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Abstract—In this paper, we propose a novel range-free localiza-
tion algorithm able to reduce errors due to mapping the hops into
distance units. Using the proposed algorithm, the mean hop size
h̄s is locally derived at each regular or position-unaware node,
thereby avoiding its broadcast by anchors (i.e., a few nodes aware
of their exact position) as usually required in current state-of-the-
art solutions and, hence, resulting in less battery power depletion.
The analytical expression of h̄s is derived for different node
distributions. Furthermore, it is shown that it is possible to locally
compute h̄s at each regular node with or even without prior
knowledge of the node distribution. Simulations results show that
the proposed scheme outperforms the most representative range-
free localization schemes in terms of accuracy.
Index Terms—wireless sensor networks, localization accuracy,

range-free, nonparametric approach.

I. INTRODUCTION

Due to their reliability, low cost, and ease of deployment,
wireless sensor networks (WSNs) are emerging as a key tool
for many applications such as environment monitoring, disaster
relief, and target tracking [1]. A WSN is a set of small battery-
powered sensors able to collect data from the surrounding
environment and transmit it to a base station or an access
point [2]. However, the sensing data are very often useless if
the location from where they have been measured is unknown,
making the localization a fundamental and essential issue
in WSNs. So far, several localization algorithms have been
proposed in the literature. These algorithms can be roughly
classified into two categories: range-based and range-free.
To properly localize the regular or position-unaware node

positions, range-based algorithms exploit the measurements
of the received signals’ characteristics such as the time of
arrival (TOA) [3], the angle of arrival (AOA) [4], or the
received signal strength (RSS) [5]. These signals are, in fact,
transmitted by nodes with prior knowledge of their positions
called anchors (or landmarks). Although the range-based al-
gorithms stand to be very accurate, they are unsuitable for
WSNs. Indeed, these algorithms require high power to ensure
communication between anchors and regular nodes which are
small battery-powered units. Furthermore, additional hardware
is usually required at both anchors and regular nodes [6],
thereby increasing the overall cost of the network. Moreover,
the performance of these algorithms can be severely affected
by noise, interference, and/or fading. Unlike range-based al-
gorithms, range-free algorithms, which rely on the network
connectivity to estimate the regular node positions, are more
power-efficient and do not require any additional hardware and,

hence, are suitable for WSNs. Due to these practical merits,
range-free localization algorithms have garnered the attention
of the research community.
So far, many range-free schemes have been proposed in the

literature [7]- [11]. Most solutions are based on variations of
the distance vector-hop algorithm (DV-Hop) [7] which is often
considered as a benchmark. Unfortunately, like other range-
free algorithms, DV-Hop does not provide sufficient accuracy
due to errors occurring when mapping the hops into distance
units. Furthermore, with DV-Hop each anchor has to compute
an estimate of the network hop size and broadcast it to the other
nodes, resulting in unnecessary high power consumption.
In this paper, we propose a new efficient and low-

complexity localization algorithm which is able to reduce the
errors due to mapping hops into distance, thereby increasing
the localization accuracy. Using the proposed algorithm, each
regular node locally computes an exact mean hop size h̄s,
thereby avoiding its broadcast by anchors and, hence, the
depletion of battery power. The analytical expression of h̄s

is derived for different node distributions. Furthermore, it is
shown that it is possible to locally compute h̄s at each regular
node even without prior knowledge of the node distribution.
It is also proven that the proposed algorithm outperforms the
best representative range-free localization algorithms currently
available in the literature in terms of localization accuracy.
The remainder of this paper is organized as follows: In

Section II the system model is described. In Section III a
novel range-free algorithm is proposed. Section IV derives
the expression of the average hop size h̄s for different node
distributions. Section IV shows how h̄s can be computed
without prior knowledge of the node distribution. Simulation
results are discussed in Section VI and concluding remarks are
made in section VII.

