). The K channel matrix realizations are blindly es-
timated up to some scale and permutation indeterminacies
for the K data blocks. In other words, performing BCI over
the T' observations of the kth data block forming the matrix
X(k) & [x(kT’ + 1)...x(kKT" + T)] leads to the following
estimate of the channel matrix [21], [22]:

H(k) = H(k)P(k)D(k) + E(k) )
where D(k) = diag[ai(k)---an(k)] is a diagonal matrix
composed of scalar indeterminacies, P(k) is a permutation ma-
trix, and E(k) is an “error matrix” representing the estimation
residue of this preprocessing step.

A. Covariance Matrix and Practical Considerations

Here, we suppose that the permutation indeterminacies are
solved in H(k) defined in (5) leading to H(k) = H(k)P7 (k)
where P (k) is a permutation matrix relative to the first channel
estimate [P(0) = Iy]. We will address this issue in the fol-
lowing subsection. The nth column of the channel matrix has
K realizations [h,, (k)]o<r<rx—1 whose estimates are

fln(k) = an(k)h, (k) + e, (k)

= an(k) > yni(k)alfn + 0 (k)] + en(k)  (6)

where e, (k) and h,, (k) are the nth column vectors of E(k)
defined in (5) and H(k), respectively. Notice here that (6)
has the same form as the data model that has been considered
in the literature to estimate the AS and the nominal AoA in
the case of a single scattered source [1], [2], [6], [8]. Further-
more, the assumption of incoherently distributed sources with
random channel realizations is now satisfied provided that the
K data blocks are enough spaced (by intervals larger than
the channel’s coherence time) such that for n € {1,...,N},
[Yni(k)]o<k<x—1 models a sequence of realizations of a
random variable which is uncorrelated with [y, (k)]o<k<x -1
Vi, 1" € {1,..., L} suchthatl # I'. The scale indeterminacies
[ (K)]o<k<x —1 have no effect as it will be demonstrated later
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Fig. 2. Anillustration of our processing strategy exploiting both fast and slow channel variations (The same processing can be performed over several interleaved

sequences of enough spaced data blocks).

(they can be seen as the scattered sources in the data model
considered in [1], [2], [6], and [8]). Therefore, we can success-
fully utilize the same two-ray approximate model proposed in
[8] to estimate the AS and the nominal AoA of the nth source.
Furthermore, a new technique for rays localization will be tai-
lored. Note that this new representation is not without caveats.
Indeed, the estimation error e, (k) is not necessarily a spatially
white process and could be correlated with h,, (k). Thus, one
must take a special care in the channel identification stage so
that this estimation error is as low as possible by a judicious

choice of a BCI algorithm that can achieve good accuracy even
with few observation snapshots.!

Finally, we consider the following covariance matrix of the
nth channel vector to estimate the nth AS and nominal AoA:

R, = E{h,(k)h} (k)} ©)

where (- ) denotes the trans-conjugate operator and E{ - } de-
notes the mathematical expectation. However, recall that only

IReaders can refer to [26] where eight BCI algorithms are compared.
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an estimate of h,, is available in (6). Hence, we will approxi-
mate R,, using

- 1

- i H (],
R, =+ 2 h, (k)h,; () ®)

=0

which is a consistent estimator of R,, up to a scale factor,
E{|a,|?}, induced by the scale indeterminacies.

B. Channel Matching

The point here is how to classify the estimated sources (or
equivalently the column vectors of the random channel realiza-
tions’ estimates) over the K data blocks. After running the BCI
algorithm over the T samples of the kth (k > 0) data block,
we exploit some further prior knowledge on the channel and the
sources to estimate a permutation matrix P (k) that matches the
estimated sources to those extracted from the (kK — 1)th data
block [P(0) = Iy]. The resulting estimate of the kth channel
matrix realization that we will use in the sequel is then given as

H(k) = H(k)PT (k). 9)

Before going further to explain how to calculate P(k), we need
to define a new matrix operator II{ -} which sets the largest
entry on each row of the matrix between brackets to one and
the others to zero. Then, two main scenarios can be considered.
1) Scenario 1: The sources are spatially very close such that
the wavefronts generated from a couple of sources overlap. In
this case, one has to recourse to some properties of the sources.
LetS(k) = [s(kT"+1) - - - s(kT’+T)] denote the matrix whose
columns are the 7" samples of the source signals transmitted at
the kth T-length interval, and g(k) its estimate. First, suppose
that the sources are correlated over time (at least between two
consecutive 7'-length data blocks). In this case, P(k) can be

calculated as
P(k) = I{|S(k)S™ (k - 1)|};

VEk > 1 (10)

where | - | denotes the element-wise absolute value operator.
The assumption of source correlation can be further relaxed
to the temporal dependence. Indeed, knowing that the sources
are mutually independent, one can use some higher-order-sta-
tistics-based criteria such as maximizing the cross-cumulants
[27 (pp. 19, 20)]. Other properties of the sources can also be
utilized depending on the considered application. For instance,
in the context of CDMA systems, one can take advantage of the
spreading codes to classify the channels. For digital signals, a
waveform matching of the estimated sources could be exploited
if the signals have different waveforms.

