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Abstract—In this paper, considering multicarrier transmis-
sions, we present a maximum likelihood estimator of the sub-
carrier signal-to-noise ratio (SNR) based on the expectation-
maximization (EM) algorithm. This new estimator is applicable
to any linearly-modulated signal. It is a non-data-aided (NDA)
method since no a priori knowledge is assumed about the
transmitted data. The channel gains and phase distortions on
the different subcarriers are assumed to be constant during the
observation window, and the signal is assumed to be corrupted
by additive white Gaussian noise (AWGN). The performances of
our estimator are empirically assessed using Monte-Carlo simula-
tions, showing that the new algorithm reaches the corresponding
Cramér-Rao lower bounds (CRLBs) over a wide SNR range.

I. INTRODUCTION

Modern communication systems often require accurate
knowledge of the SNR which is a key parameter that should be
estimated in many applications, such as adaptive modulation
[1] or bit allocation strategies [2].

In multi-carrier transmissions, such as orthogonal frequency
division multiplexing (OFDM), the majority of the previously
introduced algorithms estimate the average overall the sub-
carriers [3]. However, estimating the per-carrier SNR is also
required. For instance, the knowledge of the subcarrier SNR
allows the system to adapt its modulation tone by tone, instead
of using the same modulation scheme on all the subcarriers,
which would be then limited by the ones with the poorest
channel conditions.

Roughly speaking, SNR estimators are mainly categorized
in two major categories: data-aided (DA) and non-data-aided
(NDA) estimators. In contrast to DA SNR estimators, which
assume perfect or partial a priori knowledge of the transmitted
symbols, NDA techniques base the estimation process on
the received samples only. DA SNR estimators are easier to
derive, but they have the major drawback of limiting the whole
throughput of the system due to the transmission of known
symbols.

Furthermore, SNR estimators which are based on the mag-
nitude of the received samples only are called envelope-based
SNR estimators. However, these estimators do not use the
whole information carried by the received samples. In fact,
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when using the inphase and quadrature (I/Q) components,
more accurate SNR estimators can be derived and they are
referred to as I/Q-based estimators.

In parameter estimation, the analytical NDA maximum-
likelihood (ML) estimator is usually recognized to be mathe-
matically not tractable or very tedious to derive. However, the
NDA ML estimates can be numerically computed, even if no
closed-form solution is available. In this paper, we derive the
NDA ML I/Q-based subcarrier SNR estimator by applying the
EM algorithm, which has already been used for the estimation
of many channel parameters [4], [5].

To the best of our knowledge, the presented estimator
is the first NDA per-carrier SNR estimator in multicarrier
transmissions that exploits cross information about the noise
power between the different subcarriers. Instead of calculating
an overall SNR, as it is usually done [6], our estimator
calculates the SNR on each subcarrier. The performances of
the proposed estimator are compared to the one presented in
[7], which is a recent DA SNR estimator that achieves good
performances particularly for SNR values beyond 10 dB and
can be used carrier per carrier especially in OFDM systems. It
will be shown by computer simulations that our ML per-carrier
SNR estimator, even though NDA, outperforms this estimator
over the entire SNR range.

The rest of the paper is organized as follows. The system
model is exposed in section II. In section III, the EM algorithm
for the subcarrier SNR estimation in multicarrier transmissions
is derived. The simulation results are presented in section IV
and some concluding remarks are finally drawn out in section
V.

