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Abstract—This paper provides an analytically tractable
framework for investigating a fading model-free statistical
distribution of the signal-to-interference-plus-noise power
ratio (SINR) in Poison distributed cellular networks subject
to device-to-device (D2D) transmissions. Our main finding
show that a closed-form SINR distribution may be obtained
for any fading scenario in which the per-link power gain
follows the product of two Fox’s H-function probability
density function thereby subsuming most of the coverage
probability expressions previously presented for all the
known simple and composite fading models.

Index Terms—Device-to-device, stochastic geometry, cov-
erage probability, Fox’s-H function.

I. INTRODUCTION

Computing the SINR distribution in Poison distributed

cellular networks is significantly tractable only for fading

channels and transmission schemes whose equivalent

per-link power gains follow a Gamma distribution with

integer shape parameter ( [1], [2] and references therein).

Such particular fading distributions, by leading to expo-

nential expressions for the conditional SINR that enable

averaging via the Laplace transform of the interference,

have very often limited legitimacy according to [3],

[4], who argued that these fading models may fail to

capture new and more realistic fading environments.

This is particularly true as new communication technolo-

gies accommodating a wide range of usage scenarios

with diverse link requirements are continuously being

introduced and analyzed, for example, device-to-device

and body-centric communications, free-space optical

(FSO) communications, and millimeter-wave communi-

cations. In fact, the design of such new communication

paradigms need to acquire flexibility to account for

disparate signal propagation mechanisms.

Over the past few years, several new fading models

have been introduced to model either the fading or

the joint fading/shadowing phenomena. These models,

including the κ-µ [3], the shadowed κ-µ [5], the Weibull

[6] and the generalized K [7], among many others,

generally offer a better fit to the fading observed in

a range of real-world applications than the classical

Rayleigh, Nakagami-m, and Rician distributions.

Some prior works have already made a good progress

on the analysis of the distribution of the SINR by pre-

suming a specific channel gain model [8]- [9]. However,

besides being channel-model dependent, they relied on

series representation methods (e.g., infinite series in [10]

and Laguerre polynomial series in [9]) thereby express-

ing the interference functionals as an infinite series of

higher order derivative terms given by the Laplace trans-

form of the interference power. These methods cannot

lend themselves to closed-form expressions and hence

require complex numerical evaluation.

These aforementioned challenges foster our motive

to develop a unified SINR analysis framework that

subsumes most, if not all, of the linear and non-linear

fading models adopted in the open literature. The general

setting of the paper considers single-tier device-to-device

(D2D)-enabled cellular network where the D2D links are

allowed to share the uplink cellular spectrum. Currently

being touted as a potential ingredient of 5th-generation

wireless networks, D2D allows direct communication be-

tween cellular mobiles, thus bypassing the base stations

([1], [9] and references therein). D2D opens up new

opportunities for proximity-based commercial services

and particularly social networking applications.

The first main contribution of this paper is to intro-

duce a novel approach to deriving a model-free general

expression for the D2D and cellular SINR complemen-

tary cumulative density function (CCDF). Due to the

generality of the CCDF and Laplace transform of the

interference power, they have been successfully applied

to arbitrary Nakagami-m, the Weibull, the generalized

K, and shadowed κ-µ fading models. This paper, further

embody the Fox’s H-transform theory, wherein integral

transforms involve Fox’s H-functions as kernels, for

modeling and analysis of D2D enabled cellular network,

which is in fact new.

II. SYSTEM MODEL

Consider a set of macro-cellular BSs and a set of

D2D users operating in the uplink through an overlaid

spectrum access. The overlaid spectrum access scheme

allocates orthogonal time/frequency resources to the

cellular and D2D transmitters by dividing the uplink

spectrum into two non-overlapping portions. The loca-

tions of macro-cellular BSs and D2D users are modeled

as independent homogeneous Poisson point processes978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



(PPP) Ψc and Ψd with intensities λc and λd, respectively.

