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ABSTRACT

This paper tackles the problem of the direction of arrival (DOA) estima-

tion in turbo-coded systems. We derive for the first time the closed-form

expressions for the Cramér-Rao lower bounds (CRLBs) of the code-

aided (CA) DOA estimates from arbitrary square-QAM modulated sig-

nals. We succeed in factorizing the likelihood function of the system into

two analogous terms linearizing thereby all the derivation steps of the

Fisher information (FI) element. Simulation results demonstrate that the

CRLB for the CA DOA estimates lies between its counterparts in non-

data-aided (NDA) and data-aided (DA) estimation schemes. Moreover,

the DOA CA CRLB improves by decreasing the coding rate highlighting

thereby the potential gain in estimation performance stemming from the

proper exploitation of the decoder output.

Index Terms— Direction of arrival (DOA), code-aided (CA),

Cramér-Rao lower bound (CRLB), square-QAM modulations, turbo

codes.

1. INTRODUCTION

The need for DOA estimation arises not only in broadband wireless com-

munications but also in many other engineering applications including

radar, sonar and emergency assistance devices [1]. Depending on the

a priori knowledge about the transmitted symbols, DOA estimators can

be broadly divided into two categories: DA and NDA methods. NDA

approaches are completely blind and, as such, suffer from severe per-

formance degradations at low signal-to-noise ratios (SNRs) and/or small

number of snapshots. DA methods require the complete knowledge of

the transmitted sequence thereby impinging on the whole throughput of

the system. CA estimation, however, lies between these two extreme

cases although it also assumes no a priori knowledge about the trans-

mitted symbols. Rather, it exploits the soft information (about the trans-

mitted bits) that is provided at each turbo iteration (see [2-9] and ref-

erences therein), enhancing thereby the estimation performance while

being spectrally efficient.

Turbo codes, in particular, have gained considerable attention since they

were first introduced in [10] and are now being adopted in current- and

future-generation wireless communication standards such as long-term

evolution (LTE), LTE-advanced (LTE-A), and beyond (LTE-B) [11]. Al-

though the research efforts on DOA estimation have, so far, mainly fo-

cused on the NDA scenario, we show in this contribution that substantial

performance improvements can be achieved in CA estimation schemes.

These improvements are highlighted through the derivation of the cor-

responding CA CRLB which is a practical lower bound that reflects

the best achievable estimation performance theoretically [14]. We con-

sider square-QAM-modulated signals which are also a key feature of

current- and future-generation high-data-rates communication systems.

It is worth mentioning here that the CRLBs of DOA estimates from

linearly-modulated signals have been recently derived in [12, 13], but in

the DA and NDA scenarios only. The new closed-form CA CRLBs are

validated by another empirical approach that requires exhaustive Monte-

Carlo simulations. The latter is borrowed from [16] that evaluates the

CA CRLB of the time delay estimation problem.

This paper is organized as follows. In Section 2, we introduce the system

model. In Section 3, we derive the analytical expressions for the consid-

ered DOA CA CRLB. In Section 4, we discuss the simulation results

before drawing out some concluding remarks in Section 5.

Some of the common notations will be used throughout this paper. In

fact, {.}T and {.}H denote the transpose and the Hermitian operators, re-

spectively. The operators ℜ{.}, ℑ{.} and {.}∗ return the real, imaginary

parts and the conjugate of any complex quantity, respectively, whereas

|.| returns its amplitude. Moreover, j is the pure complex number that

verifies j2 = −1 and E{.} stands for the statistical expectation.

2. SYSTEM MODEL

A binary sequence of information bits is turbo encoded with coding

rate R. The encoded bits are then scrambled with an outer interleaver

and mapped onto a given Gray-coded (GC) constellation. The trans-

mitted signal impinges on an array of Na receiving antenna elements.

At the output of the matched filter, the kth recorded snapshot, y(k) =

[y1(k), y2(k), · · · , yNa(k)]
T

, is modeled as follows:

y(k) = Sa(φ)x(k) +w(k), k = 0, 1, . . . ,K − 1, (1)

where S is the channel coefficient and a(φ) is the steering vector of

the antennae array which is a function of the unknown DOA, φ, to

be estimated. The additive white Gaussian noise (AWGN) compo-

nents, w(k), are assumed spatially white, i.e., with covariance ma-

trix E{w(k)w(k)H} = σ2I. They are also independent between

snapshots. The transmitted symbols {x(k)}k are drawn from any M -

ary GC square-QAM constellation. By square QAM we mean that

M = 22p
(
i.e., QPSK, 16−QAM, 64−QAM, etc...