2) Scenario 2: The sources’ angular separations are much
larger than the ASs such that the wavefronts generated from
any couple of sources do not overlap. In contrast to Scenario
1, no further assumptions on the sources are required. Indeed,
suppose that the permutation indetermination is solved over the
(k — 1)th block, and that all the channel estimates have unit-
norm columns. Then, one can calculate P (k) as

P(k) = T{[H" (k — 1)H(k)|}. (11)
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Note that the solutions provided in Scenario I apply in this
case too. So far, we have investigated the BCI preprocessing
step and shown how to solve the permutation indeterminacies
between the consecutive K channel matrix estimates which
are inherent to blind techniques. The impetus behind adding
this preprocessing before attempting to recover (en)lsng N
and (0g, )1<n<n 1s, in contrast to [11] for instance, to take
advantage of the inherent independence of the sources (corre-
sponding to different users as in Fig. 1) in order to decouple the
estimation of these parameters for each source apart from the
others. Once these N subproblems are decoupled, the second
step consists in estimating the AS and the nominal AoA of every
single source. To this end, we dedicate the following section
to present Taylor series expansions that have been proposed in
the literature to transform the estimation of both parameters
into the localization of two closely spaced, equi-powered, and
uncorrelated rays [8].

IV. APPROXIMATE TWO-RAY MODEL

To have an insight into the angular spread effect on source
localizers or detectors in the context of macrocell environments,
a common trend has been to consider Taylor series expansions.
This trend is motivated by the fact that the ASs encountered in
these environments have typically small values. Specifically, a
first-order Taylor series expansion has been used in [4], [5], [8]
to express the spatial frequency of the nth source [see (2) and
(3)] as

2rksin(f, + 0n) ~ 2k sin(b,,) + 2w kb, cos(6,,)

A ~
= Wp + Wy

(12)

where w,, is the spatial frequency deviation resulting from the
angular deviation. According to the previous representation, w,
and 6, have approximately the same probability density func-
tion up to a scale factor. One can also establish as in [8] that
the standard deviation of w,, corresponding to the nth source is
expressed as:

0, = 2mk|cos(b,)] oy, - (13)

Hence, determining 6,, and oy, amounts to estimating w,, and
0w, Yn € {1,..., N}. Now, using this first-order Taylor series
expansion, it can be established that R,, is expressed as

R, = Dy(wn)E(0w, )Da™ (wn) (14)
where (-)* denotes the conjugate operator
D, (w,) = diag[a(ws,)] (15)

and 2(o,,, ) = R,, whenw,, = 0. Letting (, denote the charac-
teristic function of a given random variable x, the (p, r)th entry
of E(0, ) is expressed as

[E(ow,)]lpr # G, [(p = 1)ow,]- (16)

This representation was exploited in [5] to explicit the effect
of the angular spread on the coherence of the received signal
and develop asymptotically optimal receivers. In [6], (14)—(16)
have been exploited to estimate the channel parameters for the
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Gaussian distribution of the angular deviation. In either case, the
knowledge of the distribution of the angular deviation is crucial.
To circumvent this strong assumption, a second-order Taylor
series expansion of a and an approximation of order O(E{&*})
were utilized in [8] to approximate R, as

R, ~ %A(wn + s Wi = O JAT (0 + 00, w0 — 00,
a7

where

A(wp+ 04, wn —0y,) =[a(wp +0,,)a(w, —0ou,)]-
(18)

The approximation in (17)—(18) is notable. Indeed, the re-
sulting representation is independent of the angular distribu-
tion. Rather, it explicitly depends on the nominal AoA and the
AS only. More importantly, the originally complicated angular
spread estimation problem is transformed into a simpler task
consisting in recovering two AoAs. A point source localization
algorithm could then be used to solve this problem. In [8], the
focus has been on root-MUSIC [13] leading to the so-called
“spread root-MUSIC.” Therein, it has been stated that the ap-
plication of this localization algorithm to Z(o,,, ) leads to two
symmetrical values {\(oy,,), —A(0,,, )} where A is a monoto-
nous positive function which has no analytical expression, but
can be empirically determined. For low o, values, A(0y,,) =
0., - This approximation will be adopted in what follows.

Though it has been shown that root-MUSIC is better per-
forming than spectral MUSIC in [17], one should note that the
performance of both algorithms deteriorates as the angular sep-
aration between a couple of uncorrelated sources of interest (to
localize separately) decreases especially in adverse conditions:
few sensors, low SNR, and closely spaced sources. This be-
havior is due to the fact that the subspace decomposition is no
longer easy to perform (the steering matrix is almost rank defi-
cient and/or the noise level is high) [18]. Notice that such situa-
tions can be encountered in real-world systems where the aim is
to estimate small values of the AS (or equivalently the AoAs of
both closely spaced virtual rays) using few sensors due to space
or cost constraints.

