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Abstract—Statistical characterization of the signal-to-
interference-plus-noise ratio (SINR) via its cumulative
distribution function (CDF) is ubiquitous in a vast majority
of technical contributions in the area of cellular networks
since it boils down to averaging the Laplace transform
of the aggregate interference, a benefit accorded at the
expense of confinement to the simplistic Rayleigh fading. In
this work, to capture diverse fading channels that appear in
realistic outdoor/indoor wireless communication scenarios,
we tackle the problem differently. By exploting the moment
generating function (MGF) of the SINR, we succeed in an-
alytically assessing cellular networks performance, namely
the achievable rate and and the bit error probability (BEP),
over the shadowed κ-µ, κ-µ and η-µ fading models. These
models offer higher flexibility to capture diverse and more
realistic fading environments than the classical Rayleigh,
Nakagami-m, and Rician ones.

Index Terms—Cellular Networks, Fading Channels, Av-
erage Rate, Error Probability, LOS, NLOS, Stochastic
Geometry, Poisson Point Process.

I. INTRODUCTION

Cellular networks modeling and analysis is a vibrant

topic that keeps taking new dimensions in complexity

as to mirror the evolution if not revolution of wireless

networks from the first to the upcoming fifth wire-

less technology generation (5G). As a key enabler to

realize 5G wireless networks, heterogeneous networks

(HetNets) are indeed the most influential solution that

guarantees higher data rates and macrocell traffic off-

loading, while providing dedicated capacity to homes,

enterprises, or urban hot spots. To cope with such evo-

lution, stochastic geometry proved to be a very powerful

tool for reproducing large-scale spatial randomness, an

intrinsic property of emerging cellular networks, as well

as different sources of uncertainties (such as multipath

fading, shadowing, and power control) within tractable

and accurate mathematical frameworks [1], [3].

In the last decade, many contributions spearheaded

this line of research by developing all aspects of the

stochastic geometry models( cf. [1]- [6] and references

therein), except for the fading environments. As far as

the fading model is concerned, the Rayleigh fading has

been commonly assumed, with only some proposals

incorporating the Nakagami-m fading, yet merely with

integer parameter values [7], [8]. Such particular fading

distributions, by leading to exponential expressions for

the conditional SINR that enable averaging via the MGF

of the interference, have very often implied very similar

mathematical models in their analysis steps. Strikingly,

due to Rayleigh assumption, characterizing the SINR via

its cumulative distribution function (CDF) is ubiquitous

in almost all pioneering contributions pertaining to cel-

lular networks modeling [1]-[6].

Such infatuation with Rayleigh and Nakagami-m has,

however, limited legitimacy according to [9], who argued

that these fading models may fail to capture new and

more realistic fading environments. Besides ignoring the

line-of-sight (LOS) component in the received signal,

which is prominent in outdoor cellular communica-

tions, the Rayleigh model is a single-parameter fading

model that is not flexible enough to accurately represent

complex indoor fading environments. The diagnosis for

Rayleigh fading is even more pessimistic in future femto-

cells where multiple LOSs may be created by reflections

in close proximity to the BSs and/or users or may

appear in millimeter wave (mmW) communications [10].

With Nakagami-m fading, stochastic geometry analysis

necessitates for tractability an integer value for m [8],

thereby limiting the applicability of the model in setup

scenarios that capture practical multipath conditions.

As a step forward to bridge this gap in the litera-

ture, this work incorporates versatile multiple-parameter

fading models into tractable stochastic geometry anal-

ysis. These fading models include the shadowed κ-

µ distribution [11], the generalized Rician or the κ-µ
distribution, and the η-µ distribution [12]. Besides their

elegance, these models are governed by more than two

tunable parameters endowing them with high flexibility

to capture a broad range of fading channels, whence

their practical significance. These fading models offer

far better and much more flexible representations of

practical fading LOS, NLOS, and shadowed channels

than the Rayleigh and Nakagami-m distributions.

Although some works have considered already shad-

owed κ-µ fading in the context of stochastic geometry

(e.g., [13], [14]), they relied on series representation

methods (e.g., infinite series in [13] and Laguerre poly-

nomial series in [14]) thereby expressing the interference

functionals as an infinite series of higher order derivative978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



terms given by the Laplace transform of the interference

power. These methods cannot lend themselves to closed-

form expressions and hence require complex numerical

evaluation.

