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Abstract—In this paper, we analyze the ergodic capacity of
a two-hop multiple-antenna amplify and forward (AF) system,
where the relay is subject to co-channel interference (CCI)
while the destination is corrupted by additive white Gaussian
noise (AWGN) only. A novel integral transform, called the
complementary moment generating function transform (CMGF),
is proposed as a unified tool to compute the ergodic capacity.
When both the relay and destination perform maximum ratio
combining (MRC), we derive a new analytical exact expression
for the ergodic capacity. It is shown that the ergodic capacity
is better improved by increasing the number of antennas at the
relay Nr than that at destination Nd. Unfortunately, the system
shows an incapability of canceling interference even if Nr and/or
Nd grows large.

Index Terms—Two-hop relaying, Co-channel interference, Er-
godic capacity, Multiple antennas, Complementary moment gen-
erating function transform (CMGF).

I. INTRODUCTION
The deployment of wireless relays has rekindled a wide in-

terest from the wireless communication community as a means
of achieving high throughput where traditional architectures
are unsatisfactory, such as in cell-edge, indoor, etc.. Several
relaying protocols have been introduced in the literature [1].
Of particular interest is the amplify-and-forward (AF) scheme
due to its low complexity. In such a scheme, in fact, each relay
mimics a simple repeater by forwarding a scaled version of
the received signal to the destination node.
Nevertheless, deployed relays in future wireless systems

generations will, inevitably, face a complex co-channel inter-
ference environment due to the highly aggressive frequency
reuse. The latter actually causes a more severe performance
degradation than thermal noise [2].
Aiming to understand the performance limitations of re-

laying systems in the presence of interference, significant
contributions investigating the ergodic capacity in various
practical scenarios have appeared. As far as the analysis of
single antenna systems is concerned, some insightful results
can be found in [3]-[4]. These studies have shed new in-
sights into how the ergodic capacity is dominated by the
interference power, especially at the relay. Recently, most
research activity has been devoted to the analysis of multiple
antenna (MIMO) systems, which have been shown to provide
significant improvements to the achievable data rates. Some
relevant contributions on the analysis of channel capacity for
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these systems are [5]-[6], where analytical bounds for the
channel capacity over Rayleigh fading channels with various
diversity-combining techniques are obtained.
This paper is a nontrivial and useful add-on of the frame-

work proposed by [6], with the main objective and motivation
of taking advantage of an MGF-based approach to obtain new
closed-form expressions for the ergodic capacity of two-hop
MIMO AF systems, an objective deemed impossible to acheive
by the authors of [6].

II. SYSTEM MODEL

Let us consider the two-hop MIMO network in Fig. 1, where
both the relay R and destination D are equipped with Nr and
Nd antennas, respectively, while the source S is equipped with
a single antenna. We assume that the relay is subjected to M
independently but not necessarily identically distributed co-
channel interferers that dominate the noise effect, while the
destination is corrupted by AWGN only. Interference-limited
relay and noisy destination stems from cell-edge or frequency-
division relaying [4], [7].

Fig. 1. System model.

Let the Nr × 1 vectors {h1,gi}, i = 1, . . . ,M denote
the channels for the source-relay and i-th interference-relay
links, respectively, with entries following identically indepen-
dently distributed (i.i.d) complex circular Gaussian random
variables CN (0, 1). Let also x and sIi denote the source
and the i-th interferer symbol satisfying E{xx∗} = Ps and
E{sIis

∗
Ii
} = PIi , i = 1, . . . ,M . Then the received signal at

Bold lower case letters denote vectors and lower case letters denote scalars.
E{x} stands for the expectation of the random variable x, ∗ denotes the
conjugate operator and, † denotes the conjugate transpose operator.
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the interference-limited relay is given by

yr = w†

[
h1x+

M∑
i=1

gisIi

]
, (1)

where w is set to match the first hop, i.e., w = h1/‖h1‖,
also known as the MRC combiner. The relay node transmits
a transformed version of the received signal to the destination
such that

yd = u† [GH2vyr + n] , (2)

where H2 = [h2i,j ]
Nr,Nd

i,j=1 is a Nr × Nd matrix and denotes
the channel for the relay-destination link with entries following
i.i.d CN (0, 1), n is the Nd×1 AWGN vector at the destination
node with E{nn∗} = N0I, where I is the identity matrix, u
and v are the transmit precoding and receive filtering vectors at
R and D, selected by using the channel matrix H2 as the first
columns ofU andV, respectively, corresponding to the largest
singular value of H2 . Combining (1) and (2), the end-to-end
signal-to-interference-plus-noise ratio (SINR) of the system
can be expressed as