In this setting, the received power at the typical

receiver located at the origin can be written as

P r
x = P0,xh0,xL

−α
0,x , x ∈ {c, d} (1)

where P0,x, h0,x and L0,x are the power of the typical

transmitter, the fading power in the typical transceiver

channel, and the distance between the typical transmitter

and receiver, respectively, and α > 2 is the path-loss

exponent. Let the Point Processes (PP) Ψ̃c ⊂ Ψc and

Ψ̃d ⊂ Ψd denote the set of interfering cellular UEs with

intensity λc and the set of interfering D2D UEs with

intensity τλd, respectively, where 0 ≤ τ ≤ 1 is the

ALOHA transmit probability on each time slot. Then,

the D2D and cellular interference at the typical receiver

are

Id =
∑

i∈Ψ̃d\{0}

Pi,dhi,dL
−α
i,d (2)

Ic =
∑

i∈Ψ̃c

Pi,chi,cL
−α
i,c (3)

where Pi , hi, and Li, denote the transmit power, the

fading power, and the locations of macro-cellular UEs

(subscript c) and D2D users (subscript d). In this paper,

we use channel inversion for power control, i.e., Pi =
Lα
i .

III. GENERALIZED SINR ANALYSIS

Theorem 1: With overlay in-band D2D, the SINR

complementary cumulative distribution function (CCDF)

of D2D and cellular links, defined as P
x(T ) ,

P

(
SINRx =

P r
x

Ix+σ2 ≥ T
)

for x ∈ {d, c}, is given by

P
x(T ) =

1

T

∫ ∞

0

Eh
[
h G1,0

1,2

[
hξ

T

∣∣∣∣
0

0,−1

]]

× exp
(
−ξσ2 −Ax(ξ, δ)

)
dξ, (4)

where Ez[.] is the expectation with respect to the random

variable z, Gc,d
a,b[·] denotes the Meijer’s-G function [12,

Eq. 9.301] and



Ad(ξ, δ)=πτλdξ

δΓ (1− δ) E
[
P δ
d

]
E
[
hδ
]
, D2D;

Ac(ξ, δ)=
δξ Eh,Pc

[
hPc 2F2

(
1−δ,1;2−δ,2;− ξPch

R2/δ

)]

R2/δ(1−δ)
, Cellular.

(5)

whereby δ = 2
α

, Px = Lα
x for x ∈ {d, c}, and pFq(·)

stands for the generalized hypergeometric function [12,

Eq. 9.14.1].

Proof: See Appendix A for details.

Theorem 1 demonstrates the general expressions of the

Laplace transforms of Id and Ic as well as the SINR

CCDF without assuming any specific random channel

gain and distance models. Notice that, thought in (4)

the path loss is fully compensated corresponding to

channel inversion, assuming fractional power control

(FPC) which partially compensates for path loss, i.e.,

(i.e., Pi = Lǫα
i where ǫ ∈ [0, 1]) is also analytically

tractable using [2] and following the same steps as in

Appendix A.

Notice that in accordance with [1], the cellular uplink

interference Laplace transform is independent of the BS

intensity λc. While [1] only considers Rayleigh fading,

Theorem 1 remarkably extends this invariance property

to any fading model.

Hereafter we assume the active cellular transmitter

inside the coverage area U is uniformly distributed in

a circular disk B(0, R) with PLc(x) = 2πλcxI[x ∈
[0, 1/

√
πλc]]. Moreover, we assume that each potential

D2D receiver is randomly and independently placed

around its associated potential D2D transmitter with

isotropic direction and Rayleigh distributed distance Ld

with PLd
(x) = 2πζxe−πζx2

, ζ > 0. Accordingly,

taking the expectation over Lx, x ∈ {d, c} in (5) yields
{
Ad(ξ, δ) = τλξδΓ(1−δ)γ(2,ζπθ2)

ζ
E
[
hδ
]
, D2D ;

