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Abstract—We consider the problem of joint phase and carrier
frequency offset (CFO) estimation from turbo-coded square-QAM
modulated signals. We derive for the first time the closed-form
expressions for the exact Cramér-Rao lower bounds (CRLBs) of
this estimation problem. In particular, we introduce a new recursive
process that enables the construction of arbitrary Gray-coded square-
QAM constellations. Some hidden properties of such constellations will
be revealed and carefully handled in order to decompose the likelihood
function (LF) into the sum of two analogous terms. This decomposition
makes it possible to carry out analytically all the statistical expectations
involved in the Fisher information matrix (FIM). The new analytical
CRLB expressions corroborate the previous attempts to evaluate the
underlying perfromance bounds empirically. In the low-to-medium
signal-to-noise ratio (SNR) region, the CRLB for code-aided (CA)
estimation lies between the bounds for completely blind [non-data-
aided (NDA)] and completely data-aided (DA) estimation schemes,
thereby highlighting the coding gain potential in CFO and phase
estimation. Most interestingly, in contrast to the NDA case, the CA
CRLBs start to decay rapidly and reach the DA bounds at relatively
small SNR thresholds. The derived bounds are also valid for LDPC-
coded systems and they can be evaluated in the same way when the
latter are decoded using the turbo principal.

Index Terms—Carrier phase shift, carrier frequency offset (CFO),
Cramér-Rao lower bound (CRLB), turbo/LDPC codes, code-aided
(CA), extrinsic information, Gray mapping, square QAMs.

I. INTRODUCTION

CURRENT and next-generation wireless communication sys-
tems are called upon to provide high quality of service, while

satisfying the increasing demand for higher data rates. In order to
meet these requirements, the use of powerful error-correcting codes
such as turbo codes [1] in conjunction with high spectral efficiency
modulations such as high-order quadrature amplitude modulations
(QAMs) is advocated. In this context, turbo codes and QAM signals
have already been adopted for 4G mobile communication systems
such as Mobile WiMAX (IEEE 802.16e) [2], long-term evolution
(LTE), LTE-advanced (LTE-A) and beyond (LTE-B) [3].
Yet, turbo codes are known to be very sensitive to synchronization
errors. In fact, even small values for the carrier frequency offset
(CFO) and/or phase shift may entail severe performance degra-
dations. One of the obvious solutions to this problem consists in
using turbo codes in conjunction with a coherent detection scheme.
In other words, the carrier phase shift and the CFO are estimated
and compensated for before proceeding to data decoding. As such,
the synchronization parameters are estimated directly from the
received samples at the output of the matched filter. In doing so,
two estimation schemes can be envisaged i) NDA estimation with
no a priori knowledge about the transmitted symbols or ii) DA
estimation using perfectly known pilot sequences. Yet, turbo-coded
systems are primarily intended to operate at low SNR thresholds.
On one hand, in such adverse SNR conditions, NDA techniques
result in high estimation errors affecting thereby the overall system
performance. On the other hand, accurate DA synchronization
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requires large training sequences which limits, in turn, the effective
system capacity.
To circumvent this problem and properly synchronize turbo-coded
systems, a more elaborate solution known as turbo synchronization
has gained considerable attention over the last two decades. It
consists in using the soft information (either the a posteriori proba-
bilities or the extrinsic information) provided by the turbo receiver
at each decoding iteration in order to enhance the synchronization
performance. In other words, the estimation task is assisted by the
decoder and will thus be refered to as code-aware or code-aided
(CA) estimation, as opposed to non-code-aided (NCA) estimation
(i.e., NDA scenario).
Many techniques for CA estimation of the phase shift and the CFO
have been reported in the open literature (see [4-11] and references
therein). The performance of such CA estimators is usually assessed
in terms of error variance; yet it still requires to be gauged against
an absolute benchmark. The Cramér-Rao lower bound (CRLB), a
well known fundamental bound [12], meets this requirement since
it sets the minimum achievable variance for any unbiased estimator.
Most interestingly, the stochastic CRLB (unknown and random
transmitted symbols) is known to be achieved asymptotically by
the stochastic maximum likelihood (ML) estimator. Yet, even under
uncoded transmissions, the complex structure of the LF makes it
extremely hard, if not impossible, to derive analytical expressions
for this bound, especially for high-order modulations. Therefore, it
is often evaluated empirically (in both NCA and CA estimations).
Indeed, the stochastic CRLBs for the carrier phase and CFO NDA
estimation were first evaluated empirically in both cases of uncoded
PSK- and symmetric-QAM-modulated signals [13]. It was not until
recently, though, that the closed-form expressions of the stochastic
CRLBs were ultimately established for arbitrary square QAM-
modulated signals in [15, 22] for the estimation of various channel
parameters, but still in the traditional NCA scenario.
In coded transmissions, however, the LF becomes even more com-
plicated and developing CRLBs in closed form is obviously a lot
more difficult. Thus, exhaustive Monte-Carlo simulations have been
recently adopted by Noels et al. in [23, 24] to evaluate empirically
the CA CRLBs for the carrier phase and CFO estimation from
turbo-coded linearly-modulated signals. However, no analytical
expressions for such interesting CA CRLBs are yet available in
the open literature. Motivated by these facts, we derive for the very
first time the closed-form expressions for the considered CRLBs
in CA estimation from any turbo-coded square-QAM-modulated
signal and show that they corroborate the aforementioned attempts
[23, 24] to evaluate these bounds empirically.
We structure the rest of this paper as follows. In section II,
we present the system model. In section III, we derive the log-
likelihood function of the system. In section IV, we derive the
different FIM elements and the analytical expressions for the
considered CA CRLBs. In section V, we present some graphical
representations for the newly derived bounds and, finally, draw out
some concluding remarks in section VII.
We mention beforehand that some of the common notations will
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be used in this paper. In fact, vectors and matrices are represented
in lower- and upper-case bold fonts, respectively, and j is the pure
complex number that verifies j2 = −1. The operators ℜ{.}, ℑ{.},
{.}∗ and |.| return, respectively, the real part, imaginary part, the
conjugate and amplitude of any complex number. Moreover, P [.]
and p[.] denote the probability mass function (PMF) and the pdf
for discrete and continuous random variables, respectively. The
statistical expectation is denoted as E{.}.