II. NETWORK MODEL

Fig. 1 illustrates the system model of N WSN nodes
randomly deployed in a 2-D square area with side length A.
We assume that all nodes have the same transmission radius
denoted by R. Hence, each node can only communicate with
any other node located within its coverage area πR2.
We assume that only a few nodes commonly known as

anchors are aware of their positions. The other nodes, called
hereafter position-unaware, or for the sake of simplicity regular
nodes are oblivious of this information. As shown in Fig. 1,
the anchor nodes are marked with red triangle and the regular
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Fig. 1. Network model.

nodes are marked with blue circle. When the nodes are located
within the communication range of each other, they are linked
with a dashed line that represents the hop. Let Na and Nu

denote the number of anchors and regular nodes, respectively.
Let (xi, yi) be the coordinates of the i-th regular node and
(ak, bk) those of the k-th anchor.
In the following, we propose an efficient range-free

localization algorithm aiming to accurately estimate the
regular nodes’ coordinates (xi, yi), i = 1, 2, . . . , Nu.

Notation: Uppercase and lowercase bold letters denote
matrices and vectors, respectively. [·]il and [·]i are the (i, l)-th
entry of a matrix and i-th entry of a vector, respectively. I is
the identity matrix. (·)T denote the transpose.

III. THE PROPOSED ALGORITHM
In this section, we propose a two-step localization algo-

rithm. In the first step, the k-th anchor broadcasts through
the network a message containing (ak, bk, n) where n is the
hop-count value initialized to one. When a node receives this
message, it stores the k-th anchor position as well as the
received hop-count nk = n in its database, adds one to the
hop-count value and broadcasts the resulting message. Once
this message is received by an another node, its database
information is checked. If the k-th anchor information exists
and the received hop-count value n is smaller than the stored
nk, the node updates nk by n, increments by 1 then broadcasts
the resulting message. If nk is smaller than n, the node discards
the received message. However, when the node is oblivious to
the k-th anchor position, it adds this information to its database
and forwards the received message after incrementing n by 1.
This mechanism will continue until all nodes become aware of
all anchors’ positions and their corresponding minimum hop
count.
The i-th regular node computes then an estimate of its

distance to the k-th anchor as d̂ik = nmin
ik h̄s where nmin

ik is the
minimum hop count value corresponding to the k-th anchor

and h̄s is the mean hop size value depending on the node
distribution. Unlike the well-known DV-Hop which derives
at the anchors several estimates of h̄s (called corrections)
then broadcasts them to the rest of the WSN, each regular
node is able, owing to the new proposed algorithm, to locally
compute the exact value of h̄s, thereby avoiding its broadcast
and reducing battery-power depletion. In the next sections, the
expression of h̄s is derived for different node distributions.
Using d̂ik, k = 1...Na, the i-th regular node is now able to
compute an initial guess (x̂i, ŷi) of its 2-D coordinates by
performing trilateration [12], provided that Na ≥ 3.
Unfortunately, errors are expected to occur when estimating

the distance between each regular node-anchor pair, thereby
hindering localization accuracy. In the second step, we propose
to minimize the aforementioned errors. Let ε ik denotes the
estimation error of the distance between the i-th regular node
and the k-th anchor node as

εik = d̂ik − dik, (1)

where dik is the true distance between the two nodes. As
discussed above, this error hinders localization accuracy. As
such, we have {

xi = x̂i + δxi

yi = ŷi + δyi

, (2)

where δxi and δyi are the location coordinates’ errors to
be determined. Exploiting the Taylor series expansion and
retaining the first two terms, the following approximation
holds:

dik ≈ d†ik + αk1δxi + αk2δyi , (3)

where
d†ik =

√
(x̂i − ak)

2 − (ŷi − bk)
2 (4)

and

αk1 =
∂d†ik
∂x

∣∣∣∣∣
x̂i,ŷi

=
x̂i − ak√

(x̂i − ak)
2 − (ŷi − bk)

2
=

x̂i − ak

d†ik
,

(5)