Ac(ξ, δ) = δ2ξEh[h3F3(1−δ,1,1+δ;2−δ,2,2+δ;−ξh)]
(δ−1)(δ+1) , Cellular;

(6)

where Ad(ξ, ν) follows from (5) after recognizing that

E [P δ
d ] = E [L2

d] =
γ(2,ζπθ2)
πζP(Ld≤θ) where θ is a predefined

mode selection threshold [1, Eq. 10], and γ(a, z) stands

for the incomplete Gamma function [12, Eq. 9.100]

while letting λ = λD/P(Ld ≤ θ). In its turn the

expectation of Ac(ξ, ν) over Lc in (5) follows from

applying
∫

zβ−1
2F2 (a1, a2; b1, b2; cz

r) dz =

zβ

β
3F3

(
β

r
, a1, a2;

β

r
+ 1, b1, b2; cz

r

)
.(7)

Hereafter, let

Φ(ξ, T ) = Eh
[
h G1,0

1,2

[
hξ

T

∣∣∣∣
0

0,−1

]]
, (8)

then capitalizing on (4) and (6), we would like to

emphasize that truly closed-form results may be obtained

for any fading scenarios in which the per-link power gain

follows the product of two Fox’s H-function probabil-

ity density function [13], [14]. As a case study, here-

after, we focus our attention to Nakagami-m, Weibull,

Generalized-K, and shadowed κ-µ fading channels.

Proposition 1 (Nakagami-m Fading): The D2D and

cellular links CCDF over Nakagami-m fading is given

by

P
x
m(T ) =

1

Γ(m)

∫ ∞

0

ξ−1G1,1
2,2

[
Ωξ

mT

∣∣∣∣
1−m, 1

1, 0

]

× exp
(
−ξσ2 −Ax

m(ξ, δ)
)
dξ, (9)

where


Ad

m(ξ, δ)= τλξδ

ζ

(
Ω
m

)δ Γ(1−δ)Γ(m+δ)γ(2,ζπθ2)
Γ(m) ,

Ac
m(ξ, δ)=

δ2ξΩ 4F3(1−δ,1,1+δ,m+1;2−δ,2,2+δ;−Ωξ
m )

(δ−1)(δ+1) .
(10)



Proof: Let h be a random variable with fh(y) =
(m

Ω )
m

Γ(m) x
m−1e−

m
Ω x, then we have

Φ(ξ, T )
(a)
=

Ω

Γ(m+ 1)
G1,1

2,2

[
Ωξ

mT

∣∣∣∣
−m, 0
0,−1

]
(11)

where (a) follows after using [12, Eq. 7.813]. In the

other hand, Ad
m(ξ, ν) is obtained from (6) while E [hδ] =

Γ(m+δ)
Γ(m)

(
Ω
m

)δ
and Ac

m(ξ, ν) follows from (6) after ap-

plying [12, Eq. 7.522.9 ]. Plugging all these results in (4)

yields Px
m(T ) after some manipulations. It is worthwhile

to mention that Px
m(T ) is new and constitutes a valuable

add on to the existing SINR CCDF analysis frameworks

for integer m [15].

Corollary 1: When the D2D communication is inter-

ference limited, the SIR CCDF under Nakgami-m fading

is given by

P
d
m(T ) =

1

Γ(m)
H2,0

1,2

[
λκmT δ

∣∣∣∣
(1, δ)

(0, 1), (m, δ)

]
, (12)

where κm = τΓ(1−δ)Γ(m+δ)γ(2,ζπθ2)
ζΓ(m) and Hm,n

p,q [·] is the

univariate Fox’s-H function [13, Eq.(1.2)].