γ =
PsΛG

2|w†h1|2

G2Λ
∑M

i=1 |w
†gi|2PIi +N0

, (3)

where Λ is the largest eigenvalue of the Wishart matrix H†2H2

and G is the power constraint factor given by

G2 =
Pr

Psh
†
1h1 +

∑M
i=1 |w

†gi|2PIi

. (4)

By substituting (4) into (3), we obtain

γ =
Λ|h1|2Ps

Λ
∑

M
i=1

|h1
†gi|2PIi

‖h1‖2
+ N0

Pr

(
|h1|2Ps +

∑
M
i=1

|h1
†gi|2PIi

‖h1‖2

) .
(5)

Finally, after noting ρ1 = Ps/N0, ρ2 = Pr/N0, and
ρIi = PIi/N0, i = 1, . . . ,M , a more compact form of (5)
is obtained, after some manipulations, as

γ =
γ1γ2

γ2 + γ1 + 1
, (6)

where γ1 = |h1|
2ρ1

χ , χ =
∑

M
i=1

|h1
†gi|

2ρIi

‖h1‖2
, and γ2 = Λρ2.

III. ERGODIC CAPACITY ANALYSIS

The ergodic capacity is defined as the expected values of
the instantaneous mutual information and is mathematically
expressed as

C =
1

2
E [log2 (1 + γ)] , (7)

in which γ stands for the end-to-end SINR and the factor 1/2
accounts for the total number of time slots required for the
transmission.

The singular value decomposition ofH2 is given byH2 = UΣV†, where
Σ is the Nd × Nr matrix having the largest singular value

√
Λ as the first

element on the main diagonal. Further, U and V, are unitary Nd ×Nd and
Nr ×Nr matrices, respectively.

A. Novel MGF-Based Approach for Two-Hop Channel Capac-
ity Computation
In this section, we propose a new integral transform for

channel capacity computation by relying on the knowledge of
the first hop complementary CDF (CCDF) and the second hop
MGF.
Theorem 1: The ergodic capacity of two-hop AF relaying

system can be computed as

C =
1

2 ln(2)

(∫ ∞

0

e−sM̂γ1
(s)ds−

∫ ∞

0

e−sM̂γ1
(s)Mγ2

(s)ds

)
= Ĉ1 − Ĉ12, (8)

where MX(·) stands for the MGF of X and M̂X(·) denotes
the complementary MGF (CMGF) defined as

M̂X(s) �

∫ ∞

0

e−sxF̂X(x)dx, (9)

with F̂X(x) denoting the CCDF of X . In this paper, the
integral in (8) is called CMGF transform, as it relies on a
CMGF kernel function.
Proof: Combining (6) and (7), the ergodic capacity of the

system can be computed by

C =
1

2
E

[
log2

(
(1 + γ1)(1 + γ2)

1 + γ1 + γ2

)]
= Cγ1

+ Cγ2
− CγT

, (10)

where Cγi
= 1

2 ln(2)E

[
ln (1 + γi)

]
i=1,2

and CγT
=

1
2 ln(2)E

[
ln (1 + γ1 + γ2)

]
. Noticing that the quantities

CγX
, X ∈ {1, 2, T } can be expressed by means of the MGF-

based approach in [8] as

CγX
=

1

2 ln(2)

∫ ∞

0

e−s

s
(1−MγX

(s)) ds, (11)

and resorting to the key transformation

MγX
(s) = 1− s

∫ ∞

0

e−sxF̂γX
(x)dx, (12)

then, pulling all together in (10), the ergodic capacity can be
expressed as

C =
1

2 ln(2)

(∫ ∞

0

e−s

1−

(
1− sM̂γ1

(s)

)
s

ds+ (13)