αk2 =
∂d†ik
∂y

∣∣∣∣∣
x̂i,ŷi

=
ŷi − bk√

(x̂i − ak)
2 − (ŷi − bk)

2
=

ŷi − bk

d†ik
,

(6)
for k = 1, 2, . . . , Na. Note that d†ik is different from d̂ik due
to the error incurred by trilateration [12]. Therefore, rewriting
(3) in a matrix form yields

Γiδi = ζi − εi, (7)

where

Γi =

⎡
⎢⎢⎢⎣

α11

α21

...
αNa1

α12

α22

...
αNa2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

x̂i−a1

d†i1

ŷi−b1
d†i1

x̂i−a2

d†i2

ŷi−b2
d†i2

...
...

...
x̂i−am

d†iNa

ŷi−bm
d†iNa

⎤
⎥⎥⎥⎥⎥⎦
,

(8)
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ζi =

⎡
⎢⎢⎢⎣

d̂i1 − d†i1
d̂i2 − d†i2

...
d̂iNa − d†iNa

⎤
⎥⎥⎥⎦ , (9)

εi = [εi1, εi2, . . . , εiNa ]
T , and δi = [δxi , δyi ]

T .
Many methods such as the weighted least squares (WLS)

might be used to properly derive δ i. Using WLS, the solution
of (7) is given by :

δi =
(
ΓT
i P

−1
i Γi

)−1
ΓT
i P

−1
i ζi, (10)

where Pi is the covariance matrix of εi. Since εik k =
1, . . . , Na are independent random variables, P i boils down
to diag

{
σ2
i1, . . . , σ

2
iNa

}
where σ2

ik is the variance of εik.
However, assuming a high node density in the network, d ik

could be approximated as follows

dik ≈
nmin
ik∑
j=1

hj , (11)

where hj is the real size of the j-th hop which is a random
variable itself. Substituting (11) in (1), we obtain that ε ik ≈
nmin
ik h̄s −

nmin
ik∑
j=1

hj and, hence, σ2
ik = nmin

ik σ2
h where σ2

h is the

variance of hj . Consequently,

δi = (ΓT
i ΛiΓi)

−1ΓT
i Λiζi, (12)

where Λi = diag{1/nmin
i1 , . . . 1/nmin

ik }. A straightforward
inspection of (10) reveals that δ i solely depends on the
information locally available at the i-th regular node and,
therefore, is locally computable at this node and does not
require any additional information exchange between nodes.
Moreover, since ΓT

i ΛiΓi is a 2-by-2 matrix, the entries of
its inverse can be analytically and easily derived. Thus, the
computation of δ i does not burden neither the implementation
complexity of the proposed algorithm nor the overall cost of
the network. Once we get δ i, the value of (x̂i, ŷi) is updated
as x̂i=x̂i + δxi and ŷi = ŷi + δyi . The computations are
repeated until δxi and δyi approach zero. In such a case, we
have from (2) that xi ≈ x̂i and yi ≈ ŷi and, hence, more
accurate localization is performed. Note that, from (12), δ i is
independent of εik k = 1, . . . , Na. Consequently, the proposed
algorithm is able to reduce the error due to mapping hops into
distance units without requiring any distance error estimation.

IV. PARAMETRIC EVALUATION OF THE AVERAGE HOP-SIZE
As discussed above, to work properly, the proposed algo-

rithm requires the average hop size h̄s to be available at each
regular node. It is easy to show that

h̄s =

∫ R

0 zfZ (z)dz∫ R

0 fZ (z)dz
, (13)

where Z denotes the distance between any two nodes in the
network and fZ(z) is its probability density function (pdf). As
expected, h̄s depends on fZ(z) which in turn depends on the

node distribution. In the following, the average hop size h̄s is
derived considering the most used node distributions in WSN:
Uniform and Gaussian.
Without loss of generality, let us denote by (x1, y1) and

(x2, y2) the coordinates of two nodes in the area of concern,
where x1, y1, x2, y2 are assumed to be identically and indepen-
dently distributed random variables. Z can be then expressed
as Z =

√
X2 + Y 2 where X = x1 − x2 and Y = y1 − y2.