Proof: In the case of no noise, Pd
m(T ) in (9) becomes

P
d
m(T )

(a)
=

1

Γ(m)

∫ ∞

0

ξ−1G1,1
2,2

[
Ωξ

mT

∣∣∣∣
1−m, 1

1, 0

]

×H1,0
0,1

[
Ad

m(ξ, δ)

∣∣∣∣
−

(0, 1)

]
dξ, (13)

where (a) follows after resorting to exp(−x) =

H1,0
0,1

[
x| −
(0, 1)

]
. Then, expressing the Meijer-G function

in (13) in terms of Fox-H function by means of [13,

Eq.(1.111)] and applying [13, Eq.(2.19)] complete the

proof.

Proposition 2 (Weibull Fading): The weibull fading

channel accounts for the nonlinearity of a propagation

medium with a physical fading parameter ν. When h
follows a Weibull distribution with parameters (ν,Φ =
Ων) [6], then the SINR CCDF D2D and cellular links is

P
x
W(T )=

ν

TΦ

∫ ∞

0

(
T

ξ

)ν+1

H1,0
1,1

[(
T

ξ

)ν
1

Φ

∣∣∣∣
(1 − ν, ν)
(0, 1)

]

× exp
(
−ξσ2 −Ax

W(ξ, δ)
)
dξ, (14)

where




Ad

W (ξ, δ)= τλξδ

ζ
Φ

δ
ν Γ (1− δ) Γ

(
1 + δ

ν

)
γ(2, ζπθ2),

Ac
W (ξ, δ)=δ2H4,1

4,4

[
φ
ξ

∣∣∣∣
(−ν, 1), (1−δ, 1), (1, 1), (1+δ, 1)

(1, 1
ν
), (δ, 1), (0, 1), (δ, 1)

]
.

(15)

Proof: The proof follows from (8) with fh(y) =

ν
Φy

ν−1e−
yν

Φ
(a)
= ν

Φy
ν−1H1,0

0,1

[
yν

Φ

∣∣∣∣
−

(0, 1)

]
and apply-

ing [13, Eqs. (2.3), (1.56)]. Besides, Ac
W(ξ, ν) fol-

lows by resorting to E [hδ] = Γ(1 + δ
ν
)φ

δ
ν . In

the other hand, recalling that pFq(ap; bq;−z) =

H1,p
p,q+1

[
z

∣∣∣∣
(1− ap, 1)

(1, 1), (1− bq, 1)

]
and applying [13, Eq. 2.3]

yield Ac
W(ξ, ν) after some manipulations.

Corollary 2: When the D2D communication is inter-

ference limited, the SIR CCDF under Weibull fading is

given by

P
d
W(T ) = H2,0

1,2

[
λκWT δ

∣∣∣∣
(1, δ)

(0, 1), (1, δ
ν
)

]
(16)

where κW =
τΓ(1−δ)Γ(1+ δ

ν )γ(2,ζπθ2)

ζ
.

Proof: The result follows in the same line of (12)

while applying [13, Eq. 2.3].

Remark 1: The Rayleigh fading is a special case of

(9) and (14) when m = 1 and ν = 1, respectively. When

m = 1, applying [13, Eq. 1.60] to (9) and recognizing

the fact that G1,1
2,2

[
Ωξ
T

∣∣∣∣
−1, 0
0,−1

]
= δ

[
T
ξΩ−1

]
where δ[x]

stands for the DiracDelta function, i.e., δ[x] = 0/;x 6= 0,

leads to

P
x(T ) = exp

(
−T

σ2

Ω
−Ax

(
T

Ω
, δ

))
. (17)

where Ax (ξ, δ) is obtained form (10) by setting

m = 1 and simplifying using pFq(ap; bq−1, ap; z) =

p−1Fq−1(ap−1; bq−1; z) as

{
Ad(ξ, δ) = τλξδΩδ

ζ

πγ(2,ζπθ2)
δ sin(πδ) ,

Ac(ξ, δ) = δ2ξΩ 3F2(1−δ,1,1+δ;2−δ,2+δ;−ξΩ)
(δ−1)(δ+1) ,

(18)

The same result could be obtained form (14) by setting

ν = 1 and simplifying using [13, Eq. 1.56].