II. SYSTEM MODEL

A binary sequence of information bits is fed into a turbo encoder
consisting of two identical recursive and systematic convolutional
codes (RSCs) which are concatenated in parallel via an interleaver
of size L. The coded bits are then fed into a puncturer which selects
an appropriate combination of the parity bits, from both encoders,
in order to achieve the desired overall rate R. The obtained coded
bits (systematic and parity bits) are scrambled with an outer
interleaver, and then mapped onto any square-QAM Gray-coded
constellation. The information-bearing symbols are transmitted over
the wireless channel and the analog received signal is sampled at the
output of the matcheded filter. With imperfect phase and frequency
synchronization, the obtained samples are modeled as follows:

y(k) = S x(k)ej(2πkν+φ) + w(k), (1)

for k = k0, k0 + 1, · · · , k0 + K − 1 where k0 is the time instant
of the first observed sample and K is the total number of recorded
data. The K unknown transmitted symbols, {x(k)}k are drawn
from any M -ary Gray-coded square-QAM constellation whose
alphabet is denoted as Cp = {c1, c2, · · · , cM}. By square QAM

we mean M = 22p
(
i.e., QPSK, 16−QAM, 64−QAM, etc...

)
. The

noise components, {w(k)}k, are modeled by zero-mean circular
complex Gaussian random variables with independent real and
imaginary parts

(
each of variance σ2

)
. For more convenience, we

stack the unknown phase and frequency offsets
(
respectively, φ

and ν
)

into the vector α = [φ ν]T . They are to be estimated
from all the received samples gathered in the observation vector
y = [y(k0), y(k0+1), · · · , y(k0+K−1)]T . Without loss of gener-
ality (w.l.o.g), we assume that the energy of the transmitted symbols

is normalized to one1 (

i.e., E{|x(k)|2} = 1
)

so that the average

SNR of the system is given by ρ = E
{
S2|x(k)|2

}
/2σ2 = S2/2σ2.

The CRLB is a practical lower bound that verifies2 the inequality
E
{
[α̂−α][α̂−α]T

}
≽ CRLB(α) for any unbiased estimator α̂

of α which is given by:

CRLB(α) = I−1(α), (2)

where I(α) is the Fisher information matrix (FIM) with entries:

[I(α)]i,l = −E
{
∂2L(y;α)

∂αi∂αl

}
i, l = 1, 2. (3)

in which {αi}i=1,2 are the elements of the parameter vector α and

L(y;α) , ln (p[y;α]) is the log-likelihood function (LLF) of the
system

(
p[y;α] is the pdf of y parameterized by α

)
.

III. DERIVATION OF THE LLF

Due to space limitations, we will present in this paper the
main derivation steps without delving too much into details. For
detailed proofs of the upcoming results, the reader is referred to
the complete journal version of this work in [25]. Throughout this
paper, we assume that the constellation is Gray coded. Each point

1If the transmit energy, P , is not unitary, it can be easily incorporated as an

unknown scaling factor into the channel coefficient which becomes
√
PS instead

of S in (1).
2Note that A ≽ B for any two square matrices A and B means that A−B

is positive semi-definite.

of the alphabet, {cm}Mm=1, is mapped onto a unique sequence of
log2(M) bits denoted here as b̄m1 b̄m2 · · · b̄ml · · · b̄mlog2(M). For the sake

of clarity, this mapping will be denoted as follows:

cm ←→ b̄m1 b̄m2 · · · b̄ml · · · b̄mlog2(M). (4)

The same notation is used to refer to the kth bit sequence,
bk1b

k
2 · · · bkl · · · bklog2(M), that is conveyed by the kth symbol x(k),

i.e., x(k) ←→ bk1b
k
2 · · · bkl · · · bklog2(M). Due to the large-size inter-

leaver, the coded bits can be assumed as statistically independent.
This assumption is indeed pervasive in CA estimation

