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Abstract—In this paper, we use a distributed beamforming
method in cognitive radio relay networks in an effort to en-
hance the spectrum efficiency and improve the performance of
the cognitive (secondary) system. In particular, we consider a
spectrum sharing system where a set of potential relays are
employed to help a pair of secondary users in the presence of
a licensed (primary) user. A selection relaying scenario in an
amplify and forward (AF) scheme is investigated. In this context,
we obtain the exact expressions for the cumulative distribution
function (CDF) and the moment generating function (MGF) of
the equivalent end-to-end SNR at the secondary destination.
Then, to analyze the performance, we derive closed-form ex-
pressions for the outage probability and bit error rate (BER)
over independent and identically distributed (i.i.d.) Rayleigh
fading channels. Numerical results demonstrate the efficacy of
beamforming in improving the secondary system performance in
addition to limiting the interference to the primary users.

I. INTRODUCTION

Cognitive Radio (CR) is a promising solution to enhance the
wireless spectrum utilization efficiency. In this regard, spec-
trum sharing is proposed to allow unlicensed users (secondary
users) to share the spectrum with the licensed users (primary
users) without causing harmful interference to the latter [1]. It
is obliged to impose a constraint on the interference inflicted
from the secondary users (SUs) onto the primary users (PUs).
In this respect, [2] investigated the achievable capacity and
outage probability of a spectrum-sharing system with amplify
and forward (AF) relaying considering the average received-
interference at the PU.
Beamforming is an effective technology to mitigate the in-
flicted interference in cognitive radio networks (CRNs). How-
ever, beamforming needs multi-antennas to be deployed in the
unit to be realized which is prohibited in the first CR based
IEEE standard (IEEE 802.22) [3], hence creating a virtual an-
tenna array via cooperative relaying becomes a necessity. Our
work mainly tackle these obstacles by using a collaborative
distributed beamforming method in an AF selection relaying
scheme in a spectrum sharing environment. In [4], Laneman
et al., first introduced the selection relaying protocols where
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the relay decides either to amplify and forward or decode
and forward (DF) selectively according to the received signal-
to-noise ratio (SNR) in order to reduce the probability of
error propagation. Recently, there have been a few articles
applying beamforming in cooperative CRNs [5]− [7]. In
[5], an iterative alternating optimization-based algorithm has
been developed to obtain the optimal beamforming weights
in order to maximize the worst signal to interference noise
ratio. In [6], convex optimization tools are used to find the
sub-optimal beamformers in relay assisted CRNs. However,
these algorithms and tools suffer from high computational
complexity and time consuming. Zero forcing beamforming
(ZFB) is a simple sub-optimal approach that can be practically
implemented. In [7], a zero forcing beamforming approach
is applied to improve the primary system performance in an
overly CR scenario. However, in [7], the ZFB is used in a
single relay with collocated multi-antenna system.
In this paper, a distributed ZFB approach is applied to null
the inflicted interference to the PU in the relaying phase
beside improving the performance of secondary system. We
also limit the interference from the secondary source by
imposing a peak constraint on the interference received at the
PU in the broadcasting phase. To analyze the performance,
we derive the cumulative distribution functions (CDF) and
the moment generating function (MGF) of the end-to-end
equivalent SNR. Making use of these statistics, we derive
closed form expressions for the outage probability and the bit
error rate (BER). As a result, the ZFB approach has a potential
for improving the secondary performance and limiting the
interference in a simple practical manner compared to other
complex approaches.
The rest of this paper is organized as follows. Section II
describes the system model. Section III presents the statistics
analysis. The system performance is analyzed in Section IV.
Numerical results are given in Section V. Section VI concludes
the paper. Finally, Appendices are introduced in Section VII.
Throughout this paper, the Frobenius norm of the vectors are
denoted by ||.||. The Transpose and the Conjugate Transpose
operations are denoted by (.)T and (.)†, respectively. |x| means
the magnitude of a complex number x. CN ∼ (0, 1) refers to
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a complex Gaussian normal random variable with zero-mean
and unit variance. Diag(x) denotes a diagonal matrix whose
diagonal elements are x’s elements.