To sum up, the fact that the AS has typically low values
in macrocell environments accounts for the Taylor series ex-
pansions that have been presented in this section to transform
the estimation of the AS and the nominal AoA of a locally
scattered source into the localization of two uncorrelated and
equi-powered point sources. In the next section, we focus on this
very particular problem (localization of two uncorrelated and
equi-powered point sources) and derive new simple and accu-
rate closed-form estimators of the AoAs of both sources. These
estimators are perfectly tailored to estimate the AS and the nom-
inal AoA of each scattered source in the data model (1).

V. LOCALIZATION OF TWO EQUI-POWERED AND
UNCORRELATED POINT SOURCES
A. Model

As explained earlier, the estimation of the AS and the nominal
AoA of every spread source boils down to the localization of two
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closely spaced, uncorrelated and equi-powered point sources. In
this section, we focus on this particular problem and propose
new robust closed-form estimators for the angular separation
and the mean AoA of both sources. In addition to their appli-
cation here to the estimation of the AS and the nominal AoA of
locally scattered sources using the approximate two-ray model,
the estimators provided herein are useful in other applications
where the localization of two equi-powered sources with small
angular separation is of interest. To illustrate, we mention two
applications: i) CDMA signature codes duplication: by imple-
menting the proposed localization technique at the base station,
the number of signature codes allocated to a single mobile ter-
minal equipped with two closely spaced multiplexing antenna
elements could be doubled (combining both spatial signatures
and the allocated signature codes), and ii) satellites interference
cancellation: thanks to its high accuracy, the proposed technique
could be used to localize two interfering satellites with as low as
2° angular separation (e.g., geostationary satellites) and, conse-
quently, minimize their interference.

The aforementioned applications could be modeled as fol-
lows. Suppose two source signals, §(t) = [51(t) 32(¢)]7,
with covariance matrix o2I5 to be localized using M sensors
(M > 3). The data model is then given as in (1) but with
H = A(w;,ws) representing an M X 2 steering matrix
[A (w1, w2) defined as in (18)]2 where w; = 27r sin(6;), and 0;
is the AoA of 3;(t) (z € {1,2})

%(t) = A(wr,w2)8(t) + b(t) (19)
where B(t) represents an additive noise that we suppose inde-
pendent of §(¢). Our aim in this section is to find w;, 7 € {1, 2}
[or equivalently 8;, 7 € {1, 2}].

B. Harmonics Estimation Using the Particular Form of the
Covariance Matrix

The theoretical covariance matrix of the resulting observa-
tions is given as

R;c = E{)v((t))v(H(t)} = 03A(w17w2)AH(w1,w2) + T
(20)

where I is the covariance matrix of the noise that we further
assume here as spatially white, leading to T' = o%I,;. Notice
that

R = R;{ — UZIZM = o?A(wl,wQ)AH(wl,wg). (21)
In practice, R is unavailable, but can be estimated using a finite
number 7" of samples as

T
R = % o x(t)x"(t) - 6’y (22)
t=1

2 2

where 6° is the estimate of o“ obtained by averaging
over the (M — 2) smallest singular values of the matrix
Rx = (1)/(T) S}_, %(t)%" (). Our new technique localizing

2The time index k is removed because the channel is assumed to be static.
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both equi-powered sources is based on the explicit expression
of the entries of R and the decomposition of w; and ws as

w1 =w— 0
{ we = w + 0O (23)
where w denotes the mean harmonic
W= (%] + w2 (24)
2
and 26, is the harmonics separation
26w = |(4)1 — w2|. (25)

Consequently, finding w; and wy amounts to finding w and é,,.
Here, we mainly focus on estimating w and 6,,. Using (24) and
(25), the entry of the mnth subdiagonal of R, d,,, is expressed as

dpm = 202 cos(mé,,)el ™. (26)

To have better estimates of (di,)o<m<a—1, We exploit
the Toeplitz structure of R by averaging over the M — m
entries of the mth subdiagonals of R. In other words, for
m € {0,...,M — 1}, d,, is estimated as

- 1
dpy =
M—-—m

M—m
Z R(l +m,1). (27)
=1

To estimate 6, and w, we use the following least square fitting
(LSF)of dp,, 1 <m < M —1:

& 80 = arg ménJm(w, ) (28)
where
I (@,6,) 2 |dyy — |2 (29)

By setting the derivatives of .J,,,(w, 6,,) with respect to w and
0., to zero and selecting the appropriate values (minimizing .J,,, ),
the above LSF leads to the following estimators:

1 .2
o™ = —arg(dy,) £ 25 (30)
m m

and

R (df’”e—imw(“)ﬂ . 3D
do

In (30) and (31), arg(-) and R(-) stand for the angle
and real part, respectively, m € {1,...,M — 1}, p €
{0,...,1(m)/(2)]}, and | - | is the integer part operator. The
superscript (m) is utilized for both estimators to specify that
d,, is utilized in (30) and (31).