The coverage formulas in (17) matches the well-known

major result for Rayleigh fading obtained in [1, Eqs. 12,

15], validating once again the wider scope of our new

analysis approach. Notice however that (17) constitutes

a useful add on to [1, Eqs. 15] by deriving Ac(ξ, δ) in

closed-form.

Proposition 3 (generalized-K Fading): When h
follows a generalized-K distribution with parameters

(m, k,Ω) [6], then the D2D and cellular coverage is

given by

P
x
K(T ) =

(
Tmk
Ω

)m

Γ(k)Γ(m)

∫ ∞

0

ξ−m−1e−
Tmk
ξΩ

×U

(
1− k,m− k + 1;

Tmk

ξΩ

)

× exp
(
−ξσ2 −Ax

K (ξ, δ)
)
dξ, (19)

where U(a, b; z) stands for the Triconomi confluent

hypergeometric function [12, Eq. (9.211.1)], and






Ad
K(ξ, δ)=

τλξδ( Ω
mk )

δ
Γ(1−δ)Γ(m+δ)Γ(k+δ)γ(2,ζπθ2)

ζΓ(m)Γ(k) ,

Ac
K(ξ, δ)=

δ2G1,5
5,4



ξΩ
mk

∣∣∣∣∣∣
1+δ, 1−k, 1−m, 1, 1−δ

1, 0,−δ, δ





Γ(m)Γ(k) .
(20)



Proof: In 5G communications design, the combined

effect of small-scale and shadowed fading needs to

be properly addressed. Shadowing, which is due to

obstacles in the local environment or human body (user

equipments) movements, can impact link performance

by causing fluctuations in the received signal. For in-

stance, the shadowing effect comes to prominence in

millimeter wave (mmWave) communications due to the

higher carrier frequency. In this respect, the generalized-

K (GK) model was proposed by combining Nakagami-m
multipath fading and Gamma-Gamma distributed shad-

owing [7]. The proof follows from (8) with fh(y) =
(
√

4km
Ω )k+m

2k+m−1Γ(m)Γ(k)y
k+m

2 −1Kk−m

(√
2kmy

Ω

)
were Kb(·)

is the Bessel function of the first kind of order b [12,

Eq. (13.1.2)], and applying [13, Eqs. (2.3), (1.56)].

Moreover, resorting to the displacement theorem [11],

it follows that E [hj ] = Γ(m+j)Γ(k+j)
Γ(m)Γ(k)

(
Ω
mk

)j
thereby

yielding Ad
K(ξ, ν). The conversion method can incorpo-

rate an arbitrary fading distribution, but is not applicable

when there is an exclusion zone in the interference field.

Therefore Ac
K(ξ, δ) is obtained form (6) after substi-

tuting the hypergeometric function by its expression of

Meijer’s-G function [12, Eq. 9.304.8] and applying [12,

Eq. 7.821.3].
Proposition 3 (shadowed κ-µ Fading): With overlay

in-band D2D, the SINR CCDF of D2D and cellular links

over shadowed κ-µ fading is

P
x
Sκµ(T )=

C̃Sκµ

T

∫ ∞

0

G1,1,0,1,1
1,[1,1],0,[2,2]


−

µκ
(µκ+m)

ξΩ
Tµ(1+κ)

∣∣∣∣∣∣

1+µ
1−m; 0

0, 1−µ; 0,−1




exp
(
−ξσ2−Ax

Sκµ(ξ, δ)
)
dξ, (21)

where C̃Sκµ = Ω

Γ(m)µ(1+κ)(µκ
m +1)m

, and

Gp,q,k,r,l

a,[c,e],b,[d,f ](·, ·) is the generalized Meijer’s G-

function of two variables [14]. Moreover in (21),

Ax
Sκµ(ξ, ν) is obtained as





Ad
Sκµ(ξ, δ)=

τξδΓ(1−δ)γ(2,ζπθ2)Γ(µ+δ)2F1(µ−m,µ+δ,µ;−µκ
m )