II. SYSTEM MODEL

We consider a traditional digital communication sys-
tem broadcasting and receiving any multicarrier signal. The
channel gains coefficients and phases {Sk}k=1,2,...,K and
{φk}k=1,2,...,K , respectively, are supposed to remain constant
over the observation window, for all the K subcarriers. We
assume also that we receive on the kth subcarrier, an AWGN-
corrupted signal with noise power 2σ2

k. Assuming perfect
synchronization, the received signal at the input of the matched
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filter can be modeled as follows:

yk(n) = Ske
jφkak(n)+wk(n), k = 1, 2, ...K, n = 1, 2, ...N

(1)
where, on the kth tone and at time index n, ak(n) is the
transmitted symbol and yk(n) is the corresponding received
sample. {wk(n)}k=1,2,...,K,n=1,2,...,N are the additive white
noise components, which are modelled by complex zero-
mean Gaussian random variables with independent real and
imaginary parts, each of variance σ2

k. N is the number of
the received samples during the transmission interval and j is
the imaginary number that verifies j2 = −1. We denote by
C = {c1, c2, ..., cM} the alphabet of size M from which the
transmitted symbols are drawn, and the constellation energy
is supposed to be normalized to one, i.e., E{|ak(n)|2} = 1,
for k = 1, 2, ...,K. Moreover, we assume that a subset of
the subcarriers experience the same noise power 2σ2 (say,
without loss of generality, the first L subcarriers, i.e., σ2

k = σ2,
k = 1, 2, ..., L).

Based on the NK received samples, the subcarrier true
SNRs (in dB) that we wish to estimate are defined as:

ρk =

 10 log10

(
S2
k

2σ2

)
, k = 1, 2, ...L,

10 log10

(
S2
k

2σ2
k

)
, k = L+ 1, L+ 2, ...K.

(2)

III. SUBCARRIER NDA ML SNR ESTIMATOR USING THE
EXPECTATION MAXIMIZATION ALGORITHM

In the following, a NDA SNR estimator based on the EM
algorithm is presented. Roughly speaking, the EM algorithm
[8] can be described as follows. At the ith iteration, it runs in
two steps. The E-Step computes the log-likelihood function
conditioned by the parameter estimated at the (i − 1)th

iteration. The M-Step finds the value of the parameter that
maximizes the function computed at the E-Step :

E− Step :Q
(
Θ(i),Θ(i−1)

)
= E

[
L
(
Θ(i)|Z

)
|Θ(i−1),Y

]
,

M− Step : Θ(i) = arg maxQ
(
Θ(i),Θ(i−1)

)
,

with the following notations :

yk = [yk(1), yk(2), ..., yk(N)]T , k = 1, 2, ...,K, (3)
Y = [y1,y2, ...,yK ] , (4)

ak = [ak(1), ak(2), ..., ak(N)]T , k = 1, 2, ...,K, (5)
A = [a1,a2, ...,aK ] , (6)
zk = [yk; ak] , k = 1, 2, ...,K, (7)
Z = [z1, z2, ..., zK ] , (8)

L
(
Θ(i)|Z

)
= ln

{
Pr
[
Z|Θ(i)

]}
. (9)

Actually, the EM algorithm has been recently derived for
SNR estimation, but in single-carrier transmissions [4], assum-
ing perfect knowledge about the channel phase. Our estimator
is more general and does not require any knowledge about
the introduced phase distortions {φk}k=1,2,...,K . Therefore, the
parameter vector to be estimated in the presence of unknown
subcarriers phases is :

Θ =
[
S1, S2, ..., SK , σ

2, σ2
L+1, σ

2
L+2, ..., σ

2
K , φ1, φ2, ..., φK

]
.

(10)

Using the notations adopted in [4], we can write the
likelihood function on the kth subcarrier as follows :

L (Θk|zk) =
N∏
n=1

M∏
m=1

{Pr [ak(n) = cm]×

Pr [yk(n)|ak(n) = cm,Θk]}xn,m(k), (11)

where xn,m(k) is the kth subcarrier indicator that equals 1
if ak(n) = cm and 0 otherwise for k = 1, 2, ...,K, n =
1, 2, ..., N and m = 1, 2, ...,M . Θk is the parameter vector to
be estimated on the kth subcarrier: Θk =

[
Sk, σ

2
k, φk

]
. Hence,

the global log-likelihood function is given by :

L (Θ|Z) =
K∑
k=1

L (Θk|zk) . (12)

It follows that :