II. SYSTEM AND CHANNEL MODELS

Consider a relay-assisted CRN shown in Fig.1 where each
SU and PU is equipped with a single antenna. Specifically, our
system model consists of a secondary source (SS), a secondary
destination (SD) and a set ofM Relays Ri, i = 1, ..,M . There
is no direct link between the source and destination, and they
only communicate via potential relays Ls ≤ M that decide to
forward the source’s message. A primary system coexists in
the same area with the secondary system. The SUs are allowed
to share the same frequency spectrum with the PU as long as
the interference to the PU is limited to a predefined threshold.
They are transmitting simultaneously in underlay manner. The
transmission protocol consists of two orthogonal time slots and
is divided into two phases as shown in Fig. 1.
In the first phase, based on the interference channel state
information (CSI) between the SS and PU1, SS adjusts its
transmit power under a predefined threshold Q and broadcasts
its message to the set of relays. So a peak power constraint is
imposed on the interference received at PU1 .
In the second phase, the potential relays, which are selected
during the first-hop transmission, become members of the
potential relays set C where ZFB is applied to null the
interference from C to PU2. By applying the ZFB approach,
the synchronized set of potential relays are able to always
transmit without interfering with PU2. It is assumed that SS
and C have perfect knowledge of their interference channel
power gains which can be acquired through a spectrum-band
manager that mediates between the primary and secondary
users [2]. It is also assumed that perfect channel information
is available at nodes SS, C and SD. The interference from
the primary transmitter is neglected and can be represented
in terms of noise when its message is generated by random
Gaussian codebooks [2].

A. CR Channel Model

All channel coefficients are assumed to be independent
Rayleigh flat fading. Let ha,b denote the channel coefficient
between nodes a and b, which is modeled as a zero mean, cir-
cularly symmetric complex Gaussian (CSCG) random variable
with variance λa,b. na denotes additive white Gaussian noise
which is also modeled as a zero mean, CSCG random variable
with variance σ2. Let hs,ri denote the channel coefficient
between the source’s transmit antenna and the receive antenna
of the ith relay and its channel power gain is |hs,ri |2 which is
exponentially distributed with parameter λs,ri . Denote hs,p as
the interference channel coefficient between SS and PU1 and
its channel power gain |hs,p|2, which is also exponentially
distributed with parameter λs,p. Let hri,p and hri,d represent
the interference channel coefficients between the ith relay and
PU2 and between the ith relay and SD, respectively.
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Fig. 1: System Model.

B. Mathematical Model (Size of set C)
In the underlay approach of this model, the SU can utilize

the PU’s spectrum as long as the interference it generates at the
PUs remains below the interference threshold Q, which is the
maximum tolerable interference level at which the PU can still
maintain reliable communication [1]. Hence, the SS’s power
Ps is constrained as Ps ≤ Q

|hs,p|2 where Ps is the maximum
transmission power of SS.
The received SNR γs,ri at the ith relay is given as

γs,ri =
Q|hs,ri |2
σ2|hs,p|2 (1)

where σ2 is the noise variance at each relay. As both of
the channel power gains |hs,ri |2 and |hs,p|2 are independent
exponential distribution random variables, the PDF of γs,ri is
represented as λs,ri

λs,pγq

(λs,ri
γ+λs,pγq)2

[2]. Then, we find the CDF of
γs,ri as

Fγs,ri
(γ) =

λs,riγ

λs,riγ + λs,pγq
(2)

where γq = Q
σ2 .