Discussion:

» The estimator (31) requires a prior knowledge of the range

of 4,,. Indeed, using (31), we suppose that

6(m) = — arccos
m

T
6w < —. (32)

2m
This condition is not restrictive as one can start by using

the lowest values of m (first subdiagonals of R) to have a
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prior knowledge about the range of d,, then use the first ob-
tained results as reference values before proceeding with
the largest values of . Finally, it is important to point
out that the existing localization techniques are well per-
forming for relatively high angular separations. This fact
justifies our special focus on small angular (or equivalently
harmonics) separations satisfying:

™

0, < T =1)

(33)

The indetermination +(2pw)/(m) in (30) does not ap-
pear for oM If Jm, m > 1, is utilized in (30), a set of
2[(m)/(2)] + 1 possible values can be found for &™),
To solve this indetermination, one has to use &M as aref-
erence value and chose the optimal estimator minimizing
the distance |&(™) — &™)|. One might also think about
combining the obtained estimates of w and 4,, to calculate
w1 and w9 using (23) and check the orthogonality of the
resulting steering vectors, a(w;) and a(ws), to the noise
subspace (to avoid eigenvalue decompositions, one can
use the analytical expression that we provide for the vector
spanning the noise subspace in [28]) so as to remove the
potential indeterminacies.

The proposed solutions are perfectly tailored to estimate
the AS and the nominal AoA of a scattered source. Indeed,
the approximation in (17) leads to an identical form to that
of R,, in (21), and ™ in (30) [65™ in (31), respectively]
could be successfully used to estimate w,, (o, , respec-
tively) in (17). An important property of (30) and (31) is
that they inherently reduce to the localization of a single
point source when ¢, = 0. This feature is extremely im-
portant in the localization of a single scattered source using
the two-ray approximation. Indeed, if the angular spread is
very small or negligible, the utilization of root-MUSIC for
example to localize both rays may be misleading since the
latter is unable to localize spatially very close sources with
few sensors (or to appropriately localize a single source if
the number of sources to be localized is erroneously set
to two). To circumvent this difficulty, Bengtsson and Ot-
tersten recurred to a “robustification” preprocessing to es-
timate the number of rays [8], thereby adding more com-
plexity to the receiver structure.

In terms of complexity, (30) and (31) are extremely simple
to implement since no further calculations are required
once the second-order statistics (SOS) are estimated to cal-
culate w and §,,. The overall complexity of the proposed
two-stage approach when these closed-form estimators are
used jointly with a BCI preprocessing stage is around K
times the complexity of the latter since the computational
cost of the former is relatively negligible. Precisely, we
have a complexity of around O[6 K (14++/N) N>T] floating
point operations (over KT' data samples) if we use the
BCTI algorithm proposed in [22], [23] whose computational
complexity is well established in [22].

Some similar solutions for the mean angle of arrival only
have been proposed in the literature in the case of a locally
scattered source. In [9], Besson et al. suggested a particular
form of the covariance matrix and determined the nominal
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AoA using the first subdiagonal only. In [10], a Fourier
transform over all the subdiagonal elements of the covari-
ance matrix was exploited. In this paper, we suggest a gen-
eral and simple approach to derive not only the nominal
AoA but also the AS in the multisource case without re-
quiring the angular distribution. In addition, we carry out in
the following a theoretical investigation of the performance
of the proposed estimators to deduce an optimal choice of
the subdiagonal order m to estimate the required channel
parameters.

C. Performance Analysis

To gain some insight into the performance of the proposed
estimators (30) and (31), we investigate their asymptotic perfor-
mance. To this end, we assume as in [11] that the observations in
(19) are i.i.d. and circularly symmetric Gaussian. This assump-
tion leads to the following theorem.

Theorem 1: Under the assumption of circularly symmetric
Gaussian i.i.d. observations in (19), the asymptotic variances of
&™) and 55]”) satisfy

2 tan?(mé,,)

i A(m) _ — 2 %)
L (G B
and

S(m,b.) 2
. 2 2wl L cos?(md,,
lim TE{((SS}”)—(SW) }: Arm?” T ( ),
T—+00 m? sin”(md,,)
(35)
where