)
. We also assume

that the energy of the transmitted symbols is normalized to one
(
i.e.,

E{|x(k)|2} = 1
)

so that the average SNR of the system is given by

ρ = E
{
S2|x(k)|2

}
/σ2 = S2/σ2. The CRLB is a practical lower

bound on the variance of any unbiased estimator φ̂ of φ [14], i.e., it

verifies E
{
(φ̂− φ)2

}
≥ CRLB(φ). It is defined as:

CRLB(φ) ,
1

I(φ)
, (2)

where I(φ) is the so-called Fisher information for the received data that

is given by:

I(φ) , −E
{
∂2L(Y;φ)

∂φ2

}
. (3)

In (3), Y is a matrix that gathers all the recorded snapshots and

L(Y;φ) , ln (p[Y;φ]) is the log-likelihood function (LLF)
(
p[Y;φ]

being the pdf of Y parameterized by φ
)
.

3. DERIVATION OF THE CLOSED-FORM EXPRESSIONS

FOR THE DOA CA CRLB

Since the transmitted symbols are some soft representations for different

blocks of the coded bits and as the latter are assumed to be statistically in-



dependent (due to the large-size interleaver) [3, 4], the transmitted sym-

bols are also independent. Therefore, p[Y;φ] is factorized as follows:

p[Y;φ] =

K−1∏

k=0

p[y(k);φ], (4)

where p[y(k);φ] is the pdf of the kth snapshot, y(k), parameterized by

φ. Using the fact that ||a(φ)||2 = Na, it can be shown from (1) that:

p[y(k);φ] =
1

πNaσNa
exp

(
− 1

σ2 ||y(k)||2
)
Dk(φ), (5)

in which the term Dk(φ) is given by:

Dk(φ) =
∑

cm∈Cp

Pr[x(k) = cm] exp
(
−NaS

2|cm|2
σ2

)
×

exp
(

2
σ2ℜ

{
c∗mS a(φ)Hy(k)

})
. (6)

In (6), Cp = {c1, c2, . . . , cM} is the alphabet of the GC 22p−QAM con-

stellation and
{
Pr[x(k) = cm]

}
m

are the a priori probabilities (APPs)

of the transmitted symbols that will be established in the next subsection.

3.1. Derivation of the symbols’ APPs

Consider a M -ary GC square-QAM constellation where each alphabet’s

point, cm, is mapped onto a unique sequence of log2(M) = 2p bits ac-

cording to the following notation: cm ←→ b̄m1 b̄m2 · · · b̄ml · · · b̄m2p. Like-

wise, we use x(k) ←→ bk1b
k
2 · · · bkl · · · bk2p to denote the bit sequence

conveyed by the kth transmitted symbol x(k). Again, due to the inde-

pendence of the code bits [3, 4], the APPs of each transmitted symbol

factorize as follows:

Pr[x(k) = cm] =

2p∏

l=1

Pr
[
bkl = b̄ml

]
, ∀cm ∈ Cp. (7)

We also define the LLR of the lth coded bit, bkl , that is conveyed by

transmitting the symbol x(k) as follows:

Ll(k) , ln

(
Pr[bkl = 1]

Pr[bkl = 0]

)
. (8)

Using (8) and the fact that Pr[bkl = 0] + Pr[bkl = 1] = 1, one can

straightforwardly obtain the following generic expression:

Pr[bkl = b̄ml ]=
1

2 cosh
(
Ll(k)/2

) e(b̄
m
l −1)

Ll(k)

2 , (9)

in which the bit b̄ml is either 0 or 1 depending on which of the symbols,

{cm}m, is drawn at time instant k, and of course on the underlying Gray

mapping. Hence, injecting (9) in (7) we obtain:

Pr[x(k) = cm] =

2p∏

l=1

1

2 cosh
(
Ll(k)/2

)

︸ ︷︷ ︸
βk

2p∏

l=1

e
(b̄ml −1)

Ll(k)

2 . (10)

In the sequel, we will rewrite the APPs in (10) in a more convenient

form that allows the factorization of Dk(φ) given in (6). To that end, we

describe a simple recursive process that allows the construction of a GC

22p−QAM starting from any given GC 22(p−1)−QAM and using any

basic GC QPSK:

• step 1: build the top-right quadrant
(
denoted from now on as C̃p

)

of the desired 22p−QAM from all the points1 of the available

22(p−1)−QAM constellation. For the sake of clarity and without

loss of generality, we assume that the two missing bits of the new

quadrant always occupy the two least significant positions.