(
see [4,

23, 24] and references therein
)
. Consequently, the transmitted

symbols (which are soft representations for different blocks of such
independent bits) can also be considered as independent, i.e.:

p[y;α] =

k0+K−1∏

k=k0

p[y(k);α], (5)

where p[y(k);α] is the pdf of the individual received sample, y(k),
which is given by:

p[y(k);α] =
∑

cm∈Cp

P [x(k) = cm]p[y(k);α|x(k) = cm],

=
∑

cm∈Cp

P [x(k)=cm]

2πσ2
exp

{|y(k)−Sφ,ϑ cm|2
2σ2

}
, (6)

in which we use the notation Sφ,ϑ = Sej(2πkϑ+φ). Now, in the
case of square-QAM modulations where each constellation point
represents 2p bits (i.e., log2(M) = 2p), and again, due to the
independence of the coded bits, the a priori probabilities are
factorized as follows:

P [x(k)=cm] =
∏2p

l=1P
[
bkl = b̄ml

]
, m = 1, 2, · · · ,M. (7)

We also define the so-called log-likelihood ratio (LLR) of each
transmitted bit, bkl , as follows:

Ll(k) = ln

(
P [bkl = 1]

P [bkl = 0]

)
. (8)

Then, by using P [bkl = 0] + P [bkl = 1] = 1, it can be shown that:

P [bkl = 1] =
eLl(k)/2

2 cosh (Ll(k)/2)
, P [bkl = 0] =

e−Ll(k)/2

2 cosh (Ll(k)/2)
. (9)

These two results can be combined to obtain a single generic
formula:

P [bkl = b̄ml ]=
e(2b̄

m
l −1)

Ll(k)

2

2 cosh (Ll(k)/2)
, (10)

where b̄ml can be 0 or 1 depending on which symbol cm is transmit-
ted during the kth period. Therefore, recalling that log2(M) = 2p
(for square-QAM constellations) and injecting (10) in (7), it follows
that:

P [x(k) = cm] =

(
2p∏

l=1

1

2 cosh
(
Ll(k)/2

)
)

︸ ︷︷ ︸
βk

2p∏

l=1

e(2b̄
m
l −1)

Ll(k)

2 . (11)

Now, by denoting I(k) , ℜ{y(k)} and Q(k) , ℑ{y(k)}, it can
be shown that the pdf in (6) is given by:

p[y(k);α] =
1

2πσ2
exp

{
−I(k)2 +Q(k)2

2σ2

}
Dα(k), (12)
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where

Dα(k)=
∑

cm∈Cp

P [x(k) = cm]e
−S2|cm|2

2σ2 exp

{ℜ{cmy(k)∗Sφ,ϑ}
σ2

}
.

(13)

After taking the logarithm of (12) and dropping the constant
terms that do not depend neither on φ nor on ν, the useful

LLF reduces simply to L(y;α) =
∑k0+K−1

k=K0
ln
(
Dα(k)

)
. At

this stage, it is still impossible to derive analytical expressions
for the considered CRLBs without further manipulating the term
Dα(k). Actually, considering the special case of square-QAM-
modulated signals, and judiciously exploiting the structure of the
Gray mapping mechanism, we are able to factorize Dα(k) into
the product of two analogous terms. In fact, when M = 22p

for any integer p ≥ 2 (i.e., square-QAM constellations), we have
Cp = {±(2i− 1)dp ± j(2n− 1)dp}i,n=1,2,...,2p−1 , where 2dp is

the intersymbol distance in the I/Q plane. For normalized-energy

square-QAM constellations
(
i.e., 1

22p

∑22p

m=1 |cm|2 = 1
)
, it can be

shown that:

dp =
2p−1

√
2p
∑2p−1

m=1(2m− 1)2
. (14)

Now, by defining C̃p to be the top-right quadrant of the constellation,

we have Cp = C̃p∪(−C̃p)∪C̃∗p∪(−C̃∗p) and thus (13) can be rewritten
as:

Dα(k)=
∑

c̃m∈C̃p

exp

{
−S2|c̃m|2

2σ2

}
×

(
P [x(k) = c̃m] exp

{ℜ{c̃my∗(k)Sφ,ϑ}
σ2

}

+P [x(k) = −c̃m] exp

{ℜ{−c̃my∗(k)Sφ,ϑ}
σ2

}

+P [x(k) = c̃∗m] exp

{ℜ{c̃∗my∗(k)Sφ,ϑ}
σ2

}

+P [x(k) = −c̃∗m] exp

{ℜ{−c̃∗my∗(k)Sφ,ϑ}
σ2

})
. (15)

Next, we describe a simple process for the recursive construction of
any Gray-coded square-QAM constellation. Some hidden properties
of such constellations will be revealed — from this recursive
process — and carefully exploited in order to factorize the term
Dα(k) in (15). In fact, starting from any basic QPSK constellation

and a given 22(p−1)-QAM Gray-coded constellation, it is possible
to build a 22p-QAM Gray-coded one as follows:

• step 1: build the top right quadrant of the desired 22p-QAM
constellation from all the points3 of the available 22(p−1)-QAM
constellation.

• step 2: build the three remaining quadrants of the new 22p-
QAM constellation by symmetries on: i) the x-axis to obtain
the bottom-right quadrant, ii) the y-axis to obtain the top-
left quadrant; and iii) the center point to obtain the bottom-
left quadrant. Yet, the points of the original 22(p−1)-QAM
constellation represent each 2(p − 1) bits only. Therefore,
two bits are still missing in each point of the new 22p-QAM
constellation that must represent 2p bits.