M-—-m

S(m,é,) = Z cos[2(p — q)b.]. (36)
p,q=1

Proof: cf. Appendix L. [ |

Discussion: The variations of the asymptotical variances
given in (34) and (35) are depicted in Fig. 3 for the case M = 6.
Notice that the variance of &™) is increasing with respect to
m and 6, when the condition (33) is satisfied. Hence, using
the first subdiagonal of the covariance matrix leads to more
accurate estimates of the central harmonic. In contrast, the
asymptotic variance in (34) decreases with respect to m and
0.,. Though the above asymptotic variances have been derived
under the condition of circular Gaussian and i.i.d. observations,
an extensive empirical investigation showed us that these mo-
notonous variations are also observed when the above condition
on the observations is not satisfied. From this, we derive our
strategy in localizing both sources. Indeed, after calculating R,
we use its first subdiagonal to calculate the central harmonic as
in (24) (i.e., for m = 1) and the last subdiagonal to calculate
the harmonics separation as in (31) (i.e,, for m = M — 1).
Then, we estimate w; and wo as

A1) 5(]\1—1)
w1 w w
{a2 _ o) 4§D G7

1975

Asymp. variance of 8o™
3

S [rad] m

(a)

Asymp. variance of & (™

m 5 [rad]

(b)

Fig. 3. Asymptotic variances of (a) 5,, and (b) & with respect to 6., and m at
M = 6 [cf. (39) and (40)].

VI. NUMERICAL EXAMPLES

In our simulations, we will use the root mean squared error
(RMSE) as a performance index as in [8]-[11]

| Mc ¢ i
RMSE(p1,. .., 00) = MZZ‘W—@E”‘ (38)
=1 =1

where (¢;)1<i<¢ are the parameters to estimate, and (@l(z) )i<i<e
are their estimates at the 7th Monte Carlo run (1 < i < MC).
In all of the investigated scenarios, we take MC = 103. To have
a better insight into the results, the RMSE and the Cramer-Rao
lower bound (CRLB) values will be presented in degrees.

A. Localization of Two Uncorrelated Point Sources

As ithas been stated in Section V, the proposed two-ray local-
ization approach, in addition of being tailored to the estimation
of the AS and the nominal AoA of a locally scattered source
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(cf. Section IV), applies to multiple situations when the local-
ization of two equi-powered and spatially close point sources
is of interest. Therefore, we dedicate this subsection to em-
pirically investigate its performance. To that end, we compare
it to root-MUSIC and one of its recently proposed variations
(root-MUSIC-like) for non circular and uncorrelated sources
[32]. The efficiency of the latter has been demonstrated in [33].
We also plot the square-root of the CRLB.3 For fair compar-
isons, we chose the scenario of two BPSK sources (noncircular
sources so that the root-MUSIC-like algorithm can be applied
though our approach does not require this assumption) propa-
gating along two closely spaced plane waves (i.e., no scattering).
We run the algorithms over one data block (i.e., K = 1) of
length 7" = 200. We aim at localizing two sources located at 6;
and 0, [without loss of generality (w.l.o.g.), 1 < 65] using
a ULA of three or six sensors depending on the investigated
scenario.

In Figs. 4 and 5, we plot RMSE(#,, 62) with respect to the
angular separation A = 6, — 6; (at SNR = 10 dB) and
the SNR (at Af = 3°), respectively, for three and six sen-
sors. In both figures, we notice that root-MUSIC’s accuracy de-
teriorates when the signals are closely spaced or the SNR de-
creases. This fact is due to its inherent behavior in the case of
an almost rank-deficient steering matrix investigated in some
earlier works [17], [18]. The root-MUSIC-like algorithm takes
advantage of the noncircularity of the sources to provide more
accurate results than the latter but its performance is still re-
markably affected when the SNR or the angular separation de-
creases. In contrast, the proposed approach exhibits a regular
behavior and achieves good accuracy and high SNR gains even
with three sensors only. The fact that the closed-form estima-
tors (37) were developed under very particular hypotheses on
the two point sources (equi-powered, uncorrelated, and closely
spaced) following a covariance matching reasoning (which is
known to be an alternative to ML [34]) accounts for their supe-
riority when compared to other localization techniques which
are quite general and do not exploit all these properties. There-
fore, one can conclude that these estimators may be of great
interest for applications where the localization of two closely
spaced point sources in adverse situations (few sensors and low
SNR) is of interest. Notice also that RMSE(6, #2) achieved by
the new method is lower bounded when the SNR is high. This
lower bound is set by the inaccuracy in estimating the SOS as it
has been shown in Section V-C. However, one should note that
this is not actually a serious limitation since this lower bound is
acceptable (= 0.1°) and appears only for very high SNR values
rarely encountered in practical real-world applications.