1The same points’ layout in the original 22(p−1)−QAM constellation is
used, i.e., the constellation is placed as is in the new quadrant.

• step 2: build the three remaining empty quadrants of the de-

sired 22p−QAM by symmetries with respect to the x−axis, the

y−axis, and the center point, respectively. In light of “step 1”,

all the points of the desired constellation are inherently missing 2

bits each which will be added in the next step.

• step 3: copy the two bits of each quadrant in the basic GC QPSK

constellation to all the points that belong to the same quadrant in

the incomplete 22p−QAM constellation obtained in “step 2”.

As an example, we illustrate in Fig. 1 the recursive construction of a GC

16−QAM constellation from a 4−QAM GC one.

Fig. 1. Recursive construction of GC square-QAM constellations illus-

trated here from 4−QAM to 16−QAM.

In this work, for clarity reasons but with no loss of generality, we will

build on the basic QPSK depicted in Fig. 1 and use it in all subsequent

construction iterations. In light of the three symmetries in “step 2”, each

four symmetrical points c̃m, c̃∗m,−c̃m and−c̃∗m (for any c̃m in C̃p ) have

the same 2p− 2 most significant bits, b̄m1 b̄m2 b̄m3 ...b̄m2p−3b̄
m
2p−2, which we

use to define the following quantity:

µk,p(cm) ,

2p−2∏

l=1

e
(2b̄ml −1)

Ll(k)

2 , ∀ cm ∈ Cp, (11)

that verifies µk,p(c̃m) = µk,p(−c̃m) = µk,p(c̃
∗
m) = µk,p(−c̃∗m), ∀ c̃m

in C̃p. Then, by using this result back in (10), the symbol’s APPs are

obtained as follows for any c̃m ∈ C̃p :

Pr[x(k)= c̃m] = βk µk,p(c̃m) e−
L2p−1(k)

2 e
L2p(k)

2 , (12)

Pr[x(k)= c̃∗m] = βk µk,p(c̃m) e
L2p−1(k)

2 e
L2p(k)

2 , (13)

Pr[x(k)=−c̃m] = βk µk,p(c̃m) e
L2p−1(k)

2 e−
L2p(k)

2 , (14)

Pr[x(k)=−c̃∗m] = βk µk,p(c̃m) e−
L2p−1(k)

2 e−
L2p(k)

2 . (15)

3.2. Factorization of Dk(φ):

Using the fact that Cp = C̃p ∪ (−C̃p) ∪ C̃∗p ∪ (−C̃∗p) and plugging the

expression of the symbol’s APPs already established in (12) through (15)

back into (6) and using the identity ex + e−x = 2 cosh(x), we obtain

the following result:

Dk(φ) = 2βk

∑

c̃m∈C̃p

µk,p(c̃m) e
−ρNa|c̃m|2 ×

[
cosh

(
2
σ2ℜ

{
c̃∗mSa(φ)Hy(k)

}
+

L2p(k)

2
+

L2p−1(k)

2

)
×

+ cosh
(

2
σ2ℜ

{
c̃mSa(φ)Hy(k)

}
+

L2p(k)

2
− L2p−1(k)

2

)]
. (16)



Then, using the identities cosh(x)+cosh(y) = 2 cosh(x+y

2
) cosh(x−y

2
),

c̃∗m + c̃m = 2ℜ{c̃m} and c̃∗m − c̃m = −2jℑ{c̃m}, it follows that:

Dk(φ) =

4βk

∑

c̃m∈C̃p

µk,p(c̃m)e
−ρNa|c̃m|2

cosh
(
2S

√
Naℜ{c̃m}
σ2 uk(φ)+

L2p(k)

2

)

× cosh
(
2S

√
Naℑ{c̃m}
σ2 vk(φ)+

L2p−1(k)

2

)
, (17)

in which uk(φ) and vk(φ) are, respectively, the real and imaginary parts

of the receive-beamforming output steered toward the unknown DOA to

be estimated, i.e.:

uk(φ),
1√
Na
ℜ
{
a(φ)Hy(k)

}
and vk(φ),

1√
Na
ℑ
{
a(φ)Hy(k)

}
.

