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Abstract—Three main collaborative beamforming (CB) designs
based on different channel models could be applied in real-
world environments where local scattering and implementation
imperfections might exist: the optimal CSI-based CB (OCB),
the conventional or monochromatic (i.e., single-ray) distributed
CB (M-DCB), and the recently developed bichromatic (i.e., two-
ray) distributed CB (B-DCB). In this paper, we perform an
analytical comparison, under practical constraints, between these
CB designs in terms of achieved signal-to-noise ratio (SNR) as well
as achieved throughput. Assuming the presence of local scattering
in the source vicinity and accounting for implementation errors
incurred by each CB design, we derive for the first time closed-
form expressions of their true achieved SNRs. At a low angular
spread (AS) where both designs nominally achieve the same SNR
in ideal conditions, we show that the B-DCB always outperforms
OCB, more so and at larger regions of AS values when errors
increase. Excluding exceptional circumstances of unrealistic low
quantization levels (i.e., very large quantization errors) hard to
justify in practice, we also show that the new B-DCB always
outperforms the M-DCB as recently found nominally in ideal
conditions. This work is also the first to push the performance
analysis of CB to the throughput level by taking into account the
feedback overhead cost incurred by each design. We prove both
by concordant analysis and simulations that the B-DCB is able to
outperform, even for high AS values, the OCB which is penalized
by its prohibitive implementation overhead, especially for a
large number of collaborating terminals and/or high Doppler
frequencies.

I. INTRODUCTION AND BACKGROUND
Collaborative beamforming (CB) is a strong means to

establish energy-efficient and reliable communications over
long distances [1]- [4]. Despite of its practical merits, CB
faces an important issue. Indeed, the collaborating terminals
are very often autonomous small battery-powered units which
have limited knowledge about each other in the network.
In the very likely event where the beamforming weights
would depend on the locally unavailable information at every
terminal, the latter would not be able to compute its own
weight without severely depleting power and bandwidth due
to the potentially huge information exchange requested [3].
Lending themselves to a distributed implementation, a variety
of so-called distributed CB (DCB) techniques wherein the
designed weights solely depend on the information commonly
available at every terminal and, hence, each terminal is able
to locally compute its own weight were proposed in [3] and
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[4]. So far, however, such works neglected the scattering
and reflection effects and assumed plane-wave (single-ray)
propagation channels termed here as monochromatic (with
reference to their angular distribution). This assumption is
not valid in real-world environments where the presence of
local scattering in the source vicinity causes an angular spread
(AS) of the transmit signal that forms a multi-ray propagation
channel [5]- [7]. Due to the resulting mismatch between the
nominal single-ray and the true multi-ray channels, it was
shown in [6] that the performance of monochromatic DCB
(M-DCB) techniques degrades in rural areas where the AS
is still very small and becomes unsatisfactory when the AS
increases such as in suburban and urban areas. This impedi-
ment unfortunately limits the DCB’s real-world applicability
range. It is noteworthy that the well-known CSI-based CB
design could properly handle real-world environments, but
the overhead associated with the channel estimations would
be prohibitive, especially when the number of collaborating
terminals is large and/or when estimates have to be frequently
updated at high Doppler [8], [9]. In [10] and [11], we have
recently developed a new CB design that combines the benefits
of M-DCB (i.e., small-overhead distributed implementation)
and OCB (i.e., better match with true channel in scattered
environments) and which avoids their respective drawbacks
(channel mismatch and large overhead).
In this work, we consider for analysis not only the M-

DCB and the B-DCB but also the optimal CSI-based CB
(OCB) design. Assuming the presence of local scattering in the
source vicinity and accounting for estimation and quantization
errors incurred by each CB design, we compare their achieved
SNRs in practical conditions. To this end, we derive for the
first time their true achieved SNRs in closed-form taking into
account estimation and feedback quantization errors. For low
AS, where both designs nominally achieve the same SNR in
ideal conditions, we show that the B-DCB always outperforms
OCB, more so and at larger regions of AS values when errors
increase. Excluding exceptional circumstances of unrealistic
low quantization levels (i.e., very large quantization errors)
hard to justify in practice, we also show that the new B-DCB
always outperforms the M-DCB as recently found nominally
in ideal conditions. This work is also the first to push the
performance analysis of CB to the throughput level by taking
into account the feedback overhead cost incurred by each
design. We prove both by concordant analysis and simulations
that the B-DCB is able to outperform, even for high AS values,
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Fig. 1. System model.