To the best of the authors’ knowledge, this paper is pi-

oneer in introducing a general approach of incorporating

the comprehensive shadowed κ-µ, κ-µ and η-µ fading

models into an exact and unified stochastic geometry

analysis.

II. NETWORK AND CHANNEL MODELS

We consider a downlink single-tier cellular network

where single-antennas BSs are deployed according to

a homogeneous PPP Ψ with intensity λ and a typical

single-antenna mobile user is located at the origin. It

is assumed that all the BSs have the same transmit

power P . Without loss of generality, all BSs are assumed

to have an open access policy, and hence, all users

can associate with all BSs. The users are assumed to

associate to the BSs according to their average radio

signal strength (RSS) rule. Similar to [1, Sec. VI],

universal frequency reuse is considered with no intra-

cell interference.

Further, we adopt the standard path-loss propagation

model of power attenuation r−α with the propagation

distance r, where α > 2 is the path-loss exponent.

For simplicity, we assumes that all BSs experience the

same path-loss exponent α. Besides we assume that

the channel gains between any two generic locations,

denoted by h, include all random channel effects such

as fading and shadowing. Additionally, we assume the

latter to be independent of each other, independent of the

spatial locations, symmetric, and identically distributed.

A. Channel Model Distributions

1) The shadowed κ-µ distribution: The shadowed κ-

µ distribution is used to account for small scale fad-

ing which originates due to LOS or NLOS conditions,

whence its extreme versatility including as special cases

nearly all linear fading models adopted in the open

literature [11, Table I]. In this model, the dominant

signal components (DSCs) are subject to Nakagami-m
shadowing. The probability density function (PDF) of

h ∼ Sκ,µ,m(Ω;κ, µ,m) is

fh,Sκ−µ(y) =
µµmm(1 + κ)µ

Γ(µ)Ωµ(µκ+m)m

( y

Ω

)µ−1

e−
µ(1+κ)

Ω y

1F1

(

m, ν,
µ2κ(1 + κ)

Ω(µκ+m)
y

)

, (1)

where Ω = E [h], κ, µ, and m, are positive real shape

parameters, and 1F1(·) denotes the confluent hypergeo-

metric function of [15, Eq. (13.1.2)]

2) The κ-µ distribution: The κ-µ distribution captures

the small-scale variations of the fading signal under

LOS conditions [12] and arises form the shadowed κ-

µ distribution by eliminating the shadowing of each

dominant component when m −→ ∞. The PDF of

h ∼ Sκ,µ(Ω;κ, µ) is

fh,κ−µ(y) =
µ(1 + κ)

µ+1
2

eκµΩκ
µ−1
2

( y

Ω

)µ−1
2

e−
µ(1+κ)

Ω y

Iµ−1

(

2µ

√

κ(1 + κ)

Ω
y

)

, (2)

where Ω = E [h], κ, µ are positive real shape parameters,

and Ib(·) denotes the modified Bessel function of the first

kind of order b [15, Eq. 8.431.1].

3) The η-µ distribution: The η-µ distribution repre-

sents the small-scale variation of the fading signal in a

NLOS condition [12]. The PDF of h ∼ Sη,µ(Ω; η, µ) is

given by

fh,η−µ(y)=

√
π(1 + η)µ+

1
2µµ+ 1

2

Γ(µ)Ω
√
η(1− η)µ−

1
2

( y

Ω

)µ− 1
2

e−
µ(1+η)2

2ηΩ y

Iµ− 1
2

(
µ(1− η)2

2ηΩ
y

)

. (3)

where Ω = E [h] and η, µ are non-negative real shape

parameters.

B. Modeling Methodology

The instantaneous SINR for the tagged user placed at

the originand located at a random distance r from its

serving BS can be expressed as

SINR =
Phr−α

σ2 + P
∑

i∈Ψ(\0) hir
−α
i

=
hr−α

σ2

P + I
, (4)

where σ2 is the noise power, Φ(\0) is the point process

representing the interfering BSs (excluding the serving

BS) on the tagged channel, and the random variable

I =
∑

i∈Ψ(\0) hir
−α
i denotes the aggregate interference

at the tagged user from Ψ(\0). Note that in stochastic

geometry analysis, spatial average performance metrics

requires the pdf of r, which is given in a PPP network

with RSS association as fr(x) = 2πλxe−πλx2

, r ≥ 0
[1].