∫ ∞

0

e−s 1−Mγ2
(s)

s
ds−

∫ ∞

0

e−s

1−

(
1−sM̂γ1

(s)

)
Mγ2

(s)

s
ds

)
,

where M̂ is defined in (9). To this end, simplifying (13) yields
the desired result.
We remark that the result in (8) offers a flexible and simple
approach for the computation of the ergodic capacity that relies
on the knowledge of the first-hop SIR CMGF and the second-
hop SNR MGF. To the best of our knowledge, closed-form and
exact expressions for these quantities do exist for most fading
models. Moreover, in those scenarios where very complicated
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expressions of the CMGF/MGF of the per-hop SIR/SNR do
not allow easy computation of the aforementioned integral
in closed form, the result in (8) can efficiently and easily
be obtained using standard computing environments, such as
Mathematica. In fact, in contrast to [8], it is worth noting
that the singularity of the e−s

s kernel function around zero is
avoided by the integral simplification performed in (13) and
that the evaluation of (8) does not face, in general, numerical
problems.

B. Ergodic Capacity of Two-Hop MIMO AF Systems with
Interference in Rayleigh Fading
Hereafter, we will restrict the scope of (8) to the yet

challenging scenario described in section II.
Corollary 1: The ergodic capacity of two-hop MIMO AF

systems with interference is obtained as

C =
1

2 ln(2)

Nr−1∑
k=0

ρ(D)∑
i=1

τi(D)∑
j=1

ζi,j(D)

(
Ψk,j

k + j

−
1

Γ(j)Γ(k + 1)

P∑
a=1

(P+Q)a−2a2∑
b=Q

β(a, b)

Γ(b+ 1)
Σk,j

)
,(14)

where

Ψk,j =

⎧⎨⎩2F1
(
1, j, k + j + 1; 1− ρI<i>

ρ1

)
, |1− ρI<i>

ρ1

| < 1;

2F1

(
k + 1, 1, k + j + 1; 1− ρ1

ρI<i>

)
, ρI<i>

ρ1

> 1
2 ,
(15)

and

Σk,j = G1,1,1,1,2
1,[1,1],0,[1,2]

(
ρ2
a
,

ρ1
ρI<i>

∣∣∣∣ 0; 1 + b; 1 + k
. . . ; 0; 0, j − 1

)
, (16)

wherein 2F1(·) and Gp,q,k,r,l
A,[C,E],B,[D,F ](·, ·) denote the Gauss

hypergeometric function [9, Eq(9.100)] and the general-
ized Meijer-G function [10], respectively. Moreover in (14),
D = diag(ρI1 , ρI2 , . . . , ρIM ), ρ(D) is the number of distinct
diagonal elements of D, ρI<1>

> ρI<2>
> . . . > ρI<M>

are
the distinct diagonal elements in decreasing order, τi(D) is
the multiplicity of ρI<i>

and ζi,j(D) is the (i, j)-th charac-
teristic coefficient of D [11]. For instance, when non-equal-
power interferers are considered, we have τi(D) = 1 and
ζi,1(D) =

∏ρ(D)
k=1,k �=i 1/

(
1−

ρI<k>

ρI<i>

)
. In (14), we also note

that the coefficients β(a, b) are given by

β(a, b) =
ca,bb!

ab+1
∏P

l=1(P − l)!(Q − l)!
, (17)

where P = min(Nr, Nd) and Q = max(Nr, Nd).
Proof: According to the CMGF transform and the SINR

expression in (6), the ergodic capacity of two-hop AF systems
with multiple antennas at the relay-destination pair, interfer-
ence at the relay and noise at the destination is obtained by
the calculation of the two items Ĉ1 and Ĉ12.

ca,b is the coefficient of e−axxb in the expansion of d
dx

det[S(x)], where
S(x) is an P × P Hankel matrix with elements Si,j = γ(Q− P + i+ j −
1, x), with γ(·) denoting the incomplete Gamma function [9, Eq (6.5.3)].
The coefficients ca,b can be readily determined using mathematical softwares
such as Maple or Mathematica.