the OCB which is penalized by its prohibitive implementation
overhead, especially for a large number of collaborating ter-
minals and/or high Doppler frequencies. Indeed, it is shown
that the operational regions in terms of AS values over which
the new B-DCB is favored against OCB in terms of achieved
throughput can reach up to 40 deg.
The rest of this paper is organized as follows. The system

model is described in Section II. The CB techniques in
the presence of local scattering are presented in Section III.
Section IV compares the performance of these techniques in
terms of ASANR while Section V compares them in terms
of the link-level throughput. Simulations results are shown in
Section VI and concluding remarks are given in Section VII.
Notation: Uppercase and lowercase bold letters denote ma-

trices and vectors, respectively. [·]il and [·]i are the (i, l)-th
entry of a matrix and i-th entry of a vector, respectively. (·)T
and (·)H denote the transpose and the Hermitian transpose,
respectively. J1(·) is the first-order Bessel function of the first
kind.

II. SYSTEM MODEL

As illustrated in Fig. 1, the system of interest consists of
a wireless network or subnetwork comprised of K uniformly
and independently distributed terminals on D(O,R), the disc
with center at O and radius R, a receiver at O, and a source S
located in the same plane containing D(O,R) [1], [2]. We
assume that there is no direct link from the source to the
receiver due to pathloss attenuation. Moreover, let (rk, ψk)
denote the polar coordinates of the k-th terminal and (A s, φs)
denote those of the source. The latter is assumed to be at
φs = 0, without loss of the generality, and to be located in the
far-field region, hence, As � R.
The following assumptions are further considered:
A1) The far-field source is scattered by a large number of

scatterers within its vicinity. The latters generate from the
transmit signal L equal-power rays or ”spatial chromatics”
(with reference to their angular distribution) that form an L-
ray propagation channel [5]- [7]. The l-th ray or chromatic
is characterized by its angle θl and its complex amplitude
αl = ρle

jξl where the amplitudes ρl, l = 1, . . . , L and the
phases ξl, l = 1, . . . , L are independent and identically dis-
tributed (i.i.d.) random variables, and each phase is uniformly
distributed over [−π, π]. The θl, l = 1, . . . , L are also i.i.d.
random variables with variance σ2

θ and probability density
function (pdf) p(θ) [5]-[7]. All θ ls, ξls, and ρls are mutually

independent. Note that the standard deviation σθ is commonly
known as the angular spread (AS) while p(θ) is called the
scattering or angular distribution.
A2) The channel gain [f ]k between the k-th terminal and

the receiver is a zero-mean unit-variance circular Gaussian
random variable [3]. The source signal s is a zero-mean
random variable with unit-power while noises at terminals
and the receiver are zero-mean Gaussian random variables
with variances σv

2 and σn
2, respectively. The source signal,

noises, and the terminals forward or backward channel gains
are mutually independent [3].
A4) The k-th terminal is aware of its own coordinates

(rk, ψk), its forward channel [f ]k, the directions of the source
φs, K , and σ2

θ while being oblivious to the locations and the
forward and backward channels of all other terminals in the
network.
Using A1 and the fact that As � R, the channel gain be-

tween the k-th terminal and the source or the receiver, respec-
tively, can be represented as [g]k =

∑L
l=1 αle

−j 2π
λ rk cos(θl−ψk)

where λ is the wavelength.

III. CB TECHNIQUES IN THE PRESENCE OF LOCAL
SCATTERING

A dua-hop communication is established from the source S
to the receiver. In the first time slot, the source sends its signal
s to the wireless network while in the second time slot, the k-th
terminal multiplies its received signal with the complex conju-
gate of the beamforming weight wk and forwards the resulting
signal to the receiver. Several approaches can be adopted to
properly select the beamforming weights. In this paper, we
are only concerned with the approach that aims to minimize
the noise power while fixing the beamforming response in
the desired direction equal to 1. Based on different channel
models several beamforming designs exist in the literature to
perform these tasks. If w� denotes the beamforming vector
associated with one of these designs, it is then the solution of
the following optimization problem [3]:

w� = argminwHΛw s.t. wHh� = 1, (1)

where Λ � diag{|[f ]1|2 . . . |[f ]K |2}. It can be readily proven
that w� is given by

w� = µ�Λ
−1h�. (2)