B. Channel Parameters Estimation in the Case of Locally
Scattered Sources

Here, we start by demonstrating the advantages of the ap-
plication of the proposed two-point source localization tech-
nique to the estimation of the AS and the nominal AoA of a

3The CRLB for AoA estimation has been determined for some particular
cases: deterministic or conditional data model [18], Gaussian sources [29], and
some random discrete signals mainly BPSK and QPSK [30]. The derivation of
this lower bound is beyond the scope of this paper. Since we consider BPSK
sources, we use the CRLB provided in [30].
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Fig. 4. Case of two point sources—RMSE(6,6,) versus Af at SNR =
10 dB using: (a) three sensors, (b) six sensors.

single locally spread source (justified by the two-ray approxi-
mate model). Afterwards, we prove the efficiency of the pro-
posed two-stage algorithm in decoupling and accurately esti-
mating the channel spatial parameters in presence of multiple
locally spread sources. To model the local scattering, we will
set the number of the incoming wavefronts from every source
to L = 50 in all the simulations as in [8]. Notice that L has typ-
ically large values in radio communication environments [3],
[34]. We will further assume, w.l.o.g., that the angular devia-
tions (én)1gn§ ~ in the data model (1)—(2) are Gaussian dis-
tributed (some results for uniform distribution can be found in
[31D).

1) Case of a Single Locally Scattered Source: We implement
the data model in (1) for a BPSK source located at § = 10°
with an AS gy = 3°. To satisfy the incoherent distribution of
the source with the Rayleigh fading model in (1)—(2) with a
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Fig. 5. Case of two point sources—RMSE(, 62) versus SNR at A§ = 3°
using: (a) three sensors, (b) six sensors.

single source (N = 1), we consider L Gaussian and i.i.d. coeffi-
cients (y;)1<i< 1, (the subscript n = 1 is removed for the sake of
clarity) which vary independently from one snapshot to another
(by spacing samples) as it is commonly assumed in the literature
(e.g., [6], [8]) and we estimate the SOS using T;, = 200 obser-
vation snapshots. In other words, we have K = 200,77 = 1, and
T’ = 0. Figs. 6 and 7 present the performance of the provided
technique compared to spread root-MUSIC [8], the iterative al-
gorithm in [11] which is to our knowledge a method of choice
as it achieves high accuracy without the knowledge of the an-
gular distribution, and the theoretical CRLB# using three and six
Sensors.

4The CRLB can be derived in the case of a single source when it satisfies two
key properties: i) the source’s temporal realizations are i.i.d.; ii) the source’s
magnitude |s(t)|? is constant. Then, the Fisher Information matrix can be de-
rived and the CRLB can be numerically calculated [35].
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Fig. 6. Case of a single scattered source—Performance with respect to SNR at
o9 = 3° using three sensors: (a) RMSE(). (b) RMSE(0y).

The estimators provided in Section V are closed-form and re-
quire very low computational cost once the observations covari-
ance matrix is calculated. Hence, one can use any of the (M —1)
subdiagonals to estimate the nominal AoA and the AS. To ob-
tain a better estimate of #, one has to resort to the first subdiag-
onals. Regarding the AS estimate, it is recommended to resort
to the last subdiagonals provided that the AS satisfies the con-
dition in (32). In Fig. 6, we found that the second subdiagonal
(m = 2) of the observations’ covariance matrix gives the best
accuracy to the estimation of both parameters. In Fig. 7, we use
the second subdiagonal (m = 2) to estimate 6 and the 4th subdi-
agonal (m = 4) to estimate oy. In either case, we notice that the
new two-point source localization technique dramatically im-
proves the accuracy of the required parameters. The resulting
RMSE(#) and RMSE(oy) are almost optimal (overlap with the
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Fig. 7. Case of a single scattered source—Performance with respect to SNR at
0y = 3° using six sensors: (a) RMSE(6). (b) RMSE(oy).

CRLB) when the SNR has low to moderate values. The algo-
rithm [11] is also highly performing, especially for source lo-
calization, but it fails to achieve a better estimate of the AS than
the proposed closed-form estimators. More importantly, the al-
gorithm proposed in [11] is iterative and requires a prior esti-
mate of the source location (for initialization), thereby adding
more complexity to the design of the receiver. In contrast, one
can obviously notice that the implementation of the provided
method is straightforward as neither iterations nor initializations
are involved. As the SNR increases, the accuracy of the three
techniques saturates. This lower bound is mainly> due to the
approximations presented in Section IV and those utilized by
Shahbazpanahi et al. in [11].

SThe effect of the SOS estimation inaccuracy observed in Fig. 5 is negligible
since all algorithms almost have the same lower bound for high SNR values.
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Fig. 8. Effect of the channel quasi-static behavior on the accuracy of the
two-ray approximation using three sensors at ¢y = 3°, and SNR = 10 dB.
(2) RMSE(8). (b) RMSE(0y), T., = 2.102.

