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Abstract—In this paper, we propose a novel joint estimation
scheme for the range, path-loss exponent (PLE), and inter-node
distances based on the received signal strength (RSS) and the
network’s information of an anchor-less (i.e., without anchor
nodes) curvilinear wireless sensor network (CLWSN). Assuming
a random node distribution along a one-dimensional curve (e.g.,
in deployments over gas/oil/water pipelines, railway tracks, un-
derground mine tunnels, subway networks, city sewage networks,
street/road lights, etc.), and adopting a propagation model that
combines both large-scale PLE and log-Normal shadowing, we
derive new analytical expressions for the node’s communication
range as a function of the network’s connectivity and density
and for the PLE as a function of the node’s range and both the
network’s connectivity and density. Once we calculate the node’s
range and the PLE, we estimate all distances between nodes using
an RSS-based method. We illustrate by simulations the superior
accuracy of our new joint range, PLE, and distance estimation
technique against state-of-the-art benchmarks in terms of the
normalized mean absolute error (NMAE). We thereby highlight
the major contributions of this work by demonstrating both:
i) the ability of our new solution to jointly estimate the node’s
range, the PLE, and all inter-node distances with relatively high
accuracy using solely the RSS and network’s connectivity and
density; and ii) its significant potential for enabling very cost-
effective yet highly accurate positioning over anchor-less (e.g.,
in GPS-denied harsh environments) wireless sensor networks
(WSN)s.

Index Terms—Wireless sensor network (WSN), curvilinear
WSN (CLWSN), anchor-less WSN, log-Normal shadowing, re-
ceived signal strength (RSS), connectivity, density, joint estima-
tion, communication range, path-loss exponent (PLE), inter-node
distances.

I. INTRODUCTION

Low-cost, small-size, and low-power multi-functional sen-
sor nodes that communicate over short distances have been
recently designed and developed to take advantage of ad-
vances in wireless communications and digital electronics
[1]. Capabilities of these nodes in sensing, data processing,
and communication allow the implementation of WSNs. The

This work was supported by the DG and CREATE PERSWADE
<www.create-perswade.ca> Programs of NSERC, a Discovery Accelerator
Supplement Award from NSERC, and the Collaborative RD (CRD) Grants
Program of NSERC, Bell Aliant, and Newtrax.

strength of a WSN does not stem from the potential of a single
device, but from the ability of all its nodes to collaborate.

In this work, we consider a new subclass of WSNs, the
curvilinear or one-dimensional WSN known as CLWSN that
is emerging today as a major focus area of research. In
CLWSNs nodes are deployed along one or more lines in a
strictly linear or semi-linear form. Due to this special topology,
issues and solutions are different from those arising in and
required for an ordinary WSN [16]. This type of network is
progressively finding wider use in many applications. Indeed,
CLWSNs are extremely relevant and useful in the monitoring
of underground environments [17], railway tracks [18], oil,
gas or water pipelines [19], and so forth. In such application
examples where security inspection is critical, deployments
could stretch over lines of tens to thousands of kilometers
long, making manual monitoring a daunting, time-consuming,
and costly task. However, introduction of CLWSNs makes
automation of inspection and control, remotely and almost
instantly on demand, a viable and economical option [16].
Many more application examples can be listed. For the sake
of conciseness, we limit the discussion to the compelling use-
cases already mentioned above and adopt more generically
WSN1 instead of CLWSN in the remainder of the paper.

Inter-node distances estimation in WSNs is necessary and
fundamental in that it offers a physical context to sensor read-
ings. Indeed, location information is fundamental for services
such as intrusion detection, surveillance, geographic routing,
and coverage area management [2]. Common measurements
used for localizing nodes in WSNs are the RSS [3], time of
arrival (TOA) [4], time difference of arrival (TDoA) [5], angle
of arrival (AoA) [6], or combinations thereof. Whereas range-
free methods do not require the latter and rather exploit the
radio-communication connectivity established between nodes
[1]. RSS-based methods are ideal for low-cost and low-
complexity networks, since no additional hardware is needed.