Q
(
Θ(i),Θ(i−1)

)
=

K∑
k=1

Qk

(
Θ(i)
k ,Θ(i−1)

k

)
, (13)

and from (11), we have :

Qk(Θ(i)
k ,Θ(i−1)

k )

=
N∑
n=1

M∑
m=1

{
x(i)
n,m(k)

(
ln(σ2

k) +
|yk(n)− Skejφkcm|2

2σ2
k

)}
,

(14)

with :

x(i)
n,m(k) = E

[
xn,m(k)|yk(n),Θ(i−1)

k

]

=

exp

−
∣∣∣yk(n)−S(i−1)

k
e
jφ

(i−1)
k cm

∣∣∣2
2σ

2(i−1)
k


∑M
p=1 exp

−
∣∣∣yk(n)−S(i−1)

k
e
jφ

(i−1)
k cp

∣∣∣2
2σ

2(i−1)
k


.

(15)

The components of Θ are independent and the maximum
of Q is then simply given by differentiating Q with respect
to each component of Θ and setting each partial derivative to
zero :

∂Q

∂φk
=

N∑
n

M∑
m

−jSkx(i)
n,m(k)

2σ2
k

[
ejφkcmyk(n)∗ − e−jφkc∗myk(n)

]
,

∂Q

∂φk
= 0 =⇒ φ

(i)
k =

1
2

arg

( ∑N
n

∑M
m x

(i)
n,m(k)yk(n)∑N

n

∑M
m x

(i)
n,m(k)yk(n)∗

)
.

We finally obtain the following results. For k = 1, 2, ...,K,
we have :

φ
(i)
k = arg

(
N∑
n

M∑
m

x(i)
n,m(k)yk(n)

)
, (16)

S
(i)
k =

∑N
n

∑M
m x

(i)
n,m(k)

(
cmyk(n)∗ejφ

(i)
k + c∗myk(n)e−jφ

(i)
k

)
2×

∑N
n

∑M
m x

(i)
n,m(k)|cm|2

,

(17)
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and for k = L+ 1, L+ 2, ...K, we have :

σ
2(i)
k =

∑N
n

∑M
m x

(i)
n,m(k)

∣∣∣yk(n)− S(i)
k ejφ

(i)
k cm

∣∣∣2
2N

, (18)

σ2(i) =

∑L
l=1

∑N
n

∑M
m x

(i)
n,m(l)

∣∣∣yl(n)− S(i)
l ejφ

(i)
l cm

∣∣∣2
2LN

.

(19)

Note that these results are applicable to any constellation
and in any multicarrier transmission scheme provided that the
subchannels are assumed to be independent, such as OFDM
signaling. Moreover, the channel phases are assumed to be
completely unknown, contrarily to the algorithm presented
in [4] which is only applicable when there is no channel
distortion phases or when they are perfectly recovered at the
receiver. It should be mentioned also that our estimator does
not provide very accurate phase estimates {φ̂k}k=1,2,...,K .
However, the ambiguity on the estimation of the phases is
reduced and the SNR estimates {ρ̂k}k=1,2,...,K are still suffi-
ciently accurate. These points will be explained and discussed
in the following section.

IV. SIMULATION RESULTS

In this section, we include some graphical representations
of the estimated mean square error (MSE) of the subcarrier
SNR estimates on the first tone, given by :

MSE = E
[
(ρ1 − ρ̂1)2

]
, (20)

which will serve as a representative case for all the first
L subcarriers experiencing the same noise power σ2. The
MSE of the subcarrier SNR estimates on one of the K − L
remaining subcarriers are exactly those which are obtained
with a traditional single-carrier system, and they are not
included in this paper as they have been recently presented in
[4], [9]. All the simulations were run over 2000 Monte-Carlo
simulations, and with initial values of Θ : S(0)

k = 1, σ2(0)
k = 1

and φ(0)
k = 2π, for k = 1, 2, ...,K.