• step 3: copy the two missing bits from each quadrant of a basic
Gray-coded QPSK constellation to all the points that belong
to the same quadrant of the new constellation.

3The same points’ layout in the original 22(p−1)-QAM constellation is used,
i.e., the constellation is placed as is in the new quadrant.

Fig. 1. Recursive construction of Gray-coded square-QAM constellations illustrated
here from 4-QAM to 16-QAM.

As one example given in Fig. 1, we illustrate the recursive con-
struction of a Gray-coded 16-QAM constellation from a 4-QAM
Gray-coded one. In the sequel, we will use w.l.o.g as a basic QPSK
constellation the one depicted in Fig. 1 and assume that the two bits
added in “step 3” always occupy the two least significant positions.
Due to symmetries in “step 2”, each four symbols c̃m, c̃∗m, −c̃m
and −c̃∗m have the same 2(p − 1) most significant bits (MSBs),

b̄m1 b̄m2 b̄m3 ...b̄m2p−3b̄
m
2p−2, for any symbol c̃m ∈ C̃p. Thus, if we

consider these 2(p− 1) MSBs alone and define:

µk,p(cm) ,

2p−2∏

l=1

e(2b̄
m
l −1)

Ll(k)

2 , ∀cm ∈ Cp, (16)

we can then immediately see that:

µk,p(c̃m)=µk,p(−c̃m)=µk,p(c̃
∗
m)=µk,p(−c̃∗m), ∀c̃m ∈ C̃p. (17)

As seen from the right-hand side of (16), µk,p(cm) is not defined
for p = 1, i.e., for QPSK constellations. We extend its definition for
the latter by taking µk,1(cm) = 1 ∀ cm ∈ C1. It will be seen later
that this choice is consistent with all the derivations. Moreover, by
recalling the basic QPSK depicted in Fig. 1, the two remaining
LSBs are given by “b̄m2p−1b̄

m
2p” = “11”, “00”, “01”, and “10”, for

each c̃m ∈ C̃p, −C̃p, C̃∗p , and −C̃∗p , respectively. Using these results

along with (16) and (17) in (11), it follows that for any c̃m ∈ C̃p,
we have:

P [x(k)= c̃m] =βk µk,p(c̃m) e
L2p−1(k)

2 e
L2p(k)

2 , (18)

P [x(k)= c̃∗m] =βk µk,p(c̃m) e−
L2p−1(k)

2 e
L2p(k)

2 , (19)

P [x(k)=−c̃m] =βk µk,p(c̃m) e−
L2p−1(k)

2 e−
L2p(k)

2 , (20)

P [x(k)=−c̃∗m] =βk µk,p(c̃m) e
L2p−1(k)

2 e−
L2p(k)

2 . (21)

Plugging these probabilities back into (15) and recurring to the
identity ex + e−x = 2 cosh(x), it can be shown that:

Dα(k)= 2βk

∑

c̃m∈C̃p

exp

{
−S2|c̃m|2

2σ2

}
µk,p(c̃m)×

[
cosh

(ℜ{c̃m y∗(k)Sφ,ϑ}
σ2

+
L2p−1(k)

2
+
L2p(k)

2

)

+cosh

(ℜ{c̃∗m y∗(k)Sφ,ϑ}
σ2

−L2p−1(k)

2
+
L2p(k)

2

)]
. (22)

Furthermore, using the relationship cosh(x) + cosh(y) =
2 cosh(x+y

2 ) cosh(x−y
2 ) along with the two identities c̃m + c̃∗m =
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2ℜ{c̃m} and c̃m − c̃∗m = 2jℑ{c̃m}, (22) is rewritten as follows:

Dα(k)= 4βk

∑

c̃m∈C̃p

[
exp

{
−S2|c̃m|2

2σ2

}
µk,p(c̃m)×

cosh

(
S ℜ{c̃m}ℜ

{
y∗(k)ej(2πkϑ+φ)

}

σ2
+
L2p(k)

2

)
×

cosh

(
S ℑ{c̃m}ℑ

{
y∗(k)ej(2πkϑ+φ)

}

σ2
−L2p−1(k)

2

)]
. (23)

Recalling that C̃p = {(2i− 1)dp + j(2n− 1)dp}2
p−1

i,n=1, the sum

over c̃m ∈ C̃p in (23) can be written as a double sum over the
counters i and n after replacing c̃m by (2i− 1)dp + j(2n− 1)dp.
Therefore, in order to factorize Dα(k), the term µk,p(c̃m) =
µk,p

(
[2i− 1]dp + j[2n− 1]dp

)
must be factorized into two terms,

one depending only on i and the other only on n. Here, we are
actually dealing with the first 2p−2 MSBs, b̄m1 b̄m2 b̄m3 · · · b̄m2p−3b̄

m
2p−2.

This is because b̄m2p−1 and b̄m2p are not involved in µk(c̃m) and
therefore they will be henceforth denoted as “××”. Furthermore, it
will shortly prove very useful to represent the first 2p−4 MSBs by

the shorthand notation b̄mp , i.e., b̄mp , b̄m1 b̄m2 · · · b̄ml · · · b̄m2p−5b̄
m
2p−4.