We define C to be the set of relays which have their received
instantaneous SNRs exceed a certain threshold in the first time
slot. This translates to the fact that the mutual information
between SS and each relay is above a specified target value.
In this case, the potential ith relay is only required to meet
the following constraint given as [4]

Pr [Ri ∈ C] = Pr
[
1

2
log2(1 + γs,ri) ≥ Rmin

]
, i = 1, ...,M

(3)
where (1/2) is from the dual-hop transmission in two time
slots and Rmin denotes the minimum target rate below which
outage occurs. According to (2), we can get

Pr [Ri ∈ C] = 1− Fγs,ri
(γmin)

= 1− λs,riγmin

λs,riγmin + λs,pγq
(4)

where γmin = 22Rmin − 1 is the SNR threshold.
Without loss of generality, for all sub-channels are symmetri-
cal, i.e., λs,ri = λs,r ∀ i, then Pr [Ri ∈ C] is exactly the same
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for all i. Let Pr [Ri ∈ C] = q, and denote the cardinality
of the set C as |C|, then according to the Bionomial Law,
Pr [|C| = Ls] becomes

Pr [|C| = Ls] =

(
M

Ls

)
qLs(1− q)M−Ls . (5)

C. ZFB Weights Design

Our aim is to maximize the received power at the destination
in order to maximize the mutual information of the secondary
system. ZFB scheme is used as an alternative for the optimal
scheme because of its simplicity and low complexity. To be
able to apply ZFB, we consider the general assumption that the
number of relays must be greater than or equal to the number
of primary receivers plus secondary destination, hence Ls ≥ 2.
Let the ZFB vector be wT

zf = [w1, w2, ...., wLs
]. Also let

hT
rd = [hr1,d, ..., hrLs ,d

], and hT
rp = [hr1,p, ..., hrLs ,p

] be the
channel vectors between the relays and both SD and PU2,
respectively. According to the ZFB principles, the transmit
weight vector wzf is chosen to lie in the orthogonal space of
h†
rp such that |h†

rpwzf | = 0 and |h†
rdwzf | is maximized. So

the problem formulation for finding the optimal weight vector
is as follows.

max
wzf

|h†
rdwzf |

s.t.: |h†
rpwzf | = 0

‖wzf‖ = 1.

(6)

To find the optimal vector, we consider the following Lemma
from projection matrix theory [8].
Lemma 1: Let T be an n × k matrix with full column rank
k, k < n, then the nonzero matrix T(THT)−1TH is an
idempotent symmetric matrix and its orthogonal projection
matrix is I−T(THT)−1TH with rank (n−k) [8, Theorems
4.21, 4.22].
By using Lemma 1 and applying a standard Lagrangian
multiplier method, the weight vector that satisfies the above
optimization method is given as

wzf =
T⊥hrd

‖T⊥hrd‖ , (7)

where T⊥ =
(
I− hrp(h

†
rphrp)

−1h†
rp

)
is the projection

idempotent matrix with rank (Ls − 1).

III. STATISTICS OF THE END-TO-END SNR

In the first phase, the SS broadcasts its signal to all M
relays, then the received signal at the ith relay is given as

yr =
√

Pshs,rixs + nr, (8)

where Ps is the source transmit power, xs is the information
symbol with E[|xs|2] = 1 and nr denotes the zero-mean
complex Gaussian noise at the ith relay with variance σ2.
When the potential relays Ls ≤ M decide to participate in
the second phase, the received Ls × 1 vector at the relays yr

can be written in a vector form as

yr =
√

Pshsrxs + nr (9)

where hsr is the Ls × 1 source- relays channel vector and
nr is Ls × 1 CSCG noise vector with its elements are σ2.
In the second phase, to allow concurrent transmission of the
secondary relays and PU2, we first apply the Ls×1 ZFB vector
denoted by wzf , and then the weighted signals are forwarded
to SD. The received signal at SD is given as

yd =
√
PsArh

†
rdDiag(wzf )hsrxs+Arh

†
rdDiag(wzf )nr+nd,

where nd denotes the zero-mean CSCG noise at SD with
variance σ2 and Ar is the normalization constant designed
to ensure that the long-term total transmit power at the relays
is constrained and it is given by [11]