Lemma 1: The MGF of the SINR can be calculated

as

MSINR(s) = 1− 2
√
s

∫ ∞

0

Eh
[√

hJ1

(

2
√
shξ
)]

︸ ︷︷ ︸

Σ

Er
[

exp

(

−σ2

P
ξ2rα

)

LI(ξ2rα)
]

dξ,(5)

where Ex[.] is the expectation with respect to the random

variable x, J1(·) is the Bessel function of the second kind

and first order [15, Eq. 8.402], and LI(s) = E
[
e−sI

]

denotes the Laplace transform of the aggregate interfer-

ence.

Proof: Given the SINR = hr−α

σ2

P
+I(r)

, its MGF, defined

as MSINR(s) , Er,h,I [exp (−sSINR)], is evaluated as



MSINR(s) = Er,h
[∫ ∞

0

exp

(

−shr−α

y

)

f
I+σ2

P

(y)dy

]

= Er,h
[

L 1

I+ σ2
P

(
shr−α

)
]

(a)
=1−2Er

[√
sr−α

∫ ∞

0

Eh
[√

hJ1

(

2
√
shr−αξ

)]

L
I+σ2

P

(ξ2)dξ

]

,(6)

where (a) follows from applying [16, Theoerm 1]. Then

Lemma 1 is obtained by a change of variable relabeling

ξr−
α
2 as ξ, while taking into account the linearity and

the time shifting properties of the Laplace transform

implying that L
I+σ2

P

(x) = e−
σ2

P
xLI(x).

It is worth emphasizing that Σ in (5) is independent

of the variable LI and is a function of the fading param-

eters only. Hence, for known fading parameters, Σ is a

constant w.r.t. the interference Laplace transform. This

key property of Lemma 1 makes the latter a powerful

baseline model to build upon in terms of developing

tractable analytical models for cellular network, namely

by extending the results of this paper to many other

directions. Without any hope of discussing them all, the

most prominent directions include uplink and multi-tier

downlink performance analysis. Although extended in

numerous ways to date [1]-[6], these three models (i.e.,

downlink, uplink and multi-tier) have never been consid-

ered from the standpoint of (5). Interestingly, Lemma 1

not only promote general and generic fading channels but

also other generalization aspects such as the the effect

of LOS/NLOS propagation where the probability with

which a BS is NLOS (also termed blocking probability)

is dependent on the distance between the BS and the

receiver of interest [18].

Hereafter, by applying (5), we characterize the SINR

by deriving for the first time its MGF in generalized

fading channels.

III. UNIFIED ANALYSIS OF THE SINR

STATISTICS

We now state our main and most general results from

which all other results in the subsequent sections shall

follow.

Theorem 1: The MGF of the SINR over shadowed

κ-µ fading is

MSκµ
SINR(s)= 1− Ωs

(
µκ
m + 1

)m
(1 + κ)

∫ ∞

0

Ψ1

(

µ+ 1,m; 2, µ;

−sξΩ
µ(1 + κ)

,
µκ

µκ+m

)

Er
[

exp

(

−ξrασ
2

P

)

LSκµ
I (ξrα)

]

dξ,(7)

where Ψ1(·, ·; ·, ·; ·, ·) denotes the Humbert function of

the first kind [19, Eq. 1.2]. The Laplace transform

of the aggregate interference when the receiver inter-

fering link suffers from arbitrary shadowed κ-µ fad-

ing, i.e., hi∈Φ(\0) ∼ Sκ,µ,m(ΩI ;κI , µI ,mI), is de-

noted as LSκµ
I and obtained, when µI ≤ mI , as in

(8) and becomes (9) when µI ≥ mI , where Θ =

ΩI

µI(1+κI )
, Ξ = (µIκ+mI )ΩI

mIµI (1+κI)
. Moreover, 2F1(a, b, c, x)

and F1(a, b, b
′; c;x, y) denote the Gauss hypergeometric

function [15, Eq. 9.100] and the first Appell’s hyper-

geometric function [15, Eq. 9.180.1], respectively, and
(
a
b

)
= Γ(a)Γ(b)/Γ(a+ b) is the binomial coefficient.

Proof: [17, Appendix B].