Since c̃m = (2i − 1)dp + j(2n − 1)dp, we will also index
the bit sequence associated to c̃m by (i, n) instead of m, i.e.,

c̃m ←→ b̄
(i,n)
p b̄

(i,n)
2p−3b̄

(i,n)
2p−2 ××. Now, each symbol c̃m in C̃p which

has current coordinates
(
[2i − 1]dp , [2n − 1]dp

)
in the Cartesian

coordinate system (CCS) of the 22p-QAM constellation already has
some other old coordinates,

(
[2i′− 1]dp , [2n′− 1]dp

)
(in the CCS

of the original 22(p−1)-QAM) associated with a symbol cm′ =

(2i′−1)dp+ j(2n′−1)dp in Cp−1 with cm′ ←→ b̄
(i,n)
p b̄

(i,n)
2p−3b̄

(i,n)
2p−2.

Moreover, cm′ can be expressed in terms of (i, n) as follows:

cm′ = (2i− 1− 2p−1)dp + j(2n− 1− 2p−1)dp. (24)

On the other hand, we recall the same decomposition Cp−1 =
C̃p−1 ∪ (−C̃p−1) ∪ C̃∗p−1 ∪ (−C̃∗p−1) for the original 22(p−1)-QAM

constellation. Then, for some c̃m′ ∈ C̃p−1, we have cm′ ∈
{c̃m′ ,−c̃m′ , c̃∗m′ ,−c̃∗m′}. In turn, the symbols cm′ themselves are

obtained from a previous Gray-coded 22(p−2)-QAM constellation
by applying the same recursive procedure. Therefore, due to the
symmetries of “step 2”, it follows that c̃m′ , −c̃m′ , c̃∗m′ , and −c̃∗m′

have the same 2p − 4 MSBs
(
which are represented by b̄

(i,n)
p

)
.

Consequently, according to the definition in (16), we have

µk,p−1(c̃m′) =

2(p−1)−2∏

l=1

e(2b̄
(i,n)
l

−1)
Ll(k)

2 , ∀ c̃m′ ∈ C̃p−1

thereby yielding the following recursive property:

µk,p(c̃m)=µk,p−1(c̃m′) exp
{
(2b̄

(i,n)
2p−3 − 1)L2p−3(k)/2

}
×

exp
{
(2b̄

(i,n)
2p−2 − 1)L2p−2(k)/2

}
. (25)

Therefore, one needs to express the bits b̄
(i,n)
2p−3 and b̄

(i,n)
2p−2 explicitly

as one function of i or n only and vice-versa, respectively, if
µk,p(c̃m) is to be factorized in terms of these two counters
separately. Using ⌊x⌋ to denote the floor function which returns the
largest integer which is smaller than or equal to x, the following
lemma finds this useful decomposition:

Lemma 1: ∀ i, n = 1, 2, · · · , 2p−1, the two bits b̄
(i,n)
2p−2 and b̄

(i,n)
2p−3

are expressed as:

b̄
(i,n)
2p−2 =

⌊
i− 1

2p−2

⌋
and b̄

(i,n)
2p−3 =

⌊
n− 1

2p−2

⌋
. (26)

Proof: See Appendix A of [25].
By revisiting (25) and considering the recursive construction of

C̃p−1 from the 22(p−2)-QAM constellation and following the same
reasoning from (24) through (25), one can express µk,p−1(c̃m′)
itself in the same recursive form of (25). We capitalize on this
observation along with the result in (24) to show, by mathematical
induction, the following decomposition:

µk,p(c̃m) = θk,2p(i)θk,2p−1(n), (27)

where θk,2p(i) and θk,2p−1(n) can be computed recursively, for any
p ≥ 2 as follows:

θk,2p(i) = θk,2p−2

( |2i− 1− 2p−1|+ 1

2

)
×

exp

{(
2⌊ i− 1

2p−2
⌋ − 1

)
L2p−2(k)

2

}
, (28)

θk,2p−1(n) = θk,2p−3

( |2n− 1− 2p−1|+ 1

2

)
×

exp

{(
2⌊n− 1

2p−2
⌋ − 1

)
L2p−3(k)

2

}
, (29)

with the initialization θk,2(1)=θk,1(1)=1 since we have extended
the definition of µk,p(.) for p = 1 (i.e., QPSK constellations) to
be µk,1(cm) = 1 ∀ cm ∈ C1. Plugging (27) in (23) and using the

fact that C̃p = {(2i− 1)dp + j(2n− 1)dp}i,n=1,2,··· ,2p−1 , the term
Dα(k) is rewritten as follows:

Dα(k) = 4βk

2p−1∑

i=1

2p−1∑

n=1

[
exp

{
−
S2((2i− 1)2 + (2n− 1)2)d2p

2σ2

}

θk,2p(i) cosh

(
S(2i− 1)dpu(k)

σ2
+

L2p(k)

2

)
×

θk,2p−1(n) cosh

(
S(2n− 1)dpv(k)

σ2
− L2p−1(k)

2

)]
,

(30)

where u(k) and v(k) are defined as u(k) = ℜ
{
y∗(k)ej(2πkϑ+φ)