Ar =

√
Pr

wzf
†(Pshsrh

†
sr + σ2I)wzf

. (10)

Then the total received signal to noise ratio at SD is given as

γeq =
PsA

2
r|hrd

†Diag(wzf )hsr|2
A2

r|hrd
†wzf |2σ2 + σ2

. (11)

Substituting (7) and (10) into (11), and after simple manipula-
tions, the equivalent SNR at SD can be written in the general
form of γeq = γ1γ2

γ1+γ2+1 as:

γeq =
Ps

σ2 ‖hsr‖2 γr
∥∥T⊥hrd

∥∥2
Ps

σ2 ‖hsr‖2 + γr ‖T⊥hrd‖2 + 1
. (12)

Now considering the peak constraint on the received power at
the PU1, we substitute in SS’s power Ps, then γeq becomes

γeq =
γq

‖hsr‖2

|hs,p|2 γr
∥∥T⊥hrd

∥∥2
γq

‖hsr‖2

|hs,p|2 + γr ‖T⊥hrd‖2 + 1
. (13)

A. First Order Statistics of γeq:
We first present the statistics of the new random variables.
Then, we derive the CDF and MGF of γeq which will be used
for the the derivation of the performance metrics. To continue,
let γ1 = γq

‖hsr‖2

|hs,p|2 and γ2 = γr
∥∥T⊥hrd

∥∥2.
Lemma 2: (PDF and CDF of γ1): Let each entry of hsr be
i.i.d. CN ∼ (0, 1), then ‖hsr‖2 is a chi squared random
variable with 2Ls degrees of freedom, and given that |hs,p|2
is an exponential random variable, then the PDF and CDF of
γ1 are given respectively by:

fγ1
(γ) =

λs,pLs

(γq)Ls

(γ)Ls−1

( γ
γq

+ λs,p)Ls+1
, (14)

Fγ1
(γ) = (

γ

γqλs,p
)Ls

2F1(Ls + 1, Ls;Ls + 1;− γ

γqλs,p
),

(15)
where 2F1( , ; ; ) is the Gauss hypergeometric function de-
fined in [13].
Proof : See appendix A.
Lemma 3:(CDF of γ2): Let each entry of hrd be i.i.d.
CN ∼ (0, 1), then

∥∥T⊥hrd

∥∥2 is a chi squared random
variable with 2(Ls − 1) degrees of freedom [9, theorem 2
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Ch.1] then the CDF of γ2

Fγ2
(γ) = 1− 1

(Ls − 2)!
Γ

(
Ls − 1,

γ

γ r

)
, γ ≥ 0. (16)

To proceed, we compute the statistics of the random variable
γeq defined by γeq = γ1γ2

γ2+γ2
[2], which can be considered as

a tractable tight upper bound to the actual equivalent SNR.
Theorem 1: (CDF of γeq): The CDF of the tight upper bounded
γeq is given by

Fγeq
(γ) = 1− d e−cγ

Ls−1∑
n=0

Ls−2∑
k=0

k∑
v=0

(c)k+
n−v

2

k!

(
Ls − 1

n

)

×
(
k

v

)
Γ(Ls − n+ v)(γ)Ls−1+k (γ + b)

n−v
2 −Ls

× e
(

cγ2

2(γ+b)

)
Wn−v

2 −Ls,
−n+v−1

2

(
cγ2

γ + b

)
, (17)

where b = λs,pγq , c = 1
γr
, d =

λs,p

γq
and W.,.(.) is the

Whittaker function as defined in [13]. It is worth noting that
the Whittaker function is implemented in many mathematical
softwares such as Matlab and Mathematica.
Proof: See appendix B.
B. Moment Generating Function (MGF) of γeq:
In order to obtain the average BER for the secondary system,
the MGF based approach [10] will be used in this article.
Let γ−1

eq = γ−1
1 + γ−1

2 = X1 + X2 where X1 = γ−1
1 and

X2 = γ−1
2 . As γ−1

eq is the sum of two independent random
variables, the MGF of the γ−1

eq results simply from the product
of the two MGFs of X1 and X2.
The MGF of a random variable X is defined as