A. Uniform distribution
Assuming that the nodes are uniformly distributed, one can

prove that the pdf of X 2 and Y 2 are fX2 (x) = 1
A2

(
A√
x2
− 1

)

and fY 2 (y) = 1
A2

(
A√
y2
− 1

)
, respectively. Thus, Z has a

cumulative density function (CDF) given by

FZ(z) =
z2(6πA2 − 16zA+ 3z2)

6A4
, (14)

and, therefore, fZ(z) is given by

fZ(z) =
2z(πA2 − 4zA+ z2)

A4
. (15)

Using (15), h̄s is hence given by

h̄s =
4R(5πA2 − 15AR+ 3R2)

5(6πA2 − 16AR+ 3R2)
. (16)

It is straightforward to show from (16) that when A is large
enough, h̄s is reduced to 2R/3. As expected, h̄s increases
proportionately with the transmission range R.

B. Gaussian distribution
Consider now that xi, yi, xj , yj are normally distributed

random variables with the same standard deviation σ. In such a
case, X and Y are also normally distributed random variables
with variance equal to 2σ. Consequently, Z follows a Chi-
distribution with 2 degrees of freedom. and, hence,

fZ(z) =
z

2σ2
e−

z2

2σ2 . (17)

h̄s is then given by

h̄s =
√
πσ

[
1− 2Q

(
R√
2σ

)]
−Re−

R2

4σ2 . (18)

From (18), h̄s increases with R as observed in the case of the
Uniform node distribution.

It follows from (16) and (18) that h̄s can be readily
computed at each regular node given the a priori knowledge
of the node distribution before WSN deployment.

V. NONPARAMETRIC AVERAGE HOP-SIZE EVALUATION
In the previous section, h̄s was derived using prior knowl-

edge of the node distribution. However, in practice, this
distribution is often unknown before the deployment of the
WSN. In such a case, we propose to exploit the distances
between anchors, which are available at each regular nodes, as
observations and use them to properly estimate the pdf fZ(z).
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Fig. 2. Distance’s pdf estimation under a Uniform distribution.
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Fig. 3. Distance’s pdf estimation under a Gaussian distribution.

Known as nonparametric pdf estimation, this technique plays
a key role in enabling many applications such as image signal
processing, speech recognition, etc. [13].
Recently, many nonparametric techniques have been pro-

posed in the literature, for instance the histogram [14] and the
well-known kernel density estimation (KDE) techniques [15].
In this paper, we are only concerned by the latter.
Assuming that Na anchors exist in the network, the total

number of distances (i.e, observations) available at each regular
node is p = Na×(Na−1)

2 . Let us denote by z1, z2, . . . , zp such
observations. Hence, the distance’s pdf can be approximated
by

f̂Z(z) =
1

pS

p∑
i=1

K

(
z − zi
S

)
, (19)

where S is a smoothing parameter determined using the
method in [14] and K(z) is the Gaussian kernel given by

K(z) =
1√
2π

exp

(
−z2

2

)
. (20)

The estimated pdf is computed by averaging the Gaussian
density over all observations. Substituting (20) in (19) and
using the resulting pdf to compute h̄s yields

h̄s =

p∑
i=1

Xi

p∑
i=p

Ai

, (21)

where

Ai = s
√
2π

[
1−Q

(zi
S

)
−Q

(
R− zi

S

)]
, (22)

and

Xi =
(
S2 + z2i

)
Ai− S2

[
(R+ zi) e

− (R−zi)
2

2S2 − zie
− z2i

2S2

]
,

(23)
where Q(x) is the Q-function. As can be observed from Figs. 2
and 3, it is possible to accurately estimate the distance’s pdf
for both the Uniform and Gaussian node distributions using a
few anchors (i.e., observations). Moreover, from these figures,
whenNa increases, the estimated pdf approaches the analytical
one. This gives a sanity check for the proposed nonparametric
method. Note that this method can be locally performed at each
node using the information already available locally without
any additional information exchange between nodes.