}

and v(k)=ℑ
{
y∗(k)ej(2πkϑ+φ)

}
. Finally, splitting the two sums in

(30), it can be shown that Dα(k) factorizes as follows:

Dα(k)=4βk F2p,α(u(k))× F2p−1,α(v(k)), (31)

where, by defining ηk,q(i) = θk,q(i)e
−(2i−1)2d2

pρ, the function
Fq,α(.) is given by:

Fq,α(x) ,

2p−1∑

i=1

ηk,q(i) cosh

(
(2i−1)dpSx

σ2
+

(−1)qLq(k)

2

)
,

and where, depending on the context, the counter q is used from
now on to refer to 2p or 2p− 1. Finally, by injecting (31) into (12)
and dropping the constant terms, the useful LLF for square-QAM
constellations is linearized as follows:

Ly(α)=

k0+K−1∑

k=k0

ln
(
F2p,α(u(k))

)
+

k0+K−1∑

k=k0

ln
(
F2p−1,α(v(k))

)
, (32)

involving thereby the sum of two analogous terms. Further, sub-
stituting (31) in (12) and using the fact that I(k)2 + Q(k)2 =
u(k)2 + v(k)2, it can be shown that:

p[y(k);α] = p[u(k), v(k);α] = p[u(k);α]p[v(k);α], (33)
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where

p[u(k);α] =
2βk,2p√
2πσ2

exp

{
−u(k)2

2σ2

}
F2p,α(u(k)), (34)

p[v(k);α] =
2βk,2p−1√

2πσ2
exp

{
−v(k)2

2σ2

}
F2p−1,α(v(k)), (35)

with

βk,2p =

p∏

l=1

1

2 cosh
(L2l(k)

2

) , βk,2p−1 =

p∏

l=2

1

2 cosh
(L2l−1(k)

2

) .

This means that the two random variables (RVs), u(k) and v(k)
are independent and almost identically distributed (i.e., their pdfs
have the same structure, but are parameterized differently). These
properties will prove extremely useful to the derivation of the
different FIM elements in the next section.

IV. DERIVATION OF THE CLOSED-FORM EXPRESSIONS FOR

THE CRLBS

Our starting point is the expression for the FIM elements defined
in (3). We will detail the derivation of the first diagonal FIM entry
only since similar steps allow the derivation of the other ones. In

fact, by defining γk,2p(ρ) , E
{
∂2 ln

(
F2p,α

(
u(k)

))
/∂φ2

}
and

γk,2p−1(ρ) , E
{
∂2 ln

(
F2p−1,α

(
v(k)

))
/∂φ2

}
, it can be readily

shown using (3) and (32) that:

[I(α)]1,1 =
∑k0+K−1

k=k0

[
γk,2p(ρ) + γk,2p−1(ρ)

]
. (36)

Due to the apparent symmetries between the pdfs of u(k) and v(k)
in (34) and (35), we will derive the term γk,2p(ρ) only and its
equivalent term γk,2p−1(ρ) can be easily deduced, at the very end,
by simple identification. To do so, we establish the first and second
derivatives of F2p,α(x) with respect to the working variable x as
follows:

F ′
2p,α(x)=

Sdp
σ2

2p−1∑

i=1

(2i−1)ηk,2p(i)sinh
(
(2i−1)dpSx

σ2
+
L2p(k)

2

)
,

F ′′
2p,α(x)=

S2d2p
σ4

2p−1∑

i=1

(2i−1)2ηk,2p(i)cosh
(
(2i−1)dpSx

σ2
+
L2p(k)

2

)
.

Moreover, by recalling the expressions of u(k) and v(k) given after
(30), we readily have:

u′(k) ,
∂u(k)

∂φ
= −v(k) and v′(k) ,

∂v(k)

∂φ
= u(k),

from which we obtain u′′(k) = −u(k). Using this result, and after
some algebraic manipulations, it can be shown that:

∂2 ln
(
F2p,α

(
u(k)

))

∂φ2
= −u(k)

F ′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)

+ v(k)2


F

′′
2p,α

(
u(k)

)

F2p,α

(
u(k)

) −
(
F ′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)
)2

.

Then, since u(k) and v(k) are independent RVs, it follows that:

γk,2p = −E

{
u(k)

F ′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)
}

+ E
{
v(k)2

}
×


E
{
F ′′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)
}
− E





(
F ′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)
)2





. (37)

Since the pdfs of these two RVs were already established in (34) and
(35), the expectations involved above can be expressed in closed
form. For instance, by integration over the pdf of v(k), it follows
that:

E
{
v(k)2

}
=

∫ ∞

−∞

v(k)2p[v(k);α]dv(k)

=
2βk,2p−1√

2πσ2

∫ ∞

−∞

v(k)F2p−1,α(v(k))e
−v(k)2/2σ2

dv(k).