where µ� is the factor chosen such that the constraint in (1)
is satisfied. In the sequel, we will explore the main existing
beamforming designs and compare their performances.
1) Optimal CB (OCB): The optimal CB (OCB) is the well

known CSI-based design and, hence, its beamforming vector
is given by [8], [9]

wO = µOΛ
−1hO (3)

where hO = h and µO =
(
hH
OΛ−1hO

)−1. From (3), in order
to implement the OCB technique, the source must estimate and
quantize the channels [h]k, k = 1 . . .K before sending them
back to all K terminals. This process unfortunately results in
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both estimation and quantization errors as well as an important
overhead. Let us denote the resulting channel vector by ĥO =
hO + eO where eO = f � ec+ f � ecq and ec and ecq are the
channel identification and quantization errors, respectively. Let
us denote the variance of eO by σ2

eO
= σ2

ec
+ σ2

ecq
where σ2

ec

and σ2
ecq
are the variances of ec and ecq, respectively. We can

show that σ2
ec

= 3K
2

(
πσ2

v f̄D
) 2

3 where f̄D is the normalized
Doppler frequency [12]. Moreover, assuming a (B c + 1)-bit
uniform quantization we have σ2

ecq
= 2−2Bc h2

Max

12 where hMax

is the peak amplitude of all channels’ realizations [h]k for
k = 1, . . . ,K [13]. Taking into account these considerations,
the OCB’s beamforming vector is now given by

ŵO = µ̂OΛ
−1ĥO (4)

where µ̂O =
(
ĥH
OΛ−1ĥO

)−1

.
2) Monochromatic DCB (M-DCB): Alternatively, when de-

signing the CB, we could intentionally neglect the local scat-
tering effect (i.e., assume that σθ → 0) to nominally assume
a monochromatic single-ray propagation channels and, hence,
the beamforming vector associated with the monochromatic
DCB (M-DCB) is given by [1]

wM = µMΛ−1hM, (5)

where hM = a(0) with [a(θ)]k = [f ]ke
−j(2π/λ)rk cos(θ+φs−ψk)

and µM =
(
a(0)HΛ−1a(0)

)−1
= 1/K . Also known as con-

ventional DCB, this beamformer implementation requires that
the source estimates, quantizes and sends only its direction φs

[1]. This process results in both localization and quantization
errors and, hence, the channel hM should be substituted by
ĥM = hMe−j(ea+eaq) where ea and eaq are the angle lo-
calization and quantization errors, respectively. Assuming that
these errors are relatively small and using Taylor’s series series
expansion, one can easily prove that ĥM � hM + eM where
eM = −jhM (ea + eaq) with variance σ2

eM
= σ2

ea
+ σ2

eaq
.

Using a (Ba+1)-bit uniform quantization, it can be shown that
σ2
eaq

= 2−2Ba 4π2

12 [13]. In turn, we use the CRLB developed

in [14] to define σ2
ea
and, hence, σ2

ea
=

4 sin2( π
K )σ2

v

NKπ2 where
N is the number of samples using to estimate φs. Taking
into account the aforementioned consideration, the practical
M-DCB beamforming vector is now given by

ŵM = µ̂MΛ−1ĥM, (6)

where µ̂M =
(
ĥH
MΛ−1ĥM

)−1

.
3) Bichromatic distributed CB (B-DCB): Exploiting the

fact that for low AS a multi-ray channel -owing to a Taylor
series expansion of its correlation matrix- can be properly
approximated by two angular rays and hence considered as
bichromatic, a bichromatic distributed CB (B-DCB) was re-
cently proposed in [10] and [11]. Its beamforming vector is
given by

wB = µBΛ
−1hB, (7)

where hB = 1
2 (a (σθ) + a (−σθ)) and µB =

2
K

(
1 + 2J1(γ(2σθ))

γ(2σθ)

)−1

. Note that in the conventional

scenario where the local scattering effect is neglected (i.e.,
σθ → 0) to assume monochromatic propagation channels,
(7) is reduced to (5). It is also noteworthy that the B-DCB’s
implementation requires that the source estimates, quantizes
and sends its direction φs and the AS σθ , thereby resulting
in both estimation and quantization errors. The channel hB

should be then substituted by ĥB = hBe
−j(ea+eaq+es+esq)

where es and esq are the AS estimation and quantization
errors, respectively. Using the same approach as above, one
can easily show for relatively small errors that ĥB = hB+ eB
where eB = −jhB (ea + eaq + es + esq) with variance
σ2
eB