Since each c̃m ∈ C̃p can be written as c̃m = [2i− 1]dp + j[2n − 1]dp
for some 1 ≤ i, n ≤ 2p−1, where 2dp is the inter-symbol distance given

in [12], we will from now on use the superscript (i, n) instead of m[
i.e., c̃m ←→ b̄

(i,n)
1 b̄

(i,n)
2 · · · b̄(i,n)

2p

]
. Further, by closely inspecting the

recursive construction process, it can be easily shown that (see [17] and

[18] for more details):

ASSERTION: the GC 22p−QAM has the following property:

• The odd-position bits, b̄
(i,n)
2l−1, do not change by scanning each hor-

izontal line of the constellation points.

• The even-position bits, b̄
(i,n)
2l , do not change by scanning each

vertical line of the constellation points.

In a nutshell, the fact that the odd-position bits, {b̄(i,n)
2l−1}

p
l=1, do not

change for each horizontal line means that they do not change by varying

the symbols’ abcissa, [2i−1]dp, or equivalently by changing the counter

i. Therefore, {b̄(i,n)
2l−1}

p
l=1 are function of n only and, by the same token,

the even-position bits, {b̄(i,n)
2l }

p
l=1, are function of i only. As a conse-

quence, we will from now on drop the vanishing counter from each group

of bits and denote them simply as:
{
b̄
(i,n)
2l−1 ≡ b̄

(n)
2l−1 and b̄

(i,n)
2l ≡ b̄

(i)
2l

}p

l=1

. (18)

Now, by using the result of (18) in (11) and grouping the odd-position

(resp. even-position) bits together, we obtain the decomposition:

µk,p(c̃m) = θk,2p(i)θk,2p−1(n), (19)

where θk,2p(i) and θk,2p−1(n) are given by:

θk,2p(i)=

p−1∏

l=1

e(2b̄
(i)
2l

−1)
L2l(k)

2 ; θk,2p−1(n)=

p−1∏

l=1

e(2b̄
(n)
2l−1

−1)
L2l−1(k)

2 .

Plugging (19) in (17) and using C̃p =
{
[2i− 1]dp + j[2n− 1]dp

}2p−1

i,n=1
,

we obtain the result given by (21) [shown on the top of the next page].

Finally, by splitting the two sums in (21), Dk(φ) factorizes as follows:

Dk(φ) = 4βkFk,2p

(
uk(φ)

)
×Fk,2p−1

(
vk(φ)

)
, (20)

where the function Fk,q(.) is given by (for q = 2p or 2p− 1):

Fk,q(x) =

2p−1∑

i=1

θk,q(i)e
−ρNad2p[2i−1]2cosh

(
2S[2i−1]

√
Nadp

σ2 x+
Lq(k)

2

)
.

Furthermore, by following the same reasoning of Appendix C in [12], it

can be shown that:

p[uk(φ), vk(φ)] = p[ 1√
Na

a(φ)Hy(k)] = p[uk(φ)]p[vk(φ)], (22)

where the pdfs of the two independent random variables (RVs), uk(φ)
and vk(φ), are given by:

p
[
uk(φ)] =

2βk,2p√
πσ2

Fk,2p

(
uk(φ)

)
e
−

uk(φ)2

σ2 , (23)

p
[
vk(φ)] =

2βk,2p−1√
πσ2

Fk,2p−1

(
vk(φ)

)
e
−

vk(φ)2

σ2 . (24)

3.3. Derivation of the closed-form DOA CA CRLB

By injecting (5) in (4), it follows that:

L(Y;φ) = −KNa ln
(
πσ2)+ 1

σ2

K−1∑

k=0

∣∣∣∣y(k)
∣∣∣∣2+

K−1∑

k=0

ln
(
Dk(φ)

)
.

Then, using (20) and discarding the constant terms
(
that do not depend

on φ
)
, it follows that the useful LLF is decomposed as the sum of two

analogous terms as follows:

L(Y;φ) =

K−1∑

k=0

ln
(
Fk,2p

(
uk(φ)

))
+

K−1∑

k=0

ln
(
Fk,2p−1

(
vk(φ)

))
. (25)

By using (25) in (3) and owing to the linearity of the derivative and

expectation operators, we obtain:

I(φ) =

K−1∑

k=0

[
γk,2p(φ) + γk,2p−1(φ)

]
, (26)

where γk,2p(φ) , −E
{
∂2 ln

(
Fk,2p

(
uk(φ)

))
/∂φ2

}
and γk,2p−1(φ) ,

−E
{
∂2 ln

(
Fk,2p−1

(
vk(φ)