Now, we investigate the effect of the channel coherence time
on the performance of the AS and nominal AoA estimation. We
consider the same case of a BPSK source located at § = 10° and
having oy = 3° as AS. To simulate the quasi-static variations
of the channel, we suppose that it is invariant over a 7. duration
length that we increase gradually. Letting T, = 200 denote
the overall observation window (with T.. < T,), T../ Ty, is the
relative coherence time (the inverse of K which is the number
of independent channel realizations during 7, snapshots in this
case). Such situation is typically encountered in a burst-mode
operating system (cf. [1] and references therein). Fig. 8 shows
how the channel parameters estimation accuracy deteriorates as
the channel relative coherence time increases. To overcome this
performance deterioration, larger sampling periods (exceeding
the coherence time) and observation windows must be consid-
ered. In the following, we show the gain achieved by our new
two-stage approach to estimate the channel parameters in the
case of multiple spread sources.
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TABLE 1
TWO-STAGE ALGORITHM TO ESTIMATE THE NOMINAL AOAS AND THE ASS OF LOCALLY SCATTERED SOURCES

1. Initialization
Knowing T, chose T', T, and K such that:

2. Fork=0:K-1

H(k) = BCI[X(k)].
(ii) Estimate the sources (using the MMSE criterion):

H(k) = H(k)PT (k).
End For
3. Forn=1:N
(i) Calculate the covariance matrix given by (8).
(i) Estimate w,, as in (30).
(iii) Deduce 0, as: 6, = arcsin (
(iv) Estimate oy, as in (31).
(v) Deduce oy9,, as: gg,, =
End For

ans )

__ Twn
2k cos(6n) "

(i) Condition (4) is satisfied with T" sufficiently large to enable blind channel identification.
(ii)) K large enough to have good estimates of channel parameters.

(i) BCI over the kth data block X (k) = [x(kT' + 1) ... x(KT' +T)] (e.g., using [22], [23]):

S(k) = H (k) [X (k)X (k)/T] " X (k).
(iii) Match the channels depending on the scenario [cf. Subsection III-B. In Scenario 2, source estimation is optional]:

2) Case of Multiple Locally scattered Sources: Here, we
implement our two-stage algorithm given in Table 1. As de-
scribed above, we start by blindly estimating the channel by
means of the algorithm proposed in [22], [23] (this choice is
not restrictive and is motivated by the suitability of this algo-
rithm to the investigated scenario in terms of accuracy and com-
plexity; refer to [22], [23], and [26] for further details). Then,
we match the channel components to estimate the required pa-
rameters for each source using the two-ray approximation fol-
lowed by the two-point source localization algorithm. We con-
sider two BPSK sources located at #; = 5° and 5 that will
be chosen depending on the investigated situation. The ASs of
both sources are chosen as oy, = 0y, = 3°, w.L.o.g. In order
to match the channel components, one must resort to the solu-
tions provided in Section III-B. Here, we suppose that the same
signals are retransmitted during all the K intervals. The vari-
ables ,, and én, n € {1,2}, characterizing the channel are as-
sumed to be constant over every T'-length data block but varying
from one interval to another following a Gaussian distribution.
We chose T = K = 200 so that we ensure an acceptable
accuracy in blindly estimating the channel matrix realizations,
the ASs, and the nominal AoAs while keeping reasonable com-
plexity.6 We compare the proposed approach using root-MUSIC
and the new two-point source localization technique to the di-
rect one where we calculate the SOS over the K'T" snapshots and
use root-MUSIC to localize twice the number of sources as de-
scribed in [8]. For the latter technique, the virtual rays are paired
together two by two. Then, each source’s AS and nominal AoA
are estimated using these pairs. Notice here that a major limita-
tion of the latter arises. Indeed, the required number of sensors
must satisfy M > 2N as a subspace method is utilized to lo-
calize the rays. In contrast, the two-stage approach requires only

6Simulations, not shown for lack of space, suggest that the RMSE of channel
parameters decreases versus /X' and 7" and reaches acceptable levels for X' =
T = 200.

M = 3 sensors to localize the two rays for every source and
M > N for the channel identification preprocessing. For fair
comparisons, we chose M = 6. In what follows, we investigate
the performance of the two-stage technique to the angular sep-
aration between the sources and the SNR. Since [11] is among
the few methods that have been recently proposed to estimate
the ASs and the nominal AoAs of multiple spread sources, we
include it in our comparisons.

Now, we fix the SNR at 5 dB7 and vary the AoA of the
second source. Fig. 9 shows the achieved RMSE(f,62)
and RMSE(oy, , 04,) values with respect to A = 6y — 6.
For very close sources whose wavefronts overlap8 [i.e.,
(0w, + 0w,) > (w2 — wy)], virtual rays pairing is misleading
(we assume w.l.o.g that wo > w1). Even when the wavefronts
do not overlap (e.g., A# > 6°), the virtual steering matrix
A(wy — 0y, w1 + 0wy, ws — 0y,,ws + 0, ) might be almost
rank deficient when (w; + oy, ) and (wg — 0y,,) are very close.
This fact has a detrimental effect on parameters estimation
using the one-stage spread root-MUSIC since the sources are
not processed separately. Similarly, the algorithm proposed in
[11] is severely affected for low angular separations (we even
found that for Af < 10° this algorithm fails from its first itera-
tion though it had been initialized at 1 + 2° and 65 + 2°; more
details can be found in [11]). By further taking into account
the sources’ independence, the proposed two-stage processing
is able to identify the corresponding channels separately and
accurately determine their parameters especially when the
new proposed two-point-source localization technique is uti-
lized in the second stage. In the second scenario, we chose
6 = 15° and assess the effect of the SNR on RMSE(6, 6-)
and RMSE(oy, , 04, ). The results are presented in Fig. 10. The
algorithm of [11] is discarded from our comparisons because