1Possible extensions to 2D or 3D network topologies, beyond the scope of
this contribution, are currently under investigation and will be addressed in
future publications.
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However, the exact knowledge of the propagation model is of
greatest importance for RSS-based localization or ranging.

The PLE, γ, is one of the key parameters that could
properly characterize large-scale propagation over wireless
fading channels. Indeed, it has a major impact on the node’s
communication range and RSS interpretation. Hence, calibra-
tion is essential for the estimation of some key parameters such
as the PLE whose accuracy has significant effects on ranging
or localization performance. Many studies have exploited
different channel parameter and node position estimates. In
[7], the authors assumed the PLE to be known a priori and
developed a maximum likelihood (ML) or linear least square
(LLS) estimator to localize nodes [8], whereas others relied
on channel measurements between nodes to localize them
[9]. In [10], the authors proposed a weighted least square
(WLS) estimator for the sensor positions that accounts for
some uncertainty model over the PLE. So and Lin devised in
[11] an LLS estimator for RSS-based positioning. Whereas,
Wang et al. in [12] derived a weighted LLS formulation to
jointly estimate the PLE and node locations. In [13], the
authors assumed the PLE to be random then obtained it with
Bayesian MMSE before deriving a general nonlinear equation
for ML distance estimation. In [14], the authors proposed a
generalized total least square algorithm (GTLS) for RSS-based
localization with unknown path-loss model parameters.

However, to the best of our knowledge, no joint range, PLE,
and distance estimation technique exits so far in the open
literature that would rely mainly on a key yet simple and
already available feature of WSNs, namely its connectivity
information; and what is more, in the absence of anchor
nodes. Anchors are more costly than regular nodes and their
deployment in WSNs is very often a complicated manual task.
Besides, estimation performance will suffer greatly if some of
the anchors accidentally break down, even if the remaining
ones continue to function. Hence, it is highly desirable to rid as
much possible WSNs from their dependence on anchors so as
to reduce hardware cost, power consumption, communication
overhead, and deployment complexity [15]. Therefore, a new
joint estimation solution that could operate accurately over
anchor-less WSNs with such multiple benefits should offer a
significant progress of and contribution to the current state-of-
the-art.

In this paper, we develop a novel approach that jointly
estimates the range, the PLE, and inter-node distances over
anchor-less WSNs by making use of the under-exploited
yet invaluable network connectivity data. Simulation results
unambiguously show the superior accuracy of our new joint
range, PLE, and distance estimation technique against state-of-
the-art benchmarks in terms of NMAE. They also demonstrate
its ability to execute this joint estimation task accurately using
solely the RSS and network’s connectivity and density; and its
significant potential for enabling very cost-effective yet highly
accurate positioning over anchor-less WSNs.

The remainder of this paper is organized as follows: We
formulate the problem in section II. In section III, we propose
a novel approach for jointly estimating the range, the PLE and

all inter-node distances over anchor-less WSNs. We discuss
our simulation results in section IV before drawing out our
concluding remarks in section V.

II. ASSUMPTIONS AND WSN MODEL

Consider a curvilinear WSN consisting of N nodes placed
randomly at positions xi for i = 1, . . . , N along the deploy-
ment curve segment [xmin xmax] [i.e., with node density
λ = N/(xmin xmax)] and having transmission ranges Ri for
i = 1, . . . , N (i.e., a heterogeneous WSN a priori) assumed
in this work to be unknown. This topology is well-justified in
environments that impose one-dimensional deployments such
as narrow-vein underground mines [20], [21], sewage or water
distribution networks, subway tunnels, etc. In wireless com-
munications, the received signal power in dBm is modeled as
the sum of large-scale path-loss and log- Normal shadowing.
The basic and well-known log-distance path-loss model in
[22] quantifies the amount of large-scale variations in different
propagation environments. The received power Prij at node i
of a signal emitted from node j is modeled by [22] as