ζ( Ω
µ(1+κ) )

−δ
(µκ

m +1)
m−µ−δ

Γ(µ)
;

Ac
Sκµ(ξ, δ)=

δ2Ωξ
∑3

k=1ΘkF2(µ+1,ak,m;ak+1,µ;
µκ

µκ+m ,− ξΩ
µ(1+κ))

(1+κ)(δ−1)(δ+1)( µκ
m +1)m ,

(22)

where Θk =
∏3

j=1,j 6=k
aj

aj−ak
with ak ∈ {1, 1 − δ, 1 +

δ}, k = 1, . . . , 3, and F2 stands for Appell’s function

[17, Eq. 27].
Proof: See Appendix B.
Corollary 3: In interference-limited κ-µ shadowed

environment, the coverage of D2D communication is

obtained as

P
d
Sκµ(T ) =

C̃Sκµ

δTκ
1
δ

Sκµ

H1,1,0,1,2
1,[1,1],0,[2,2]



− µκ

(µκ+m)

λκ
−1
δ

Sκµ

Tµ(1+κ)

∣∣∣∣∣∣

(1 + µ, 1)
(1−m, 1); (1− 1

δ
, 1
δ
); (0, 1)

(0, 1), (1− µ, 1); (0, 1), (−1, 1)


 , (23)

where κSκµ =
τΓ(1−δ)Γ(µ+δ)2F1(µ−m,µ+δ,µ;−µκ

m )γ(2,ζπθ2)

ζ(µκ
m +1)m−µ−δ

Γ(µ)
,

and H [·, ·] denotes the Fox-H function (FHF) of two

variables [16, Eq.(1.1)] also known as the bivariate FHF.

Proof: When σ2 → 0, Px
Sκµ(T ) in (21) becomes

P
d
Sκµ(T )=

C̃Sκµ

T

∫ ∞

0

G1,1,0,1,1
1,[1,1],0,[2,2]



−
µκ

(µκ+m)

ξΩ
Tµ(1+κ)

∣∣∣∣∣∣

1+µ
1−m; 0

0, 1−µ; 0,−1





H1,0
0,1

[
Ad

Sκµ(ξ, δ)

∣∣∣∣
−

(0, 1)

]
dξ. (24)

Then applying [13, Eq. 2.11] yields the desired result

after some algebraic manipulations.

Remark 2: The κ-µ shadowed distribution is a very

flexible model which contains as special cases the

majority of the linear fading models proposed in the

open literature, including Rayleigh, Rice (Nakagami-n),

Nakagami-m, Hoyt (Nakagami-q), One-Sided Gaussian,

κ-µ, η-µ and Rician shadowed to name a few [5, Table

1]. These fading models are unlikely tractable form (21)

and (23) due to the high degree of difficulty in handling

the Meijer’s-G and Fox’s-H functions of two variables.

IV. NUMERICAL AND SIMULATION RESULTS

In the following, we compare numerical results for

different fading models with the following parameters:

macro BS intensity λc =
1

π5002 , D2D user intensity λ =
10λc, ALOHA transmit probability τ = 0.8, path-loss

exponent α = 4, and mode selection threshold θ = 200m

Without loss of generality, we assume identical fading

parameters across the intended and interference link.

Fig. 1 and Fig. 2 show the SINR CCDF of the D2D

overlaid network for different fading environments. As

expected, the performance deteriorates as the shadowing

becomes more pronounced or the fading severity param-

eter m becomes smaller. The D2D links have a closer

transmission range than cellular links, which leads to

a higher SINR distribution for D2D links than cellular

links.

Fig. 3 depicts the D2D SIR CCDF in Weibull and

Nakagami-m fading channels. As expected, the coverage

probability deteriorates by decreasing m or ν. The cov-

erage increment of D2D link in Weibull fading is notable

over the whole range of ν, whereas the increment of D2D

coverage in Nakagami-m fading is barely distinguishable

after Rayleigh.