After expanding the expression of F2p−1(x) in (32) using the
identity cosh(x + y) = sinh(x) sinh(y) + cos(x) cos(x), inverting
the sum and integral signs and then resorting to some algebraic

manipulations, it can be shown that A , E
{
v(k)2

}
is given by:

A = σ2

[
ρ ωk,2p−1+2βk,2p−1cosh

(
L2p−1(k)

2

)2p−1∑

n=1

θk,2p−1(n)

]
,(38)

in which ωk,2p−1 along with ωk,2p

(
that will appear shortly

)
are

common coefficients to all the FIM elements defined as:

ωk,q , d2p βk,q cosh
(
Lq(k)/2

)∑2p−1

i=1 (2i− 1)2θk,q(i), (39)

where q is either 2p or 2p−1. We further simplify (38) by showing
via mathematical induction the following identity:

2βk,2p−1 cosh
(
L2p−1(k)/2

)∑2p−1

n=1 θk,2p−1(n) = 1. (40)

In fact, by plugging (40) in (38), it follows that:

E
{
v(k)2

}
= σ2

[
1 + ρ ωk,2p−1

]
. (41)

The closed-form expressions for the other expectations involved in
(37) are obtained by integrating over the pdf of u(k):

E

{
u(k)

F ′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)
}

= ρ ωk,2p, (42)

E

{
F ′′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)
}

=
ωk,2p

σ2
ρ, (43)

E





(
F ′
2p,α

(
u(k)

)

F2p,α

(
u(k)

)
)2


 =

4 d2p βk,2p

σ2
ρΨk,2p(ρ), (44)

where Ψk,2p(.) in the last equality is given by:

Ψk,2p(ρ) =
1√
2π

∫ +∞

−∞

λ2
k,2p(t, ρ)

δk,2p(t, ρ)
e−

t2

2 dt, (45)

with

λk,2p(t, ρ) =
2p−1∑

i=1

(2i− 1)ηk,2p(i) sinh

(√
2ρ(2i− 1)dpt+

L2p(k)

2

)
,

δk,2p(t, ρ) =
∑2p−1

i=1 ηk,2p(i) cosh

(√
2ρ(2i− 1)dpt+ L2p(k)/2

)
.

Therefore, by injecting the four expectations evaluated in (41)
to (44) back into (37), the first term in (36) earlier denoted as
γk,2p(ρ) , E

{
∂2 ln

(
F2p,α

(
u(k)

))
/∂φ2

}
is obtained as follows:

γk,2p(ρ) = ωk,2p−1ρ

[
ωk,2pρ−4d2pβk,2pΨ2p(ρ)

(
1

ωk,2p−1
+ρ

)]
.(46)

As mentioned previously, the expression of the second term,

γk,2p−1(ρ) , E
{
∂2 ln

(
F2p−1,α

(
v(k)

))
/∂φ2

}
, involved in (36)

can be easily deduced from the expression of γk,2p(ρ) in (46). This
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is due to the apparent symmetries in the pdfs of the two RVs u(k)
and v(k), as seen from (34) and (35), leading to:

γk,2p−1(ρ) = ωk,2pρ

[
ωk,2p−1ρ−4d2pβk,2p−1Ψ2p−1(ρ)

(
1

ωk,2p
+ρ

)]
.

The first FIM diagonal element is obtained by injecting γk,2p(ρ) and
γk,2p−1(ρ) back into (36). After deriving the other elements using

equivalent manipulations4 and defining Ωp,k(ρ) , −γk,2p(ρ) −
γk,2p−1(ρ), we obtain an analytical expression for the FIM in CA
estimation as follows:

I(α)=

k0+K−1∑

k=k0

Ωp,k(ρ)

(
1 2πk
2πk (2π)2k2

)
=

k0+K−1∑

k=k0

Ik(α), (47)

where Ik(α) is the FIM pertaining to the kth received sample.
Now, the obtained general FIM expression (47), in CA estimation,
encloses the two traditional (extreme) scenarios of completely NDA
and completely DA estimations as special cases. Indeed, in the
former case, no a priori information about the bits is available
at the receiver end and, therefore, Pr[bkl = 1] = Pr[bkl = 0] = 1/2
thereby yielding LNDA

l (k) = 0 for all l and k. In the latter case,
however, the bits are a priori perfectly known and therefore, at the
receiver side, we have either {Pr[bkl = 1] = 1 hence Pr[bkl =
0] = 0} or {Pr[bkl = 0] = 1 hence Pr[bkl = 1] = 0} and
consequently the LLRs verify LDA

l (k) = ±∞. By injecting these
two typical values, LNDA

l (k) and LDA
l (k), in all the quantities that

are involved in the entries of Ik(α) and by recurring to some easy
simplifications, one obtains exactly the same expressions for the
FIMs developed earlier in [15] and [28] in the traditional NDA and
DA cases, respectively.
The CRLBs for the phase shift and the CFO are, respectively, the
first and second diagonal elements of the FIM inverse I−1(α).
As such, they depend on the first time index k0 as seen from
(47). Such dependencies on the observation window have previously
been reported in the literature even in the NDA case [14-15]. In
CA estimation as well, we obtain different loose (or excessively
optimistic) bounds as k0 varies. Our interest is focused on the
tightest bound which is obtained when the square of the off-
diagonal elements is negligible compared to the product of the
diagonal ones:

0 ≤ [I(α)]21,2 ≪ [I(α)]1,1[I(α)]2,2. (48)

We verify by computer simulations that the off-diagonal entries are
almost equal to zero when the set of sampling indices is centred
around zero, i.e., k0 = −K−1