Prij (dij) = Pr (d0)− 10 γ log10

(
dij
d0

)
+Xσ, (1)

where Pr(d0) is the received power from any given node
(given the fact that we assume that all nodes are tuned a priori
to transmit data with the same power level) at the reference
distance d0 = 1 (predicted from the Friis free space prop-
agation loss model [22]), γ is the PLE with common values
ranging between 2 and 6, dij is the distance separating the two
nodes i and j, and Xσ is the large-scale log-Normal shadowing
with variance σ2 acting here as an unknown additive Gaussian
white noise. The received power matrix can then be defined
as

Pr = [Prij ]N×N . (2)

III. PROPOSED CONNECTIVITY-BASED JOINT
ESTIMATION

Our proposed approach, divided into three parts, consists
in estimating the range, the PLE, and then the inter-node
distances. We assume that propagation conditions remain the
same in the area where the WSN is deployed (i.e., path-loss
and shadowing have the same statistics). We also assume a
fully-connected network, i.e., information can be transmitted
between any two sensors in the network following the shortest
multi-hop path covered by the minimum number of hops
possible.

To deal with PLE estimation, we must estimate the commu-
nication range R as a function of the nodes’ connectivity and
density information. Based on [23], a homogeneous Poisson
process is adopted. The nearest neighbor method known from
analysis of spatial data [24] is employed to estimate each
node’s communication range, then the PLE. An enhanced
RSS-based method is ultimately applied to estimate inter-node
distances.
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A. Connectivity Information

Connectivity information can be obtained by comparing
the received power at any node against a minimum detection
threshold Pth. Two nodes are neighbors at one hop if they
are connected according to the following random variable
definition

Cij =

{
1 if Prij ≥ Pth
0 if Prij < Pth

, (3)

for i = 1, . . . , N and j = 1, . . . , N with i 6= j. Hence, Cij = 1
if the distance separating the receive node i and transmit node
j, dij , is less or equal to the communication range of node
j, i.e., dij ≤ Rj . Otherwise, Cij = 0 and, hence, the nodes i
and j are far apart and node j cannot communicate with node
i directly without the help of some intermediate nodes. The
network connectivity matrix C is then defined as

C = [Cij ]N×N . (4)

B. Range Estimation

Due to space limitation, we will consider in this work a
homogeneous Poisson point process (PPP) in one dimension,
where N nodes are randomly positioned over the interval
[xmin xmax]. Extensions to two- or three-dimensional WSNs,
far from being ad hoc, go far beyond the scope of this
contribution, but will be soon considered in future works.

Let the random variable n denote the number of nodes
within a given interval [xl xr]. The probability that a node
falls within the interval [xl xr] is p = xr−xl

xmax−xmin . From [23],
the probability that v nodes out of N fall within the interval
[xl xr] is

P (n = v) =

(
N
v

)
pv (1− p)N−v , (5)

and can be approximated by a Poisson distribution as

P (n = v) =
(Np)

v

v!
e−Np. (6)

For a given density λ, the probability that v nodes fall within
the interval [xmin xmax] of length x0(x0 = xr − xl) is given
by:

P (n = v) =
(λx0)

v

v!
e−λx0 . (7)

The average number of neighbor nodes falling within a radius
x0

2 around a given node i can be calculated as

n̄i = E (ni) = λx0. (8)

For a given node i with a communication range Ri, the
expected number of connected neighbor nodes can be then
calculated as

n̄i = E (ni) = 2Riλ. (9)

Hence, the average number of connected neighbors per node
is

n̄ = E (n̄i) =
1

N

N∑
i=1

n̄i = 2λ
1

N

N∑
i=1

Ri = 2R̄λ , (10)

where R̄ is the average communication range over all nodes,
a fortiori unknown as well.