1) Calculation of Ĉ1: In order to proceed, we need to find
out the statistics of γ1 = |h1|

2ρ1

χ where χ =
∑M

i=1
|h1

†gi|
2ρIi

‖h1‖2
. It

is easy to observe that |h1|2 is an exponential random variable
with pdf

f|h1|2(x) =
xNr−1

(Nr − 1)!
e−x. (18)

Also, according to [11], χ follows an hyper-exponential dis-
tribution with pdf

fχ(x) =

ρ(D)∑
i=1

τi(D)∑
j=1

ζi,j(D)
ρ−j
I<i>

xj−1

(j − 1)!
e−x/ρI<i> . (19)

Then invoking [9, Eq. (3.381.8)] and [9, Eq. (3.381.4)], the
CCDF of γ1 is obtained after some manipulations as

F̂γ1
(x)=

Nr−1∑
k=0

ρ(D)∑
i=1

τi(D)∑
j=1

ζi,j(D)
Γ(k+j)

Γ(j)k!

(
xρI<i>

ρ1

)k(
ρ1

ρI<i>
x+ρ1

)k+j
.

(20)

The next step is to calculate M̂γ1
. From (9), and using (20),

along with some basic algebraic manipulations, we arrive at

M̂γ1
(s) =

Nr−1∑
k=0

ρ(D)∑
i=1

τi(D)∑
j=1

ζi,j(D)
Γ(k + j)

Γ(j)

ρ1
ρI<i>

Ψ

(
k + 1, 2− j;

ρ1
ρI<i>

s

)
, (21)

where Ψ(a; b; z) denotes the Triconomi confluent hypergeo-
metric function [9, Eq. (9.211.1)]. Then, substituting (21)
into Ĉ1, the latter can be evaluated as

Ĉ1 =
1

2 ln(2)

Nr−1∑
k=0

ρ(D)∑
i=1

τi(D)∑
j=1

ζi,j(D)
Γ(k + j)

Γ(j)∫ ∞

0

e−
ρI<i>

ρ1
sΨ(k + 1, 2− j, s) ds︸ ︷︷ ︸

I

. (22)

Utilizing, [9, Eq. (7.621.6)], we obtain

I =
Γ(j)

Γ(k + j + 1)
Ψk,j , (23)

wherein Ψk,j is given in (15). Finally, substituting (23) into
(22) yields the desired result.
2) Calculation of Ĉ12: Since M̂γ1

(s) is derived in (21), the
remaining task is to figure out Mγ2

(s). In order to derive the
latter, one needs the closed-form statistics of Λ2, the largest
eigenvalues of the central Wishart matrix H

†
2H2. According

to [12], fγ2
can be expressed as

fγ2
(x) =

P∑
a=1

(P+Q)a−2a2∑
b=Q

β(a, b)
ab+1xb

ρb+12 b!
e
−ax

ρ2 , (24)

where β(a, b) is defined in (17). Then, the MGF of γ2 is
obtained as

Mγ2
(s) =

P∑
a=1

(P+Q)a−2a2∑
b=Q

β(a, b)(
ρ2

a s+ 1
)b+1 . (25)
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To this end, substituting (21) and (25) into Ĉ12, the latter can
be evaluated as

Ĉ12 =
1

2 ln(2)

Nr−1∑
k=0

ρ(D)∑
i=1

τi(D)∑
j=1

ζi,j(D)
Γ(k+j)

Γ(j)

P∑
a=1

(P+Q)a−2a2∑
b=Q

β(a, b)

ρ1
ρI<i>

∫ ∞

0

e−s
Ψ
(
k + 1, 2− j, ρ1

ρI<i>

s
)

(
ρ2

a s+ 1
)b+1 ds︸ ︷︷ ︸

Φ

. (26)

We now have to solve the integral Φ in order to de-
rive Ĉ12. To this end, noticing that (1 + βx)−α =

1
Γ(α)G

1,1
1,1

(
βx

∣∣∣∣ 1− α
0

)
[9, Eq. (9.34.3)] and, Ψ(a, b; z) =

1
Γ(a)Γ(a−b+1)G

2,1
1,2

(
z

∣∣∣∣ 1− a
0, 1− b

)
[9, Eq. (9.34.3)], the inte-

gral Φ is now given by

Φ =A

∫ ∞

0

e−sG1,1
1,1

(
ρ2
a
s

∣∣∣∣ −b0
)
G2,1
1,2

(
ρ1

ρI<i>

s

∣∣∣∣ −k
0, j−1

)
ds,(27)

where A = 1/Γ(b+1)Γ(k+1)Γ(k+ j). Integrals of this type
can be evaluated by means of a G-function of two variables
[10, Eq. (1.2)], as can be seen from a more general integral
formula due to [10, Eq. (3.2)]. In what follows, let