= σ2
ea

+ σ2
eaq

+ σ2
es
+ σ2

esq
. Using a (Bs + 1)-bit uniform

quantization, it can be shown that σ2
esq

= 2−2Bs π
2

12 [13]. Since
AS estimation can be modeled as a DoA estimation of two
point sources, we also use for simplicity the CRLB developed
in [14] to define σ2

es
and, hence, σ2

es
= σ2

ea
. Therefore, the

B-DCB beamforming weight is now

ŵB = µ̂BΛ
−1ĥB, (8)

where µ̂B = 2
K (1 + σ2

eB
)−1

(
1 + 2J1(γ(2σθ))

γ(2σθ)

)−1

.
In the sequel, we will analyze and compare the performances

of all the aforementioned CB designs.
IV. PERFORMANCE ANALYSIS IN TERMS OF ASANR
In this section, we analyze and compare the performance of

the B-DCB against those of the M-DCB and OCB. Although
being a revealing performance measure, the achieved SNR
turns out to be a random quantity [3], [11]. This unfortunately
hampers a rigorous analytical study of its behavior and prop-
erties. Hence, to analyze and compare the CB designs’ perfor-
mances, we introduce the following performance measure:

Υ̃� (σθ) =
ξ̃ŵ�

ξ̃ŵB

, (9)

where ξ̃w = P̃w(φs)/P̃w,n is the achieved average-signal-to-
average-noise ratio (ASANR) when w is implemented with
P̃w(φ�) = E

{∣∣wHh
∣∣2}, called the average beampattern, and

P̃w,n = σ2
vE

{
wHΛw

}
+ σ2

n is the average noise power.
In ideal conditions where all the estimation and quantization
errors are negligible, we define the following performance
measure:

Υ̃IDL
� (σθ) =

ξ̃w�

ξ̃wB

, (10)

Before comparing the beamformers’ performances, we derive
the expression of the ASANR ξ̃ŵ�

achieved using ŵ�. First,
we have

ξŵ�
=

µ2
�‖

(
hH
� + eH�

)
Λ−1h‖2

σ2
vµ

2
� (h

H
� +eH� )Λ

−1(h�+e�)+σ2
n

(
µ�

µ̂�

)2 . (11)

Using the fact that h and e� are statistically independent, ξ̃ŵ�

can then be expressed as

ξ̃ŵ�
=

P̃w�(φs) + E
{
µ2
�‖hHΛ−1e�‖2

}
P̃ r
w�,n+σ2

vE{µ2
�e

H
�Λ

−1e�}+σ2
n

(
E

{(
µ�

µ̂�

)2}
−1

) . (12)
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Note that the each of the numerator and denominator de-
composes into two terms corresponding to channel mismatch
contribution (i.e., P̃w�(φs) or P̃ r

w�,n, respectively) and channel
quantization/estimation errors contribution (i.e., each remain-
der).

A. ASANR of B-DCB vs. OCB
In this section we carry out a comparison between the B-

DCB and its OCB vis-a-vis. When the OCB technique is
implemented in the network, it can be readily shown that
P̃wO,n = σ2

vE
{

1
‖g‖2

}
+ σn

2 and P̃wO (φ�) = 1. Let us
introduce the following important theorem [15]:
Theorem 1: Assuming that αl for l = 1, . . . , L are Gaussian

random variables, we have

E

{
1

‖g‖2
}

=
L

K(L− 1)
(13)

E

{
1

‖g‖4
}

=
L2

K2(L− 1)(L− 2)
. (14)

Using (13), (14) and the results developed in [10] and [11],
we obtain

Υ̃O (σθ) = Υ̃IDL
O (σθ)

(1 + σ2
eB
)2

1 + 2
σ2
eO

L

L−1 +
σ4
eO

L2

(L−1)(L−2)

, (15)

where Υ̃IDL
O (σθ) =

(
1+2

J1(γ(2σθ ))

γ(2σθ)

)2

4Ω(0) with Ω(φ) =∫
p(θ)

(
J1(γ(φ+θ+σθ))

γ(φ+θ+σθ)
+ J1(γ(φ+θ−σθ))

γ(φ+θ−σθ)