Furthermore, ni, the number of connected neighbors to node
i = 1, . . . , N , can be estimated from the connectivity data as

n̂i =
N∑
j=1

Cij . (11)

From (9) and (11), we can estimate the range Ri of node i as

R̂i =
1

2λ

N∑
j=1

Cij . (12)

Hence, the average number of connected neighbors per node
can be estimated as

ˆ̄n =
1

N

N∑
i=1

n̂i =
1

N

N∑
i=1

N∑
j=1

Cij . (13)

From (10) and (13), we can estimate the average range R̄ as

ˆ̄R =
1

2λ

N∑
i=1

R̂i
N

=
1

2λN

N∑
i=1

N∑
j=1

Cij =
̂̄n
2λ
. (14)

C. PLE Estimation

From the large-scale path-loss model in (1), we can estimate
the PLE γ by assuming that the received power from a transmit
node at another – it is connected to – is equal to the power
detection threshold Pth when the distance separating them is
equal to the estimated average range R̂ in (12). Hence, the
PLE estimate can be obtained as

γ̂i =
−P th + Pr (d0)

10 log10

(
R̂i

) , (15)

or preferably over the whole WSN as

ˆ̄γ =
1

N

N∑
i=1

γ̂i. (16)

Please note in the particular homogeneous WSN case, where
all nodes are a priori known to have the same communication
range (i.e., Ri = R̄ for i = 1, ..., N), that the PLE can be
estimated using the average-range estimate as

̂̄γ =
−P th + Pr (d0)

10 log10

(̂̄R) . (17)

D. Distance Estimation

Each node i, for i = 1, ..., N , estimates its distances to its
connected neighbor nodes k 6= i ∈ ζi = {i1, ..., in̂i} as

d̂ik = 10
Pr(d0)−Prik

10 γ̂ , (18)

where ζi represents the set of neighbors to node i, and Prik
is the received power at node i from node k.
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Algorithm 1 RANGE, PLE, AND DISTANCE ESTIMATION
ALGORITHM.
C: is the connectivity matrix
Pr: is the received power matrix
Input N : is the number of nodes
For i← 1 to N

For j ← 1 to N
Pr ← using (2)
Cij ← using (3)
C ← using (4)

End
End
For i← 1 to N

n̂i ← using (11)
End
ˆ̄n ← using (13)
ˆ̄R ← using (14)
γ̂i ← using (15)
ˆ̄γ ← using (16) or (17)
For i← 1 to N

d̂ik ← using (18)
End

E. Relative Positioning

As mentioned previously in Section I, our joint parameter
estimation technique is an anchor-less solution that addresses,
in general, a fundamental problem: the recovery of the WSN’s
key propagation characteristics and geometry mainly from
the connectivity information. In fact, instead of computing
the absolute node positions, it can estimate the relative po-
sitions with respect to a coordinate system established by
a reference group of nodes [25], since these locations stem
immediately from distance estimation. Relative positioning can
be satisfactory and work efficiently in many applications such
as location-aided routing [26] as one example. Moreover, a
relative coordinate system can still be transformed into an
absolute coordinate system by just including a single anchor
node serving as a reference point.

IV. SIMULATION RESULTS

In this section, we conduct extensive simulations to eval-
uate the performance of our new joint estimation solution
for the range, the PLE, and the distance using MATLAB.
We also compare it with some of the most representative
benchmarks available in the literature, but only for distance
estimation. Indeed, to the best of our knowledge, none tackles
the estimation of all three parameters jointly. To do so, we
consider a multi-hop linear WSN of N nodes deployed for
the sake of simplicity in a homogeneous environment, i.e., all
nodes have a priori the same communication range Ri = R̄
for i = 1, . . . , N with density λ along a segment of length
xmax − xmin. Performance results are assessed over NMC

random topologies or Monte-Carlo runs. RSS measurements
are generated using the path-loss model in (1). As mentioned
in section III, we assume a fully-connected network, i.e.,

TABLE I: WSN SIMULATION PARAMETERS SETUP.