))
/∂φ2

}
. Next, we will only detail the

derivation of γk,2p(φ) since γk,2p−1(φ) is obtained in the same way due

to the apparent symmetries between the pdfs of uk(φ) and vk(φ) in (23)

and (24). In fact, since uk(φ) and u̇k(φ) =
∂uk(φ)

∂φ
are two independent

RVs, it follows that:

γk,2p(φ) = E
{
u̇2
k(φ)

} [
E

{
F ′2
k,2p(uk(φ))

F2
k,2p(uk(φ))

}
− E

{
F ′′

k,2p(uk(φ))

Fk,2p(uk(φ))

}]

− E

{
ük(φ)

F ′

k,2p(uk(φ))

Fk,2p(uk(φ))

}
, (27)

where F ′
k,2p(x) and F ′′

k,2p(x) are the first and second derivatives of

Fk,2p(x) with respect to the working variable x. In order to derive the

expectations involved in (27), we define beforehand the following two

quantities (for q = 2p or 2p− 1) that will appear repeatedly:

ωk,q , 2d2pβk,q cosh
(

Lq(k)

2

)∑2p−1

i=1 θk,q(i)[2i− 1]2,

αk,q , 2dpβk,q sinh
(

Lq(k)

2

)∑2p−1

i=1 θk,q(i)[2i− 1].

By integration over the pdf of uk(φ) in (23) it follows that:

E

{
F ′′

k,2p(uk(φ))

Fk,2p(uk(φ))

}
=

∫

R

F ′′

k,2p(uk(φ))

Fk,2p(uk(φ))
p[uk(φ)]duk(θ),

=
2βk,2p√

πσ2

∫

R

F ′′

k,2p

(
uk(φ)

)
e

−u2
k(φ)

σ2 duk(φ). (28)

After expanding the expression of F ′′
k,2p(x) using the identity cosh(x+

y) = cosh(x) cosh(y)+sinh(x) sinh(y) and making use of the follow-

ing result (shown via “integration by parts”):∫ +∞

0

cosh
(
bx

)
e−ax2

dx = 1
2

√
π
a
e

b2

4a , ∀a > 0 and b ∈ R,

it follows that:

E

{
F ′′

k,2p(uk(φ))

Fk,2p(uk(φ))

}
= 4Na

σ2 ρωk,2p . (29)

Moreover, by following the same rationale of Appendix A in [12], it can

be shown that u̇k(φ) is written as follows:

u̇k(θ) =
jS

2
√

Na
ȧ(θ)Ha(θ)ℑ{x(k)}+ 1

2
√

Na
ℜ
{
ȧ(θ)Hw(k)

}
.

After some tedious algebra, the closed-form expression of E
{
u̇k(θ)

2
}

is obtained as follows (cf. Appendix A of [12] for some hints):

E
{
u̇k(φ)

2} = σ2

2Na

∣∣∣∣ȧ(φ)
∣∣∣∣2+ S2

2Na

∣∣a(φ)H ȧ(φ)
∣∣2
(
1− ωk,2p−1

2

)
.



Dk(φ) = 4βk

2p−1∑

i=1

2p−1∑

n=1

[
θk,2p(i)e

−ρNad
2
p[2i−1]2

cosh
(

2S[2i−1]
√

Nadp

σ2 uk(φ)+
L2p(k)

2

)
×

θk,2p−1(n)e
−ρNad

2
p[2n−1]2

cosh
(

2S[2n−1]
√

Nadp

σ2 vk(φ)+
L2p−1(k)

2

)]
. (21)

After tedious algebraic manipulations, we also obtain the closed-form

expressions for the remaining expectations involved in (27) as follows

(cf. [12] for some hints):

E

{
F ′2
k,2p(uk(φ))

F2
k,2p(uk(φ))

}
= 4Na

σ2 ρνk,2p(ρ), (30)

E

{
ü(k)

F ′

k,2p(uk(φ))

Fk,2p(uk(φ))

}
= −2

∣∣∣∣ȧ(φ)
∣∣∣∣2ρ ωk,2p

−2ℑ
{
a(φ)H ä(φ)

}
ραk,2pαk,2p−1, (31)

where ȧ(φ) = ∂
∂φ

a(φ). In (30), νk,2p(.) is given by:

νk,2p(ρ) =
d2p βk,2p√

π

∫ +∞

−∞

λ2
k,2p(t, ρ)

δk,2p(t, ρ)
e−

t2

4 dt,

where λk,2p(t, ρ) and δk,2p(t, ρ) are displayed on the bottom of the cur-

rent page. Now, after injecting the expectations evaluated in (29) to (31)

back into (27), it can be shown that:

γk,2p(φ) = 2ρ2
∣∣a(φ)H ȧ(φ)

∣∣2[ν2p(ρ)− ωk,2p

]

+ 2ρ
∣∣∣∣ȧ(φ)

∣∣∣∣2ν2p(ρ)+2ρℑ
{
a(φ)H ä(φ)

}
αk,2pαk,2p−1.