)2

dθ. Given the fact that
when f̄D increases σ2

eO
increases, it can be inferred form (15)

that Υ̃O (σθ) decreases as expected. Moreover, it can be readily
proven that Υ̃IDL

O (0) = 1. This is expected since, when there is
no local scattering in the source vicinity (i.e., σθ = 0), wO =
wB. Simulations results in Section VI will also show that, in
rural and suburban areas where σθ is small, Υ̃IDL

O (σθ) = 1.
Therefore, from (15), Υ̃O (σθ) < 1 for large f̄D and small
AS. Consequently, the B-DCB is able to outperform its OCB
vis-a-vis when σθ is small such as in rural and suburban areas.
However, when σθ is relatively large such as in urban areas,
one can easily show that J1 (γ (2σθ)) /γ (2σθ) � 0 [3] and,
hence, it holds for large K that Υ̃IDL

O (σθ) � (4Ω (0))−1.
Since Ω (0) decreases if σθ increases, Υ̃O(σθ) turns out to
be a decreasing function of σθ for high AS. Consequently, in
ideal conditions the OCB outperforms the B-DCB in terms
of ASANR for high AS. However, it follows from (15) that
this ASANR gain decreases if f̄D increases. Simulations in
Section VI will show that this results in a wider operational
region in terms of AS values over which the B-DCB is favored
against OCB.

B. ASANR of B-DCB vs. M-DCB
Using Theorem 1 and the results in [10] and [11], it can be

shown for large K that

Υ̃M(σθ) = Υ̃IDL
M (σθ)

(
1 + σ2

eB

1 + σ2
eM

)2

, (16)

where Υ̃IDL
M (σθ) =

Γ(0)
(
1+2

J1(γ(2σθ))

γ(2σθ)

)2

4Ω(0) with Γ(φ) =∫
p(θ)

(
2J1(γ(φ+θ))

γ(φ+θ)

)2

dθ. In [11], we proved that Υ̃IDL
M (σθ) ≤

1 and the ASANR gain achieved using wB instead of wM can
reach as much as 3 dB for high AS. However, from (16),
Υ̃M(σθ) < Υ̃IDL

M (σθ) only when σ2
eB

> σ2
eM

(i.e., small
Ba and Bs). Therefore, the B-DCB always outperforms the
M-DCB as found in ideal conditions, excluding exceptional
circumstances of unrealistic low quantization levels (i.e., very
large quantization errors) hard to justify in practice.

V. PERFORMANCE ANALYSIS IN TERMS OF LINK-LEVEL
THROUGHPUT

The problem with the comparisons made above at ASANR
level is that they do not factor in the different overhead
costs incurred by each design. It is therefore appropriate to
make comparisons in terms of the link-level throughput as
well. Assuming without loss of generality a BPSK-modulated
transmission, the link-level throughput achieved by ŵ� is given
by [16]

Tŵ�
(σθ) = 0.5

(
RT −Roh

ŵ�

)
E {log2 (1 + ξŵ�

)} , (17)

where RT and Roh
ŵ�

are the transmission bit rate and the
overhead bit rate allocated to ŵ�’s implementation. Oblivi-
ously, Tŵ�

(σθ) is intractable in closed-form which hampers
its analytical study. However, the latter can be approximated
as [15]

Tŵ�
(σθ) � T̃ŵ�

(σθ) = 0.5
(
RT−Roh

ŵ�

)
log2

(
1 + ξ̃ŵ�

)
. (18)

Therefore, the throughput gain given by

Gŵ�
(σθ) =

T̃ŵ�
(σθ)− T̃ŵB

(σθ)

T̃ŵB
(σθ)

, (19)

can be used to compare the CBs’ performances. Yet we will
shortly see below, both by analysis and simulations, that this
simplifying assumption is still able to provide an analytical
framework that is extremely insightful qualitatively.