Parameter [Unit] Value(s)
γ: PLE [2.5; 3; 3.5; 5; 5]
N :WSN node’s number 65
λ: WSN density [node/m] 1/3
σ: Log-Normal shadowing standard deviation [dB] [1; 2; 3; 4; 5; 6]
(xmax − xmin): Deployment distance [m] 200
Pr (d0): Received power at reference d0 = 1 [dBm] −45
Pth: Threshold power [dBm] −90
NMC : Number of tested Monte-Carlo topologies 1000

information can be transmitted through an existing multi-hop
path between any two sensors in the network. All relevant
WSN simulation parameters are listed in Table I. Since our
solution is able to jointly estimate three parameters, namely,
the average range R̄, the PLE γ, and all inter-node distances
dik, we adopt in all our assessments and comparisons below
the NMAE [27], [28] as our key performance metric for all
three estimators of these parameters.

A. Range Estimation

As mentioned in section II, the communication range R , in
our study is unknown. However, we can calculate its nominal
value R using (1) as

R = 10
[Pr(d0)−Pth]

10 γ , (19)

by assuming that the received power becomes equal to the
threshold value Pth, when the distance separating two nodes
is equal to the communication range. Table II lists the values
of R obtained for typical values of the PLE when the received
power at the reference distance d0 = 1 is set to −45 dBm.

TABLE II: AVERAGE-RANGE VALUES VERSUS THE PLE.

γ 2.5 3 3.5 4 5
R̄ [m] 63.09 31.60 19.30 13.30 7.94

To evaluate the efficiency of our method in the estimation
of the average range using (14), we assess its NMAE as

εR̄ = EMC


∣∣∣ ̂̄R− R̄∣∣∣

R̄

 , (20)

where EMC denotes averaging over all Monte-Carlo runs.
We also define the range’s NMAE as

εR = EMC

 1

N

N∑
i=1

∣∣∣R̂i −Ri∣∣∣
Ri

 . (21)

The red curves in Fig. 1 plot the range’s NMAE versus σ,
the log-Normal shadowing standard deviation, for the different
PLE values listed in Tab. II. As expected, errors increase both
with σ and γ (i.e., more severe path-loss and log-Normal
shadowing). The lowest and highest values of 0.19 and 0.32
are reported when the couple of channel parameters (γ, σ) is
set to (2.5, 1) and (5, 6), respectively. At high values of σ,
the NMAE curves tend to converge to about the same level of
errors for all values of γ larger than or equal to 3. On the other
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Fig. 1: Average-range NMAE and range NMAE vs. the log-Normal shadowing standard
deviation for different PLE values.

hand, the blue curves in Fig. 1 plot the average-range’s NMAE
versus σ for the same PLE values. As expected, errors increase
with σ (i.e., more severe log-Normal shadowing) for any given
value of γ. However, against all intuitive expectations, errors
decrease on the contrary with γ (i.e., more severe path-loss)
for any given value of σ. The lowest and highest values
of 0.05 and 0.39 are reported when the couple of channel
parameters (γ, σ) is set to (5, 1) and (2.5, 6), respectively.
This is due to the fact that smaller PLE values translate into
higher average-range values. The latter increases from about
8 to 63 meters when the PLE value decreases from 5 to 2.5,
respectively. As such, the number of neighbors within range,
yet at more than a single-hop distance, becomes increasingly
larger thereby biasing more severely the estimate in (14).
Nevertheless, the average-range estimates (i.e., blue curves)
remain in most cases (except for γ = 2.5 and σ larger than
1.5 and γ = 3 and σ larger than 5.5) far more accurate than
the per-node range estimates (i.e., red curves). This shows the
advantage of knowing a priori that a WSN is homogeneous,
i.e., when the average-range estimate can replace the range
estimate at each node, more so at smaller values of σ and
larger values of γ.