V. CONCLUSION

We have presented a unified method to computing the

D2D SINR distribution of an arbitrary fading model.

Remarkably, the paper embodies the H-transform theory

into a unifying coverage analysis framework for D2D-

commendation-enabled cellular networks, leading to new

SINR expressions for the most versatile fading distri-

butions. By virtue of some H-transform asymptotic ex-

pansions, the high signal-to-interference-plus-noise ratio
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(SINR) analysis culminates in easy-to-compute expres-

sions of the coverage probability.

VI. APPENDIX

A. Proof of Theorem 1:

The SINR CCDF P
x(T ) may be retrieved from its

Laplace transform as

LPx(z) =
1

z
− Mx

SINR(z)

z
, z ∈ R+, (25)

where Mx
SINR(z) denotes the SINR moment generating

function recently obtained in [2, Theorem 1] as

Mx
SINR(s) = 1−2

√
s

∫ ∞

0

Eh
[√

hJ1

(
2
√
shξ
)]

e−σ2ξ2LIx(ξ
2)dξ, (26)

where J1(·) is the Bessel function of the second kind

and first order [12, Eq. 8.402] and LI§
(s) = E

[
e−sI

]

denotes the Laplace transform of the aggregate interfer-

ence at a typical D2D for x = d and at a typical cellular

user for x = c. Substituting (26) into (25), yields

P
x(T )

(a)
= 2

∫ ∞

0

Eh


√h L−1



J1

(
2
√
shξ
)

√
s

, T






e−σ2ξ2LIx(ξ
2)dξ, (27)

whereby

L−1



J1

(
2
√
shξ
)

√
s

,T


(a)

= ξ
√
h

L−1

(
H1,0

0,2

[
shξ2

∣∣∣∣∣
−

(0, 1), (−1, 1)

]
, T

)

(b)
=
ξ
√
h

T
H1,0

1,2

[
hξ2

T

∣∣∣∣∣
(0, 1)

(0, 1),(−1, 1)

]
, (28)

where (a) and (b) follows form applying [13, Eq. 1.127

] and [13, Eq. 2.21], respectively. Plugging (28) into (27)

and carrying out the change of variable x = ξ2 yield

P
x(T ) =

1

T

∫ ∞

0

Eh
[
h H1,0

1,2

[
hξ

T

∣∣∣∣∣
(0, 1)

(0, 1), (−1, 1)

]]

e−σ2ξLIx(ξ)dξ. (29)

For overlay D2D, the Laplace transform of the inter-

ference at the cellular BS whose macrocell coverage

region is approximated by a disk U = B(0, R) with

R = 1/
√
πλc is given by

LIc(ξ) = EΨ,h



exp



−ξ
∑

i∈Ψ̃c
⋂

Uc

Pi,chi,cL
−α
i,c









(a)
= e−2πλcEh,Pc [

∫
∞

R (1−exp(−ξPchv
−α))vdv]

(b)
= e

−2πλcEh,Pc

[
hPcξ

∫
∞

R

e−ξPchv−α
1F1(1,2,ξPchv−α)dv

vα−1

]

(c)
= e

−
2R−αξEh,Pc [hPc2F2(1, 2

α
+1;2; 2

α
+2;−ξPch)]

Rαα(1− 2
α) , (30)



where we have used the probability generating

functional of PPP in (a), and (1 − e−x)/x =
e−x

1F1 (1, 2;x) in (b). Finally (c) follows from letting

t = x−α and applying
∫
xβ−1e−cx

1F1(a, b, cx) =
xβ

β 2F2 (b − a, β, b, β + 1,−cx).
For overlay D2D, the Laplace transform of the in-

terference at the D2D receiver LId
(ξ) follows from [9,

Eq.22] as

LId
(ξ) = exp

(
−πτλdξ

δΓ (1− δ) E [P δ
d ]E [hδ]

)
, (31)

Substituting (30) and (31) into (29) leads to Theo-

rem 1 after recognizing that H1,0
1,2

[
hξ
T

∣∣∣∣∣
(0, 1)

(0, 1), (−1, 1)

]
=

G1,0
1,2

[
hξ
T

∣∣∣∣∣
0

0,−1

]
.