A. Throughput of B-DCB vs. OCB
As discussed in Section III-1, OCB’s implementation re-

quires that the source broadcast all [h]k, k = 1 . . .K for all
K terminals. This process requires K time slots of Bc bits
transmitted at an identification refreshment rate f IR = 1/TIR

where TIR denotes the refreshment period. It is noteworthy
that TIR should satisfy TIR ≥ Tc where Tc = 0.423/fD is the
coherence time and fD is the maximum Doppler frequency.
For simplicity, we assume fIR = 2fD. Therefore, the OCB
implementation overhead rate is Roh

ŵO
= 2KBcfD and, hence,

its achieved throughput is

T̃ŵO
(σθ) = 0.5RT

(
1− 2KBcf̄D

)
log2

(
1 + ξ̃ŵO

)
. (20)

As can be observed from (20), the achieved throughput using
the OCB technique decreases if the number of terminals K
increases. Furthermore, since when f̄D increases ξ̃ŵO

de-
creases, it follows then from the above result that T̃ŵO

also
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decreases if f̄D increases. Interestingly, from (20), Bc has
two contradictory effects on T̃ŵO

. Indeed, if Bc increases the
OCB overhead rate increases and, hence, T̃ŵO

is decreased.
However, as discussed above increasing Bc results in improves
the ASANR ξ̃ŵO

and, therefore, the achieved throughput T̃ŵO

is increased. The result in (20) could then be exploited to find
the optimum number of quantization bits B opt

c that maximizes
the throughput achieved using the OCB technique.
On the other hand, the B-DCB implementation requires

that the source estimates, quantizes and broadcasts φs and
σθ . The angular estimate broadcasting requires only one time
slot of Ba bits transmitted at a localization refreshment rate
fLR = 1/TLR where TLR is the refreshment period. In turn,
the AS estimate broadcasting requires one time slot of Bs bits
transmitted at an estimation refreshment rate fER = 1/TER

where TER is the estimation refreshment period. Since TLR and
TER are typically very large compared to T IR (i.e., TLR � TIR

and TER � TIR), we have both fLR and fER negligible
compared to fIR (i.e., fLR � 0 and fER � 0), and hence
we have Roh

ŵB
� 0. Therefore, the throughput achieved using

the B-DCB is

T̃ŵB
(σθ) � 0.5RT log2

(
1 + ξ̃ŵB

)
. (21)

As can be shown from (21), in contrast with OCB, the B-
DCB throughput is independent of the number of terminals
K and the normalized Doppler frequency f̄D and, therefore,
GŵO

(σθ) decreases if K and/or f̄D increases. Furthermore,
since we showed in Section IV-A that ξ̃ŵB

≥ ξ̃ŵO
for high

SNR and relatively largeBa andBs, we have GŵO
(σθ) < 0 for

large K and low AS. Consequently, the B-DCB outperforms,
in rural and suburban areas, its OCB vis-a-vis in terms of
achieved throughput. Simulations in Section VI will show
that this results in a wider operational region in terms of
AS values over which the B-DCB is favored against OCB.
They will also establish that this operation region increases
with K and f̄D and reaches as much as 40 deg for large K
and high f̄D , against about 17 deg in ideal conditions (i.e,
without accounting for any overhead cost or any quantization
or estimation error). This further proves the efficiency the B-
DCB technique.

B. Throughput of B-DCB vs. M-DCB
As discussed in Section III-2, the M-DCB implementation

only requires that the source estimates, quantizes and broad-
casts its angle φs. Following similar steps as above, it can
be easily shown that Roh

ŵM
� 0 and, therefore, T̃ŵM

(σθ) �
0.5RT log2

(
1 + ξ̃ŵM

)
. Thus, we obtain

GŵM
(σθ) �

log2

(
1 + ξ̃ŵM

)

log2

(
1 + ξ̃ŵB

) − 1. (22)

Since for reasonable Bs and Ba ξ̃ŵM
≤ ξ̃ŵB

, we have
GŵM

(σθ) ≤ 0 , it follows from (22) that the B-DCB is
always more efficient than the M-DCB in terms of achieved
throughput.
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Fig. 2. ASANR comparison for K = 20 and B = Ba = Bs = Bc.

VI. SIMULATION RESULTS

Numerical experiments are performed to verify the analyti-
cal results. In all examples, we assume that the noises’ powers
σ2
n and σ2

v are 10 dB below the source transmit power. It is also
assumed that φs and σθ are estimated using N = 10 samples.
Furthermore, we assume that the number of rays is L = 6 and
that their phases are uniformly distributed. All the results are
obtained by averaging over 106 random realizations of rk, ψk,
[f ]k for k = 1, . . . ,K and αl, θl for l = 1, . . . , L as well as
all the estimation and quantization errors.
Fig. 2(a) displays Υ̃IDL

M (σθ) and Υ̃M(σθ) for different values
of B = Ba = Bs. As can be observed from this figure,
for practical value B = 8, Υ̃M(σθ) � Υ̃IDL