B. PLE Estimation

To assess the performance of our solution in the estimation
of the average PLE, we define its NMAE as

εγ̄ = EMC

[∣∣̂̄γ − γ̄∣∣
γ̄

]
. (22)

We also define the PLE’s NMAE as

εγ = EMC

[
1

N

N∑
i=1

|γ̂i − γi|
γi

]
. (23)

The red curves in Fig. 2 plot the PLE’s NMAE versus σ, the
log-Normal shadowing standard deviation, for the PLE values
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Fig. 2: Average-PLE NMAE and PLE NMAE vs. the log-Normal shadowing standard
deviation for different PLE values.

listed in Tab II. As expected once again, errors increase both
with σ and γ. The lowest and highest values of 0.07 and 0.35
are reported when the couple of channel parameters (γ, σ) is
set to (2.5, 1) and (5, 6), respectively. On the other hand, the
blue curves plot the average-PLE’s NMAE versus σ. Again
as expected, errors increase with both σ for any given value
of γ. However, once more, against all intuitive expectations
as in Fig. 1 with the average range, errors decrease on the
contrary with γ for any given value of σ. The lowest and
highest values of 0.07 and 0.35 are reported when the couple
of channel parameters (γ, σ) is set to (2.5, 1) and (5, 6),
respectively. This is hardly surprising since estimation of the
average PLE in (17) stems directly from the estimation of the
average range in (14). However, once again the average-PLE
estimates (i.e., blue curves) remain in most cases (except for
γ = 2.5 and σ larger than 2.4) far more accurate than the per-
node PLE estimates (i.e., red curves). This shows once again
the advantage of knowing a priori that a WSN is homogeneous,
more so at smaller values of σ and larger values of γ.

C. Distance Estimation

In order to prove the efficiency of the proposed technique
in terms of distance estimation accuracy, we gauge its NMAE
performance against best representative benchmarks available
in the literature. Explicitly, we consider the weighted least
square (WLS) [10], the linear least square (LLS) [11], and
generalized total least square (GTLS) [14] methods. The
distance NMAE, εd, is defined as

εd = EMC

 1

N

N∑
i=1

1

S(ζi)

∑
k ∈ζi

∣∣∣d̂ik − dik∣∣∣
dik

 , (24)

where S (ζi) is the size or the cardinal of ζi, the set of node-
i’s neighbors. In Fig. 3, we assess it versus the log-Normal
shadowing for different PLE values in two different scenarios
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Fig. 3: Distance NMAE vs. the log-Normal shadowing standard deviation for different PLE values

where we assume the homogeneity of the WSN to be either
known (i.e., possible exploitation of the average-range and
average-PLE estimates) or unknown (i.e., exploitation of the
per-node range and PLE estimates). First of all, we observe
that the proposed estimator outperforms all benchmarks no
matter the values of σ and γ. However, as the PLE increases
from 2.5 to 5 in Figs. 3 (a) to (d), the accuracy gain of the
new anchor-less estimator over the anchor-based benchmarks
increases as the latter keep deteriorating more and more
severely, in contrast to the proposed solution that is far more
robust to the PLE and the log-Normal shadowing. At γ = 4,
WLS can no longer work and is removed from Fig. 3 (c).
Whereas GTLS collapses at γ = 5 and is removed from Fig. 3
(d). More importantly, we observe that the proposed estimator
with the a priori knowledge of the network homogeneity
outperforms the one without that prior information, more so
at larger values of σ and γ. Both see their accuracy decrease
with σ. However, the latter sees its performance deteriorate

with γ whereas the former shows the opposite trend (except
for the extreme PLE value of 5).

V. CONCLUSION

In this paper, we proposed a novel joint estimation scheme
for the range, PLE, and inter-node distances of an anchor-less
WSN based on its connectivity data and the RSS. To do so, we
have been able to derive new analytical expressions for both
the per-node and average communication range and the PLE.
From there, we have been to estimate all distances between
nodes using an RSS-based approach. Comparisons through
extensive simulations with best representative anchor-based
benchmarks show the superior accuracy of our new approach.
Our solution was derived for one-dimensional WSNs that
find today wider use in many new applications. However,
extensions to two- or three-dimensional network topologies
are under investigation and will be the very soon subject of
future disclosures.
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