B. Proof of Proposition 3:

The shadowed κ-µ distribution is used to account for

small scale fading which originates due to LOS or NLOS

conditions, whence its extreme versatility including as

special cases nearly all linear fading models adopted in

the open literature [5, Table I]. In this model, the domi-

nant signal components (DSCs) are subject to Nakagami-

m shadowing. The probability density function (PDF) of

h ∼ Sκ,µ,m(Ω;κ, µ,m) is

fh,Sκ−µ(y) =
µµmm(1 + κ)µ

Γ(µ)Ωµ(µκ+m)m

( y
Ω

)µ−1

e−
µ(1+κ)

Ω y

1F1

(
m, ν,

µ2κ(1 + κ)

Ω(µκ+m)
y

)
, (32)

where Ω = E [h], κ, µ, and m, are positive real shape

parameters, and 1F1(·) denotes the confluent hypergeo-

metric function of [12, Eq. (13.1.2)]. Then it follows that

Φ(ξ, T )
(a)
=

CSκµΓ(µ)

Γ(m)

∫ ∞

0

xµe−
µ(1+κ)x

Ω H1,0
1,2

[
ξx

T

∣∣∣∣
(0, 1)

(0, 1),(−1, 1)

]

H1,1
1,2

[
−µ2κ(1+κ)x

Ω(µκ+m)

∣∣∣∣
(1−m, 1)

(0, 1), (1− µ, 1)

]
dx

(b)
=

CSκµΓ(µ)

Γ(m)

(
µ(1+κ)

Ω

)−µ−1

H1,1,0,1,1
1,[1,1],0,[2,2]


−

µκ
(µκ+m)

ξΩ
Tµ(1+κ)

∣∣∣∣∣∣

(1+µ, 1)
(1−m, 1); (0, 1)

(0, 1), (1−µ, 1); (0, 1), (−1, 1)


 ,(33)

where CSκµ = µµmm(1+κ)µ

Γ(µ)Ωµ(µκ+m)m and (a) follows

from exploiting the equality 1F1 (a, b; z) =
Γ(b)
Γ(a)H

1,1
1,2

[
− z

∣∣∣∣
(1− a, 1)

(0, 1), (1− b, 1)

]
[13, A.6 ]. The

Laplace transform of the product of two Fox-H

functions functions [13, Eq. 2.6.2] was applied

to reach (b). The function H1,1
1,2[·, ·] denotes the

generalized Fox’s H-function of two variables and it

reduces to the generalized Meijer’s G-function of two

variables with the help of [13, Eq. 2.3.1] as shown

in (21). Recalling that under shadowed κ-µ fading

E [hj ] =
( Ω

µ(1+κ) )
j
Γ(µ+j)

(µκ
m +1)

m−µ−j
Γ(µ)

2F1
(
µ−m,µ+ j, µ;−µκ

m

)

[9, Eq.10] thereby yielding Ad
K(ξ, α) as in (22). In

the other hand Ac
K(ξ, α) is obtained from (6) after

resorting to 3F3 (1− δ, 1, 1 + δ; 2− δ, 2, 2 + δ;−ξh) =∑3
k=1 1F1 (ak, ak + 1;−ξh)

∏3
j=1,j 6=k

aj

aj−ak
where

ak ∈ {1, 1 − δ, 1 + δ}, k = 1, . . . , 3 and applying [17,

Eq. 27], thereby yielding

F2

(
a, b, b′, c, c′;

w

p
,
z

p

)
=

pa

Γ(a)

∫ ∞

0

xa−1e−px
1F1 (b, c, wx)

1F1 (b
′, c′, xz) dx. (34)
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