M (σθ). This is
expected since for high quantization levels quantization errors
are negligible. In such a case, we also show that the B-DCB
is much more efficient in terms of achieved ASANR than its
M-DCB vis-a-vis. However, from Fig. 2, the achieved ASANR
gain using ŵB instead of ŵM decreases with B. This is
expected since ξ̃ŵB

is affected by both quantization errors eaq

and esq while ξ̃ŵM
involves only eaq. Furthermore, it follows

from this figure that the M-DCB outperforms the B-DCB only
for unrealistic low quantization levels which are hard to justify
in practice. This corroborates the discussion made in Section-
IV-B.
Fig. 2(b) plots Υ̃O(σθ) for B = Ba = Bs = Bc = 8 and

different values of f̄D. From this figure, for low AS the B-
DCB always outperforms the OCB design even for small f̄D.
Furthermore, Fig. 2(b) establishes that the achieved ASANR
gain using ŵO instead of ŵB decreases when f̄D increases.
This corroborates the discussion made in Section-IV-A.
Figs. 3(a) and 3(b) plot GŵO

(σθ) for different values of
f̄D and Bc. They also plot GŵO

(σθ) in ideal conditions (i.e,
without accounting for any overhead cost or any quantization
or estimation error). As can be observed from these figures,
in rural and suburban areas where the AS is relatively low,
the B-DCB always outperforms the OCB in terms of achieved
throughput. Their performances become actually equal only
in idealistic conditions that ignore the practical effects of both
overhead and estimation and quantization errors. Figs. 3(a) and
3(b) also confirm and illustrate the existence of an optimum
quantization level Bopt

c that maximizes the throughput (i.e.,
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Fig. 3. Throughput-level comparison.

level that best minimizes combined losses due to errors and
overhead) found to be equal to 6 and 5 at f̄D set to 10−4

and 10−2, respectively. At these optimum quantization levels,
OCB suffers from throughput losses against B-DCB of about
3% and 10%, respectively. The B-DCB’s throughput gains
against OCB indeed increase with higher normalized Doppler
frequencies. The operational region in terms of AS values over
which the B-DCB is favored against OCB also increases from
a nominal low AS range of about 17 deg in ideal conditions
to about 20 and 25 deg, respectively.
Figs. 3(c) and 3(d) plot GŵO

(σθ) for different values of f̄D
and K , respectively. In these figures, curves are plotted after
performing a numerical evaluation of the optimum quantization
level Bopt

c for each values of f̄D and K . For instance, we
find that Bopt

c = 2 bits when f̄D = 0.002 and K = 20
while Bopt

c = 4 bits when f̄D = 10−4 and K = 200. As
can be seen from these figures, the B-DCB’s throughput gain
against OCB increases if f̄D increases and/or K increases.
Furthermore, the B-DCB operational region also increases if
f̄D and/or K increases and can reach as much as 40 deg when
f̄D = 0.002 and K = 20. All these observations corroborate
all the elements of our discussion in Section V-A.

VII. CONCLUSION
In this work, we considered the M-DCB and the B-DCB as

well as the optimal CSI-based CB (OCB) design to achieve a
dual-hop communication from a source to a receiver, through
a wireless network comprised of K independent terminals.
Assuming the presence of local scattering in the source vicinity
and accounting for estimation and quantization errors incurred
by each CB design, we performed an ASANR comparison be-
tween all CB designs and derived their true achieved ASANR
in closed-form. For low AS, where both designs nominally
achieve the same ASANR in ideal conditions, we showed that

the B-DCB always outperforms OCB, more so and at larger
regions of AS values when errors increase. Excluding ex-
ceptional circumstances of unrealistic low quantization levels
(i.e., very large quantization errors) hard to justify in practice,
we also showed that the new B-DCB always outperforms
the M-DCB as recently found nominally in ideal conditions.
This work is also the first to push the performance analysis
of CB to the throughput level by taking into account the
feedback overhead cost incurred by each design. We proved
both by concordant analysis and simulations that the B-DCB
is able to outperform, even for high AS values, the OCB
which is penalized by its prohibitive implementation overhead,
especially for a large number of K and/or f̄D. Indeed, it was
shown that the operational regions in terms of AS values over
which the new B-DCB is favored against OCB in terms of
achieved throughput can reach up to 40 deg.
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