Theorem 2: The MGF of the SINR over κ-µ fading is

Mκµ
SINR(s)= 1−Ωe−κµs

(1 + κ)

∫ ∞

0

Ψ2

(

µ+1; 2, µ;
−sξΩ

µ(1 + κ)
, µκ

)

Er
[

exp

(

−ξrα σ
2

P

)

LκµI (ξrα)

]

dξ, (10)

where Ψ2(·, ·; ·; ·, ·) denotes the Humbert function of the

second kind [19, Eq. 1.3], and LκµI denotes the Laplace

transform of the aggregate interference under κ-µ fading,

i.e., hi∈Φ(\0) ∼ Sκ,µ(ΩI ;κI , µI). Furthermore, LκµI is

obtained as in (11).

Proof: [17, Appendix C].

Theorem 3: The MGF of the SINR over η-µ fading is

Mηµ
SINR(s) = 1− 2Ωηµ+1s

η+1

∫ ∞

0

Ψ1

(

2µ+ 1, µ; 2, 2µ;

−sξΩη
µ(1 + η)

, 1−η
)

Er
[

exp

(

−ξrα σ
2

P

)

LηµI (ξrα)

]

dξ,(12)

where the Laplace transform of the aggregate interfer-

ence hi∈Φ(\0) ∼ Sη,µ(ΩI ; ηI , µI), denoted as LηµI =

LSκµ
I (mI ← µI , µI

← 2µI , κI ← 1−ηI

2ηI
), with LSκµ

I

given in (9).

Proof: From (1), when m = µ/2, we resort to the

reduction formula of 1F1(·) given by [15, Eq. 9.6.47]

1F1 (β, 2β, z)=2
2β−1Γ

(

β+
1

2

)

z
1
2−βez/2Iβ−1

2

(z

2

)

,

(13)

readily yielding (3) after some algebraic manipulations.

Since mI = µI/2 ≤ µI , then LκµI reduces from LSκµ
I

in (9) by setting mI = µI , µ
I
= 2µI , and κI = 1−ηI

2ηI
.

Theorem 4: The MGF of the SINR over arbitrary

Nakagami-m fading is given by

Mm
SINR(s) = 1− Ωs

∫ ∞

0
1F1

(

m+1, 2;
−sΩξ
m

)

Er
[

exp

(

−ξrασ2

P

)

LmI (ξrα)

]

dξ,(14)

and the Laplace transform of the aggregate interference

under Nakagami-m fading LmI is given by

LmI (ξrα) = e
−πλr2

(
2F1

(
− 2

α
,mI ,1−

2
α
;−

ΩI
mI

ξ
)
−1

)
. (15)

Proof: The Nakagami-m fading distribution arises as

a particular case of the more general shadowed κ-µ
model when m = µ. However, this simplification is not

straightforward and actually requires further manipula-

tions shown in details in [17, Appendix D].

It is worthwhile to note that LmI in (15) is a well-

known result in the area of cellular networks analysis
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LSκµ
I (ξrα) = exp

(

− πλr2
mI ,µI−mI∑
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α
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,

(9)

LκµI (ξrα) = exp

(

− πλr2
µ(1+κI)

µI

eκIµIΩµI

I

∞∑

k=0

(
µ2
IκI(1+κI )

ΩI

)k

k!

µI+k
∑

n=1

(
µI+k

n

) (
ξΩI

µIκI(1+κI)

)n

αn
2 − 1

2F1

(

µI+ k − 2, n− 2

α
, n+ 1− 2

α
,− ξΩI

µIκI(1 + κI)

))

. (11)

over Nakagami-m fading [8]. While LmI has so far

been presented as a fundamental finding in previous

works, it becomes in this contribution a secondary result

that simply reduces from a more general performance

analysis framework.

The MGF of the SINR for Rayleigh fading, exten-

sively adopted in the literature [1]-[6], reduces simply

from (14) when m = mI = 1.

While applying the shadowed κ-µ or the κ-µ (to cap-

ture different DSCs scenarios) to the tagged user link is

quite intuitive (typically in the case of future femtocells

and picocells), it might not be as much obvious to do

so to the interference links. Actually, in a typical urban

deployment, interfering channels are less likely to ex-

perience LOS than the direct link. However, destructive

LOS interference may also happen in practice, namely

in suburban and rural areas having wide parks and open

spaces. In this work, the treatment of the tagged user link

is independent from its interference counterpart as can be

seen from (5). This dissociation is very appreciable since

it allows modeling cellular networks with direct and

interfering links experiencing asymmetric fading (i.e.,

different fading models). Although not shown explicitly

in this work, cellular networks performance under asym-

metric fading can be easily assessed by swapping LI in

(8), (9), (11), and (15).