TWe suppose, w.l.0.g., that both sources are of unit power and we use this
definition: SNR = 101log,,(1/0}).
8For A8 = 4°, we have 0, + 0., & 18.7° and wy — wy =2 12.5°.
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Fig. 9. Case of two scattered sources—Performance with respect to angular
separation between both sources using six sensors at o9, = 74, = 3°,SNR =
5 dB, and §, = 5°: (a) RMSE(61, 6>). (b) RMSE(0y, , 0, ).

it fails to converge for the corresponding angular separation as
illustrated in Fig. 9. Notice how the two-stage procedure leads
to tremendous SNR gains compared to the one-stage. In addi-
tion, the new two-point localization technique achieves more
accurate results in the case of very low SNR values. Finally,
it is worth mentioning that the new idea of decoupling the
multisource estimation problem into independent single-source
channel estimation problems can be utilized jointly with other
algorithms for channel spatial parameters estimation in the
second stage as the one proposed in [11]. This would lead to
comparable if not poorer results especially for source location
as it can be inferred from Figs. 6 and 7, yet at some additional
computational and implementation complexity at the second
stage when compared to the proposed direct closed-form esti-
mators as neither iterations nor initializations are required by
the latter.
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(2) RMSE(6:, 65). (b) RMSE(0y, , 70,).

VII. CONCLUSION

In this paper, we proposed a two-stage approach for channel
parameters (angular spreads and nominal angles of arrival) esti-
mation using a uniform linear array of sensors for locally scat-
tered sources. We exploited both short- and long-term typical
variations of the wireless channel. First, we took advantage of
the channel’s quasi-static behavior over short periods of time
to blindly estimate it over several data blocks regularly spaced
by intervals larger than the coherence time in order to decouple
the multisource channel parameters estimation problem in hand
into independent and parallel single-source channel parameters
estimation subproblems. Second, for each spatially scattered
source, we separately processed the corresponding sequence
of the channel realization estimates as a new single-scattered-
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source observation over which we applied Taylor series expan-
sions to transform the estimation of its nominal angle of ar-
rival and angular spread into a simple localization of two closely
spaced, equi-powered, and uncorrelated point sources. Then, we
proposed new closed-form estimators for the mean value and
the separation of the spatial harmonics of both rays. We proved
through some analytical and empirical investigations that these
closed-form estimators are efficient. Finally, we applied the new
localization algorithm to retrieve the angular spread and the
nominal angle of arrival of every scattered source. Simulation
results revealed that the proposed two-stage strategy is able to
achieve high precision by separately estimating the required pa-
rameters even for arrays of moderate size, at relatively low SNR
values, and in worst-case scattering scenarios.

APPENDIX 1
PROOF OF THEOREM 1

We derive these results by proceeding as in [10] where the
focus has been on the localization of a locally scattered source.
Let &, = |dm| = do cos(méb,,). Then, following [10], we can
prove that:

T—+oo T

: 2
lim TE{(Q(m) B w)Z} _ hm[Th;:OiE {az(a‘ijz) }
oo B

(39)
and
. 2 Hmr_, oo TE{(22=)2}
lim TE{(@(}”) - 5w> } - o L
—+00 |:liH1T_,+oo %‘Igl}
(40)

These derivatives are evaluated at the actual parameters. Next,
it can be shown using (29) that
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Using the i.i.d. property of the observations, it can be shown
that
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To calculate the numerators in (39) and (40), we use the circular
Gaussian and i.i.d. property of the observations jointly with the

1981

fact that for a given complex variable x, R?(x) = 1/2[|x|*> +
R(x?)] and 32(x) = (1/2)[|x|* — R(x?)] where (- ) denotes
the imaginary part. Hence, we have
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Here, we exploit the following result provided in [9], [10] for
circular Gaussian and i.i.d. observations:
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Taking into account the explicit expressions of the entries of R
in (45) and (46), we find that
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where S(m, 6,,) is as defined in (36). Injecting (47) and (48) in
(43) and (44), we obtain
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B 0Jm
06,
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and

Using (41), (42), (49), and (50) jointly with (39) and (40), we
directly obtain (34) and (35). [ ]
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