By using equivalent algebraic manipulations, the other term γk,2p−1(φ)
is obtained as:

γk,2p−1(φ) = 2ρ2
∣∣a(φ)H ȧ(φ)

∣∣2[ν2p−1(ρ)− ωk,2p−1

]

+2ρ
∣∣∣∣ȧ(φ)

∣∣∣∣2ν2p−1(ρ)−2ρℑ
{
a(φ)H ä(φ)

}
αk,2pαk,2p−1.

Finally, using the expressions of γk,2p(φ) and γk,2p−1(φ) in (26) and re-

calling (2), we obtain the closed-form expression of the DOA CA CRLB.

Interestingly enough, this analytical expression is valid for any antenna

array geometry. Yet, uniform linear arrays (ULAs) and uniform circular

arrays (UCAs) remain by far the most studied cases in the open litera-

ture. For these two popular configurations, it can be shown (cf. [15]) that

the required geometrical factors involved in γk,2p(φ) and γk,2p−1(φ) are

given by2:

Table I. Geometrical factors for ULAs and UCAs

ULA UCA
∣∣∣∣ȧ(θ)

∣∣∣∣2
π2 Na(Na−1)(2Na−1)

6
cos2(θ)

Naπ2

8 sin2(π/Na)

|a(θ)H ȧ(θ)|2 π2 cos2(θ)

(∑Na−1

k=1 k
)2

0

2Note that the term ℑ{a(φ)H ä(φ)} cancels out by summing γk,2p(φ) and
γk,2p−1(φ). For this reason, it is not included in Table I.

4. SIMULATION RESULTS

In this section, we illustrate the new DOA CA CRLB graphically with

two modulation orders (i.e., 16− and 64−QAM), both with two coding

rates (R1 = 1/2 and R2 = 1/3). In order to validate our new ana-

lytical expression, we also evaluated the considered bound empirically

by following the same empirical approach used in [16] in the context of

CA time delay estimation. As seen from Fig. 2, the new closed-form

CRLB coincides with its empirical counterpart. It is also seen that, at

the same SNR level and with the same coding rate, the CA CRLB in-

creases as the modulation order increases. Moreover, at all SNR levels,

the CA CRLB is smaller than the NDA CRLB, which corresponds to the

case where all the symbols are completely unknown. This highlights the

performance improvements in DOA estimation that can be achieved by

a coded system over an uncoded one. More interestingly, the CA CRLB

decreases rapidly to reach the DA CRLB, which corresponds to an ideal

scenario where all the transmitted symbols are perfectly known to the

receiver. Moreover, from Fig. 2 we see that the CA CRLB improves by

decreasing the coding rate. In fact, with smaller coding rates, more re-

dundancy is introduced by the encoder so that the decoder is more likely

able to correctly detect the transmitted bits thereby enhancing the esti-

mation performance.
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Fig. 2. Illustration of the DOA CA CRLBs for a ULA with φ = 45◦ and

Na = 4: (a) 16−QAM (K = 207) and (b) 64−QAM (K = 210).

5. CONCLUSION

In this contribution, we established for the first time the closed-form ex-

pression for the CRLB of code-aided DOA estimates from turbo-coded

square-QAM-modulated signals. The new expression was validated em-

pirically by exhaustive Monte-Carlo simulations. It was shown that, by

exploiting the turbo decoder output during the estimation process, the

CA CRLBs become remarkably smaller than their NDA counterparts.

This highlights the performance improvements that can be offered by

coded systems, in terms of DOA estimation, as opposed to non-coded

ones.

λk,2p(t, ρ) =
∑2p−1

i=1 [2i− 1]θk,2p(i) e
−ρNad2p[2i−1]2× sinh

(√
2ρNa [2i− 1]dpt+

L2p(k)

2

)
,

δk,2p(t, ρ) =
∑2p−1

i=1 θk,2p(i)e
−ρNad2p[2i−1]2× cosh

(√
2ρNa [2i− 1]dpt+

L2p(k)

2

)
.
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