The new fundamental statistics disclosed in Theorems

1 to 4 provide a novel unifying analysis framework for

of a variety of extremely important fading distributions.

In some particular cases, the obtained formulas reduce

to previously well-known major results in the literature.

Besides, even though this work focuses on the shad-

owed κ-µ, κ-µ, and η-µ distributions, our new analysis

framework is extensible to any other faidng/shadowing

distribution as long as the quantity pertaining to the

expectation over h in (5) (i.e., Σ) can be obtained in

closed form.

IV. AVERAGE ACHIEVABLE RATE

The average transmission rate C , E [ln (1 + SINR)],
as defined by Shannon’s capacity, is evaluated using the

MGF transform in [20, Lemma 21] as

C =

∫ ∞

0

exp{−s}
s

(1−MSINR(s)) ds. (16)

The average rate is computed in nats/Hz (1 bit = ln(2) =
0.6934 nats) for a typical user assumed to achieve the

Shannon bound at its instantaneous SINR. We state now

the main theorems that give the ergodic capacity of a

typical mobile user on the downlink.

Theorem 5: The average ergodic rate of a typical

mobile user on the downlink over shadowed κ-µ fading

is

CSκµ(λ, α) =
Ω

(
µκ
m +1

)m
(1+κ)

∫ ∞

0

F2

(

µ+1,m, 1; 2, µ;

µκ

µκ+m
,
−ξΩ

µ(1+κ)

)

Er
[

exp

(

−ξrασ
2

P

)

LSκµ
I (ξrα)

]

dξ,(17)

where F2(a, b, b
′; c, c′;x, y) stands for the Appell’s hy-

pergeometric function of the second kind [15, Eq.

9.180.2 ], and LκµI (ξrα) is given in (8)-(9).

Proof: Plugging (7) into (16), and resorting to [19]

F2 (a, b, b
′; c, c′;x, y) =

1

Γ(b′)

∫ ∞

0

tb
′−1e−t

Ψ1 (a, b; c, c
′;x, yt) dt, (18)

yield the desired result after some manipulations.

Theorem 6: The average rate of a typical mobile user

at a distance r from its serving BS over κ-µ fading is



Cκµ(λ, α)=
Ωe−κµ

(1+κ)

∫ ∞

0

Ψ1

(

µ+ 1, 1; 2, µ;µκ,
−ξΩ

µ(1 + κ)

)

Er
[

exp

(

−ξrα σ
2

P

)

LκµI (ξrα)

]

dξ, (19)

where LκµI (ξrα) is given in (11).

Proof: The results follows after substituting (10) into

(16) and applying

Ψ1 (a, b; c, c
′;x, y)=

1

Γ(b)

∫ ∞

0

tb−1e−tΨ2(a, c, c
′;x, yt) dt.

(20)

Another rationale to get (19) starts from (17) and em-

ploys the following limit relation [19]:

lim
ǫ→0

F2

(

α,
b′

ǫ
, b, c′, c; ǫx, y

)

= Ψ1 (α, b; c
′, c; b′x, y) .

(21)

Corollary 1 (Rice fading): An interesting case to be

addressed here is the typical Rice model, which arises

from the κ-µ fading when µ = 1 and κ = K where K
is the Rice factor. The ergodic rate under Rice fading is

obtained from (19) as

CRice(λ, α) =
Ωe−K

1 +K

∫ ∞

0

Ψ1

(

2, 1; 2, 1;K,
−ξΩ
1 +K

)

Er
[

exp

(

−ξrα σ
2

P

)

LRice
I (ξrα)

]

dξ, (22)

where LRice
I (ξrα) = LκµI (ξrα, κ← K,µ← 1).

Theorem 7: The average rate of a typical mobile user

at a distance r from its serving BS over η-µ fading is

Cηµ(λ, α)=
2Ωηµ+1

η + 1

∫ ∞

0

F2

(

2µ+ 1, µ, 1; 2, µ;

−ξΩη
µ(1+η)

, 1−η
)

Er
[

exp

(

−ξrα σ
2

P

)

LηµI (ξrα)

]

dξ.(23)

Proof: The result is obtained along the same lines of

(17) by performing similar substitutions as in (12).

Theorem 8: The average ergodic rate of a typical

mobile user over Nakagami-m fading is

Cm(λ, α)=

∫ ∞

0

(

1−
(

1+Ωξ
m

)−m
)

Er
[

e−
ξrασ2

P LmI (ξrα)
]

ξ
dξ,

(24)

where LmI (ξrα) is given in (15).