Gp,q,k,r,l
A,[C,E],B,[D,F ]

(
z1, z2

∣∣∣∣ α1, ..., αA; γ1, ..., γC ; ε1, ..., εE
β1, ..., βB; δ1, ..., δD;φ1, ..., φF

)
,

(28)
denote the generalization of Meijer’s G-function to a function
of two variables z1, z2. Then according to [10, Eq. (3.2)] and
under consideration of the functional relation

Gr,q
C,D

(
z1

∣∣∣∣ γ1, ..., γc
δ1, ..., δD

)
Gl,k

E,F

(
z2

∣∣∣∣ ε1, ..., εE
φ1, ..., φF

)
= (29)

G0,q,k,r,l
0,[C,E],0,[D,F ]

(
z1, z2

∣∣∣∣ ...; 1− γ1, ..., 1− γC ; 1− ε1, ..., 1− εE
....; δ1, ..., δD;φ1, ..., φF

)
,

we obtain

Φ =

G1,1,1,1,2
1,[1,1],0,[1,2]

(
ρ2

a , ρ1

ρI<i>

∣∣∣∣ 0; 1 + b; 1 + k
. . . ; 0; 0, j − 1

)
Γ(b+ 1)Γ(k + 1)Γ(k + j)

. (30)

Finally, substituting (30) into (26), Ĉ12 can be expressed in a
compact-form as

Ĉ12 =
1

2 ln(2)

Nr−1∑
k=0

ρ(D)∑
i=1

τi(D)∑
j=1

ζi,j(D)

Γ(j)Γ(k + 1)

P∑
a=1

(P+Q)a−2a2∑
b=Q

β(a, b)

Γ(b+ 1)
G1,1,1,1,2
1,[1,1],0,[1,2]

(
ρ2
a
,

ρ1
ρI<i>

∣∣∣∣ 0; 1 + b; 1 + k
. . . ; 0; 0, j − 1

)
.(31)

Finally, pulling everything together yields the desired result.

IV. NUMERICAL RESULTS
Fig. 2 plots the ergodic capacity of two-hop multiple-

antenna AF systems with different values of Nr and Nd under
different interference power levels, i.e., weak interference
ρI = 0 dB and strong interference ρI = 25 dB. As shown

An accurate routine for the evaluation of the bivariate Meijer’s G function
can be found in [13].

in the figure, the theoretical results match perfectly their em-
pirical counterparts, confirming thereby the correctness of the
analytical expressions. It is observed that the ergodic capacity
is better improved by increasing the number of antennas at
the relay Nr than that at the destination Nd. However, as the
interference power grows large, the capacity gap between the
different antenna configurations narrows down at low SNR. On
the other hand, stronger interference has a detrimental effect
on the capacity performance of the MRC scheme as shown
by the considerable gap between the two interference power
scenarios.
Fig. 3 investigates the interference reduction capability of

two-hop MIMO AF systems. By letting Nr grow, we observe
that the ergodic capacity increases at a rate that gradually
becomes smaller without attaining the performance of an
interference-free system. On the other hand increasing Nd is
useless, more so when M is larger.

V. CONCLUSION
Named as CMGF, a novel integral transform was proposed

as a unified tool to compute the ergodic of a two-hop multiple-
antenna AF system, where the relay is subject to CCI, while
the destination is only corrupted by AWGN. When both the
relay and destination perform maximum ratio combining, we
have been able to derive a new analytical exact expression
for the ergodic capacity. The paper’s findings have shed new
lights on how the antenna number, the CCI numbers, and the
interference power affect the performance of the system.

Fig. 2. The impact of the R-D MIMO link size (Nr ,Nd) and the interference
power ρI on the ergodic capacity of two-hop MIMO AF systems with ρ1 =
ρ2 = ρ, and M = 3.
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