φX(s) = EX {exp(−sX)} =

∫ ∞

0

e−szfX(z)dz, (18)

where fX(z) is the PDF of the random variable X . Firstly,
we need to find the PDFs of X1 and X2. For the PDF of X1,
we follow the same mathematical approach as applied in (33)
Which after some mathematical manipulations is obtained as

fX1
(z) =

λs,pLs

(γq)Ls

1

(λs,pz +
1
γq
)Ls+1

. (19)

The PDF of X2 is the PDF of the inverse chi-square random
variable which leads to the following expression

fX2
(z) =

e
−1
γr z

(γr)Ls−1(Ls − 2)!zLs
. (20)

Substituting (19) into (18), and using [13, 3.382.4], the MGF
for X1 is

φX1
(s) =

Ls

(λs,p)Ls(γq)Ls
sLse

s
γqλs,p Γ(−Ls,

s

γqλs,p
). (21)

Similarly, substituting (20) into (18), and using [13, 3.471.9],
the MGF for X2 is

φX2
(s) =

2

(γr)Ls−1(Ls − 2)!

(
s

γr

)Ls−1
2

KLs−1

(
2

√
s

γr

)
(22)

where Kv(.) is the modified Bessel function [13].
Now, we can easily compute the MGF of γ−1

eq as the product
of φX1

(s) and φX2
(s) which is given as

φγ−1
eq

(s) = δs
3s−1

2 e
s

γqλs,p Γ(−Ls,
s

γqλs,p
)KLs−1

(
2

√
s

γr

)
(23)

where δ = 2Ls

(λs,pγq)Ls (γr)
Ls−1

2 (Ls−2)!
. We can make use of the

following formula to find the MGF of the γAF
eq utilizing the

MGF of γ−1
eq [14, Eq. 18]

φγeq
(s) = 1− 2

√
s

∫ ∞

0

J1(2β
√
s)φγ−1

eq
(β2)dβ, (24)

where J1(.) is the Bessel function of the first kind [13].
Although this formula seems to be difficult, we can still use it
to study the performance of the BER based on the relationship
that exists between the MGF and symbol error rate [10].

IV. PERFORMANCE ANALYSIS
A. Outage Probability Analysis:

The mutual information at SD, IAF , can be written as [4]

IAF =
1

2
log2(1 + γeq), (25)

where γeq represents the end to end received SNR at SD. An
outage event occurs when IAF falls below a certain target rate.
For a given rate Rmin, the outage probability, Pout, can be
rewritten using the total probability theorem as

Pout =

M∑
Ls=0

Pr(|C| = Ls)Pr(IAF < Rmin| |C| = Ls). (26)

There exist two exclusive outage events for the secondary
system using the distributed ZFB. Event A: failing to apply
ZFB when Ls < 2 1, and Event B: failing to achieve the
target rate when Ls ≥ 2. The probability of event A is given
as

∑1
Ls=0

(
M
Ls

)
qLs(1 − q)M−Ls and the probability of event

B is

Pr(B) = Pr(IAF < Rmin| |C| = Ls)

= Pr
[
1

2
log2(1 + γAF

eq ) < Rmin

]
= Feq(γmin). (27)

where γmin = 22Rmin − 1. The corresponding total outage
probability can be computed by substituting (5), Pr(A) and
Pr(B) into (26)

Pout =

1∑
Ls=0

(
M

Ls

)
qLs(1− q)M−Ls

+

M∑
Ls=2

(
M

Ls

)
qLs(1− q)M−Ls × FAF

eq (γmin)(28)