Proof: The result is a special case of (17) when

m = µ. In this case, a reduction formula of the Appell’s

F2 function is given in [17, Appendix E]. Alternatively,

one can obtain (24) after plugging (14) into (16) and

resorting to [15, Eq. 7621.5].

The Rayleigh case reduces from (24) when m =
mI = 1; a key result previously obtained in [1, Theorem

3], under, however, a more involved expression that

encompasses a two-fold integration.

V. AVERAGE BEP UNDER GAUSSIAN

SIGNALING APPROXIMATION

This section delves into fine wireless communication

details trough BEP analysis by exploiting the Gaussian

signaling approximation [6],[8]. Without loss of gener-

ality, we focus on the BEP, denoted by B, for coherent

M-PSK (phase shift keying) and M-QAM (quadrature

amplitude modulation) constellations given by [21]

B = βM

τM∑

p=1

E
[

Q
(

ap
√

SINR
)]

, (25)

where Q(·) is the Gaussian Q-function and βM , ap, and

τM are modulation-dependent parameters specified in

[21].

Hereafter, we provide the BEP performance of a

typical mobile user on the downlink under the considered

channel models, namely shadowed κ-µ, κ-µ, η-µ, and all

other related distributions.

Theorem 8: The average BEP of a cellular downlink

over shadowed κ-µ fading is

BSκµ(λ, α) =
βMτM

2
−

βMΓ(µ+ 1
2 )
√

Ω
µ(1+κ)√

2πΓ(µ)
(
µκ
m + 1

)m

τM∑

p=1

ap

∫ ∞

0

Ψ1

(

µ+ 1
2 ,m; 3

2 , µ;
−a2

pξΩ

2µ(1+κ) ,
µκ

µκ+m

)

√
ξ

Er
[

exp

(

−ξrα σ
2

P

)

LSκµ
I (ξrα)

]

dξ. (26)

Proof: Please refer to [17, Appendix F].

Theorem 9: The average BEP of a cellular downlink

over κ-µ fading is

Bκµ(λ, α)=
βMτM

2
−

βMΓ(µ+ 1
2 )e

κµ
√

Ω
µ(1+κ)√

2πΓ(µ)

τM∑

p=1

ap

∫ ∞

0

Ψ2

(

µ+ 1
2 ;

3
2 , µ;

−a2
pΩξ

2µ(1+κ) , µκ
)

√
ξ

Er
[

exp

(

−ξrασ
2

P

)

LκµI (ξrα)

]

dξ. (27)

Proof: The result follows after recognizing that

Bκµ(λ, α) = limm→∞ BSκµ(λ, α). Then, recall-

ing limǫ→0 Ψ1

(
a, b

ǫ ; c, c
′; ǫw, z

)
= Ψ2 (a; c, c

′; bw, z) ,
yields the desired result after some manipulations. Note

that the same result could be obtained by following

similar steps leading to (27) with one difference of using

the integral representation of Ψ2 in [19, Eq. 40]. Notice

when µ = 1 and κ = K that (27) reduces to the BEP

expression under Rice fading.

Theorem 10: The average BEP of a cellular downlink

over η-µ fading is



Bηµ(λ, α) =
βMτM

2
−

βMηµΓ(2µ+ 1
2 )
√

Ωη
µ√

2πΓ(2µ)

τM∑

p=1

ap

∫ ∞

0

Ψ1

(

2µ+ 1
2 , µ;

3
2 , 2µ;

−a2
pξΩη

2µ(1+η) , 1− η
)

√
ξ

Er
[

exp

(

−ξrα σ
2

P

)

LηµI (ξrα)

]

dξ. (28)

Proof: The average BEP over η-µ fading is obtained

form (26) by setting m = µ, µ = 2µ, and κ = 1−η
2η

in both the desired and interfering fading channels and

performing the necessary simplifications.

Corollary 5: The average BEP for the downlink

cellular communication links in general Nakagami-m
fading is

Bm(λ, α) =
βMτM

2
−

βMΓ(m+ 1
2 )
√

Ω
m√

2πΓ(m)

τM∑

p=1

ap

∫ ∞

0

1F1

(

m+ 1
2 ,

3
2 ;

−a2
pξΩ

2m

)

√
ξ

Er
[

e−ξrα σ2

P LmI (ξrα)
]

dξ. (29)

Proof: The result follows from (26) by setting m = µ
and using the Humbert Ψ1 function reduction formulas

given in [17, Appendix D]. Alternatively, plugging (14)

into (25) and resorting to [17, Eq. 76] yield the desired

result.