VI. SIMULATIONS AND RESULTS
In this section, we evaluate the performance of the proposed

algorithm in terms of localization accuracy by simulations
using Matlab. These simulations are conducted to compare,
under the same network settings, the proposed algorithm with
some of the best representative range-free methods currently
available in the literature, i.e., DV-Hop [7] and DV-RSD [8].
All simulation results are obtained by averaging over 100 trials.
We randomly deploy N = 60 nodes in a 2-D square area with
A = 50 m. In order to obtain a connected network with high
probability, one should select a suitable value of R. To this
end, we exploit the results in [16] to fix R = 12 in our WSN
setting.
As an evaluation criterion, we propose to use the normalized

root mean square error (NRMSE) defined as follows

e =

Nu∑
i=1

√
(xi − x̂i)

2 + (yi − ŷi)
2

NuR
, (24)
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Fig. 4. Localization NRMSE vs. the number of anchors with a Uniform
distribution.

Figs. 4 and 5 plot the localization NRMSE for different
numbers of anchors Na. From these figures, e decreases when
Na increases. This is expected since the trilateration becomes
more efficient for large Na. Moreover, as it can be seen from
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Fig. 5. Localization NRMSE vs. the number of anchors with a Gaussian
distribution.
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Fig. 6. Localization NRMSE vs. the number of nodes with a Uniform
distribution.

Figs. 4, and 5, the proposed algorithm outperforms both the
DV-Hop and DV-RSD algorithms for both the Uniform and
Gaussian node distributions. Indeed, our algorithm turns out to
be until about four and six times more accurate than DV-RSD
and DV-Hop, respectively. Furthermore, the NRMSE curves for
the parametric and nonparametric approaches of our algorithm
are in quasi-perfect match even for small numbers of anchors.
This is hardly surprising since the small error incurred when
estimating h̄s using the nonparametric approach is, in fact,
added to εik, k = 1, . . . , Na which are reduced at the second
step of our proposed algorithm. . This further verifies the
effectiveness of our nonparametric approach.
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Fig. 7. Localization NRMSE vs. the number of nodes with a Gaussian
distribution.
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Figs. 6 and 7 plot the localization NRMSE achieved by
DV-Hop, DV-RSD and the proposed algorithm for different
values of N when the number of anchors Na = 20% × N
and R = 28. Note that R = 28 is selected to be adequate
to the lowest density (i.e. N = 20). These figures show that
the NRMSE decreases when the nodes’ density increases. As
can be shown from Figs. 6 and 7, the proposed algorithm,
whether parametric or not, achieves almost identically the
lowest localization NRMSE when compared to the two other
benchmarks.
Figs. 8 and 9 illustrate the localization NRMSE’s CDF. As

it can be seen from Fig. 8 (Fig. 9, respectively), using the
proposed algorithm, 50% (85%) of the regular nodes could
estimate their position within half of the transmission range.
While using the DV-RSD, 30% (72%) of the nodes achieve
the same accuracy, and only 29% (40%) with DV-Hop.

VII. CONCLUSION

In this paper, we proposed a novel range-free localization
algorithm able to reduce the error due to mapping the hops
into distance units. Using the proposed algorithm, the mean
hop size h̄s is locally derived analytically at each regular (i.e.,
position-unaware ) node, thereby avoiding its broadcast by an-
chors and, hence, resulting in reduced battery power depletion.
The analytical expression of h̄s is actually derived for both the
Uniform and Gaussian node distributions. Furthermore, it was
shown that it is possible to compute it locally at each regular
node with or without prior knowledge of the node distribution.
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It was also proved that the proposed scheme outperforms the
well-known DV-Hop and DV-RSD in terms of localization
accuracy.
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