B. Bit Error Rate Analysis:
Exploiting the MGF-based form, the average BER of coherent

1 In this case, system can limit the interference following the same approach
as applied in the first phase
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Fig. 2: Outage Probability vs. Q(dB) for different numbers of AF
relays M=4, 6, 8 for Rmin= 0.5, 1 bits/s/Hz and fixed γr = 5dB.

binary signaling is given by [10]

Pe =
1

π

∫ π/2

0

φγeq

(
A

sin2ϕ

)
dϕ (29)

where A = 1 for BPSK scheme. Now, Substituting (24) into
(29) and after some manipulations, the formula of the BER
becomes

Pe =
1

2
− 2

π

∫ ∞

0

φγ−1
eq

(β2)

∫ π/2

0

√
A

sin2ϕ
J1

(√
4β2A

sin2ϕ

)
dϕdβ

(30)
The inner integral of (30) can be solved by using variable
change and equation [15, eq. 2.12.4.15] which leads to the
value sin(2β

√
A)

2β . So the BER can be evaluated according to
the following formula

Pe =
1

2
− 2

π

∫ ∞

0

φγ−1
eq

(β2)
sin(2β

√
A)

2β
dβ, (31)

where φγ−1
eq
is the MGF of the inverse SNR given in (23).

Following the same approach as in the outage analysis, the
total average BER is given as

PAF
e =

M∑
Ls=0

Pr(|C| = Ls)Pr(Pe||C| = Ls), (32)

where Pr(|C| = Ls) is the same as (5) and Pr(Pe||C| = Ls) is
calculated as in (31).

V. NUMERICAL RESULTS

In this section, we study the performance of some of the
derived results through numerical evaluation. We assume that
λs,p = λs,r = 1. Fig. 2 shows the outage performance of the
AF selection relaying system versus the predefined threshold
Q for different number of available relays, M = 4, 6, 8 at
the minimum rates Rmin = 0.5, 1 bits/s/Hz. It can be readily
seen that as the values of Q becomes less restrict, the outage
performance improves substantially. Moreover, by increasing
the number of potential relays with ZFB approach applied, we
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t E
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r R
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Fig. 3: Average BER vs. Q(dB) for different numbers of AF relays
M=6, 8, 10 for two values of γr = 3, 7dBs for Rmin = 1 bit/s/Hz

observe significant improvement on the outage performance.
It is translated to the effect of the combined cooperative
diversity and beamforming on enhancing the total received
SNR and hence the mutual information which is not the case
of non-beamforming systems that use time division multiple
access (TDMA) to have orthogonal channels. Using ZFB,
it needs only two time slots to transmit meanwhile TDMA
non-beamforming systems need number of time slots as the
number of relaying channels . Fig. 3 illustrates the average
BER performance versus the tolerable interference threshold
Q for for different numbers of relays M= 6, 8, 10 and two
values of γr = 3, 7 dBs at Rmin = 1 . It is obvious that
the BER improves substantially as the number of potential
relays increases and Q becomes looser. For less transmit power
of relays, γr = 3, this means less interference to PU and
at the same time less received SNR at SD and hence less
performance than when γr = 7 is used.

VI. CONCLUSION

We investigated an AF selection relaying system model
in CRNs that limits the interference to the primary system
by imposing a peak interference power constraint in the first
phase and applying a distributed ZFB approach in the second
phase. The beamforming weights are optimized to maximize
the received SNR at secondary destination and to null the
interference inflicted on the primary user. We analyzed the
performance of the secondary system by deriving the outage
and BER probabilities. Our numerical results showed that
the distributed ZFB method improves the outage and BER
performances by increasing number of participating relays in
addition to limiting interference to PU.
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VII. APPENDIX
A. Proof of Lemma 2
Using [12, equ. 6.60], fγ1

(γ) is found as follows:

fγ1
(γ) =

∫ ∞

y=0

yf‖hsr‖2(yγ)f|hs,p|2(y)dy

=

∫ ∞

y=0

y
(yγ)Ls−1e(−yγ/γq)

(Ls − 1)!(γq)Ls
λs,pe

−λs,pydy

=
λs,p(γ)

Ls−1

(γq)Ls(Ls − 1)!