2 . In this case, the CRLBs’ expressions
greatly simplify to:

CRLBCA(ν) =
−1

(2π)2

(∑K−1
2

k=−
K−1

2

Ωp,k(ρ)k
2
)−1

(49)

CRLBCA(φ) =
(
−
∑K−1

2

k=K−1
2

Ωp,k(ρ)
)−1

. (50)

V. SIMULATION RESULTS

In this section, we provide graphical representations for the
analytical CRLBs in (49) and (50) for the joint estimation of the
synchronization parameters, with different modulation orders and
different coding rates. The encoder is composed of two identical
RSCs of generator polynomials (1,0,1,1) and (1,1,0,1), with system-
atic rate R0 = 1

2 each. The output of the turbo encoder is punctured
in order to achieve the desired code rate R. For the tailing bits, the
size of the RSC encoders memory is fixed to 4. In order to evaluate
the obtained CA CRLBs, the extrinsic information delivered by the
SISO decoder is used to evaluate the bit LLRs, Ll(k). Note that

4Details were omitted due to lack of space.

having the LLRs at hand, it is possible to evaluate all the quantities
involved in the expressions of the considered bounds. Indeed, as
pointed out in [6, 26, 27] (and references therein) and owing to the
turbo principle, the extrinsic information accurately approximates
the bit’s a priori probabilities.
In Fig. 2, we begin by verifying that the new closed-form CRLBs
coincide with their empirical counterparts obtained earlier in [23,
24]. This means that the new analytical expressions corroborate
these previous attempts to evaluate the considered bounds, empir-
ically, and they allow their immediate evaluation for any square-
QAM turbo-coded signal.
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Fig. 2. NDA, DA, and CA (analytical and empirical) estimation CRLBs for: (a) the
phase shift, and (b) the CFO (16-QAM; K = 207).

As expected, we also see from the same figure that the CA CRLBs
are smaller than the NDA CRLBs which were earlier introduced
in [13, 15]. This highlights the performance improvements that
can be achieved by a coded system over an uncoded one. For
example, at SNR = 4 dB, the CA CRLBs are about up to 10
times smaller than the NDA CRLBs. This figure underlines the huge
potential performance gain that could be achieved at such low SNR
level. Additionally and most prominently, the CA CRLBs decrease
rapidly and reach the ideal DA bounds obtained by assuming all
the transmitted symbols to be perfectly known to the receiver, and
which are simply given by [28]:

CRLBDA(ν) =
6

(2π)2K(K2 − 1)ρ
, CRLBDA(φ) =

1

2Kρ
.

In Fig. 3, we plot the CA CRLBs for different modulation orders.
It is clear that the CRLBs increase with the modulation order at a
given SNR value. This is a typical behavior that was observed for
NDA CRLBs, as well, and actually for any parameter estimation
problem involving linearly-modulated signals. Indeed, when the
modulation order increases, the intersymbol distance decreases
for normalized-energy constellations. As such, at the same SNR
level, noise components have a relatively worse impact on symbol
detection and parameter estimation in general. Furthermore, even in
probability theory, when the ambient sample space of the nuisance
parameters

(
here the constellation alphabet

)
gets larger, more

uncertainty is introduced about each transmitted symbol thereby
rendering estimation more difficult. Another interesting observation
which can be drawn from Fig. 3 is that the CRLB for the frequency
is much smaller than that for the phase. This is simply because the
received signal depends much more on ν than on φ through the
time index k in the argument of ej(2πνk+φ). In other words, the
received samples carry more information on the frequency than on
the phase.
In Fig. 4, we show the effect of the coding rate on the synchro-
nization performance. In fact, we plot the CA CRLBs for two
different coding rates R1 = 0.3285 ≈ 1

3 and R2 = 0.4892 ≈ 1
2 .

Even though both CA CRLBs coincide at moderate SNRs, they
exhibit a significant gap at lower SNR levels. In fact, with smaller
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Fig. 3. CA estimation CRLBs (analytical) for: (a) the phase shift, and (b) the CFO
(4-, 16-, and 64-QAM; K = 207).

coding rates, more redundancy is provided by the turbo encoder.
Consequently, the decoder is more likely able to correctly detect
the transmitted bits enhancing thereby the estimation performance.
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Fig. 4. CA estimation CRLBs (analytical) for: (a) the phase shift, and (b) the CFO,
with two different rates (16-QAM, and K = 207).

VI. CONCLUSION

In this paper, we derived for the very first time analytical ex-
pressions for the CRLBs of joint CFO and carrier phase estimation
from turbo-coded square-QAM transmissions. Our new analytical
bounds coincide with their empirical counterparts earlier computed
in [23, 24]. They are also remarkably smaller than the NDA CRLBs
thereby suggesting enhanced synchronization capabilities if the soft
information provided by the turbo decoder is exploited during the
estimation process. Moreover, the CA CRLBs decay rapidly with
the SNR and reach the DA CRLB at relatively low thresholds where
all the transmitted symbols are assumed to be perfectly known. The
effect of the coding rate is also more apparent in the low SNR
regime where more redundancy implies more accurate decoding
and therefore better synchronization.
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