Recently, the authors of [8] investigated the impact

of Gaussian signalling under Nakagami-m and derived

the corresponding error rates. Although the number of

integrals in the obtained BEP expression in (29) is not

reduced when compared to [8], our approach discards

the necessity for integer m, an assumption made in

[8] for the sake of tractability. In practical scenarios,

however, the m parameter often takes non-integer values,

as argued by [22]. Once again, the significance of this

work is highlighted by its very wide scope.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, numerical examples are shown to sub-

stantiate the accuracy of the new unified mathematical

framework and to confirm its potential for analyzing

cellular networks. The simulation setup is summarized

in the caption of each figure.

Fig. 1 compares the average rate and average BEP for

the κ-µ shadowed fading across a wide range of channel

parameters (m, κ, µ). In Fig. 1 (a), CSκµ is represented

as a function of the LOS component in the received wave

clusters κ for different values of the µ parameter. We

note that a rich scattering (large µ) achieves a higher rate

with diminishing returns as κ increases, since increasing

µ in the strong LOS scenario has little effect as the

performance is dominated by the LOS component. When

m = µ, the κ-µ shadowed fading distribution boils down

to the Nakagami-m distribution, whence the average

rate’s independency of κ.

The impact of shadowed LOS components on per-

formance can be observed in Fig. 1 (b), where the

average rate under κ-µ shadowed fading is presented as

a function of the average SNR for different values of m
and considering, respectively, small (κ = 1) and large

(κ = 20) LOS components. It can be observed that per-

formance improves with small LOS components (κ = 1)

if the latter are affected by heavy shadowing (small

m). However, when the shadowing is mild, large LOS

components (κ = 20) always improve the average rate.

In fact, small m indicates highly fluctuating dominant

components, which decrease both the received signal

and the aggregate interference powers thereby increasing

the SINR level and ultimately achieving higher rates.

Conversely, when m is large, the shadowing on the

dominant components subsides and κ-µ shadowed fading

reduces to κ-µ fading. Moreover, light shadowing always

yields higher interference power thereby deteriorating

the received SINR level as well as the average rate.

Fig. 1 (b) also compares the average rate for various BS

densities λ. It can be seen that the average rate of a sparse

network (λ ≤ 10−4) is much lower than that of a dense

network (λ ≥ 10−2). For example the average average

rate is about 0.02 for λ = 10−4 and 1 for λ = 10−2

with m = 0.5, κ = 20 and SNR = 15 dB.

Fig. 2 compares the average rate under κ-µ fading

versus the BS density λ for different values of the µ
parameter. As conjectured in Corollay 1, the network

performance is invariant of the network density in an

interference-limited condition (large BS intensity). The

results show that the rate saturation may happen at

certain network density required to obtain sufficiently

larger interference power than the noise. In fact, at high

SNR, the saturation regime is reached at λ = 10−2,

compared to λ ≥ 10−1 in the low SNR regime. In

practice, installing more BSs is beneficial to the user

performance up to a density point, after which further

densification turns out to be extremely ineffective due to

faster growth of interference compared to useful signal.

This highlights the cardinal importance of interference

mitigation, coordination among neighboring cells and

local spatial scheduling.

VII. CONCLUSION

In this paper a novel mathematical methodology for

performance evaluation on the downlink of cellular net-

works over fading channels is presented. The proposed

approach exploits results from stochastic geometry for

the computation of the SINR’s MGF, which is shown to

be conveniently formulated as a function of a desired-

user fading dependent term and the Laplace transform

of the interference. By capitalizing on this mathematical

formulation, we have been able to obtain exact expres-

sions for the achievable rate and the tangible decoding

error probability for various generic fading distribution

models including shadowed κ-µ, κ-µ, and η-µ that
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Fig. 1. Performance of downlink transmission over shadowed κ-µ
fading. Setup: ΩI = Ω, κI = κ, λ = 10−4, and α = 3.
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Fig. 2. Cκµ versus BS density λ for different values of µ = µI with
κ = 1.5. Setup: ΩI = Ω, κI = κ, λ = 10−4, and α = 3.

account for LOS/NLOS and shadowed fading.
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