∫ ∞

y=0

yLse(−yγ/γq)e−λs,pydy

(33)

Using [13, eq. 3.326.1], we get (14).
To find the CDF, we just integrate the PDF as follows:

Fγ1
(γ) =

λs,pLs

(γq)Ls

∫ γ

0

(x)Ls−1

( x
γq

+ λs,p)Ls+1
dx (34)

Using [13, eq. 3.194.1] to solve the integral, resulting in (15).

B. Proof of Theorem 1

Using the definition of CDF FAF
γeq

(γ) = F
(

γ1γ2

γ1+γ2
≤ γ

)
,

FAF
γeq

(γ) =

∫ ∞

0

Pr
[

γ1γ2
γ1 + γ2

≤ γ|γ1
]
fγ1

(γ1)dγ1 (35)

= Fγ1
(γ) +

∫ ∞

γ

Fγ2

(
γγ1

γ1 − γ

)
fγ1

(γ1)dγ1︸ ︷︷ ︸
I1

Then substitute into (16) and (14) , I1(γ) becomes as

I1(γ) =

∫ ∞

γ

⎛
⎝1−

Γ
(
Ls − 1, γ

γ1−γ
γ1

γr

)
(Ls − 2)!

⎞
⎠ fγ1

(γ1)dγ1

= 1−
∫ γ

0

fγ1
(γ1)dγ1 − 1

(Ls − 2)!

×
∫ ∞

γ

Γ(Ls − 1,
γ

γ1 − γ

γ1
γr

)fγ1
(γ1)dγ1 (36)

then substitute (36) into (35),

FAF
γeq

(γ) = 1− I2 (37)

where

I2 =

∫ ∞

γ

Γ
(
Ls − 1, γ

γ1−γ
γ1

γr

)
(Ls − 2)!

fγ1
(γ1)dγ1 (38)

By using the variable change u = γ1 − γ, the integral in (38)
can be written as

I2 = a1

∫ ∞

0

Γ(Ls − 1, cγ + cγ2

u )(u+ γ)Ls−1

(u+ γ + λs,pγq)Ls+1
du (39)

where a1 =
λs,pLs

(Ls−2)!(γq)2Ls+1 .
By using [13, eq. 8.352.2] and [13, eq. 1.111], the incomplete
gamma function of the integral in (39) can be expressed as

Γ(Ls − 1, cγ +
cγ2

u
) = (Ls− 1)!e

(
−cγ− cγ2

u

) Ls−1∑
k=0

k∑
v=0

1

k!

×
(
k

v

)
(cγ)k−v(cγ2)v

1

(u)v
(40)

By using (40)and using [13, eq. 1.111] again for the term
(u+ γ)Ls−1, I2 can be expressed as

I2 = a1 (Ls− 2)!e(−cγ)
Ls−1∑
n=0

Ls−2∑
k=0

k∑
v=0

(c)k

k!

(
k

v

)(
Ls − 1

n

)

× (γ)Ls−1−n+k+v

∫ ∞

0

e
(
− cγ2

u

)
(u)n−v

(u+ γ + λs,pγq)Ls+1
du (41)

The inner integral of I2 can be solved by exploiting [13, eq.
3.471.7], resulting in

I2 = a1 (Ls− 2)!e−cγ
Ls−1∑
n=0

Ls−2∑
k=0

k∑
v=0

(c)k+
n−v

2

k!

(
Ls − 1

n

)

×
(
k

v

)
Γ(Ls − n+ v)(γ)Ls−1+k (γ + b)

n−v
2 −Ls

× e
(

cγ2

2(γ+b)

)
Wn−v

2 −Ls,
−n+v−1

2

(
cγ2

γ + b

)
(42)

With the help of (37) and (42), we get the CDF expression of
FAF
γeq

(γ) as given in (17).
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