We examine in Figs 1 to 5, the performance behaviour of our
SNR estimator on the first subcarrier, as being hypothetically
estimated by a traditional single-carrier system.

Figs. 1 and 2 show the relevance of taking into account
the channel phase in the parameter vector to be estimated. In
fact, considering the distortion phase as an additional unknown
parameter, our estimator provides indeed more accurate SNR
estimates at low SNR values and therefore outperforms the
ML NDA estimator presented by Das in [4].

We notice also as it has been pointed out in [4] that the
estimates returned by the EM algorithm at low SNR values
(ρ1 < 2 dB) are sometimes very far from the true values.
These inaccuracies are, in fact, related to the behavior of the
log-likelihood function for these SNR values. This function is
indeed flat around its maximum in this SNR region, and even
a small deviation from the maximum of the log-likelihood
function results in large deviations from the coordinates of
this maximum. On the other hand, we notice that the returned
SNR estimates are more accurate when the channel phase is

0 2 4 6 8 10 12 14 16 18 20
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SNR (dB)

M
SE

 (d
B2 )

 

 

perfectly known phase
unknown phase
CRLB

Fig. 1. MSE of the SNR estimates in single-carrier system, N = 100,
QPSK.
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Fig. 2. MSE of the SNR estimate in single-carrier system, N = 100, 16-
QAM.

assumed completely unknown to the receiver, compared to
those obtained when the phase is assumed perfectly known
[4].

This result appears to be aberrant at first sight since we
have K additive nuisance parameters {φk}k=1,2,...,K which
should normally result in less accurate estimates of all the
parameters. Besides, the obtained result, in the low SNR
region, can also be explained by examining the behavior of the
log-likelihood shape toward these new nuisance parameters.
Indeed, Figs. 3, 4 and 5 depict the log-likelihood function for
QPSK at SNR = 2dB, as a function of the estimates of S1,
σ2 and φ1, respectively projected on the three hyperplanes
Ŝ1 = 1, σ̂2 = 0.315 and φ̂1 = π/4. First, we can see that
there are exactly four maxima, located in each of the four
quadrants ([0, π/2], [π/2, π], [π, 3π/2] and [3π/2, 2π]), which
could affect the SNR estimation, since the EM algorithm
finds iteratively a local maximum, whose coordinates are the
desired estimates. This explains why the estimate of φ1 is
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not reliable, as it depends on its choosen initial value φ
(0)
1 .

Actually, its estimate φ̂1 is admissible only if the initial
value φ

(0)
1 is in the same quadrant where the true value φ1

lies, i.e., if φ1 ∈ [0, π/2], φ̂1 is reliable if φ(0)
1 ∈ [0, π/2]

and is not reliable if φ
(0)
1 ∈ [π/2, π], φ(0)

1 ∈ [π, 3π/2]
or φ(0)

1 ∈ [3π/2, 2π]. Fortunatly, these four maxima have
all the same coordinates, with respect to S1 and σ2

1 , which
ensures that the SNR estimates remain reliable even if the
phase estimates are sometimes very far from the true values.
Actually, assuming i.i.d. received samples, i.e., Pr(ci) = 1

M ,
for i = 1, 2, ...,M , the likelihood function for each received
sample yk(n), k = 1, 2, ...K, n = 1, 2, ...N , is given by :

P [yk(n)|Θk] =
∑
ci∈C

exp
{
−|yk(n)−Skciejφk |2

2σ2

}
2πMσ2

,

=
∑
c̃i∈C̃

exp
{
−|yk(n)−Sk c̃iejΩejφk |2

2σ2

}
2πMσ2

,

(21)

where c̃i = cie
−jΩ, for i = 1, 2, ...,M , and Ω being any angle

that leaves the constellation globally invariant. Therefore, the
new constellation alphabet C̃ is exactly the original constella-
tion alphabet C, i.e., C̃ = C. Then, one can write :

P [yk(n)|Θk] =
∑
ci∈C

exp
{
−|yk(n)−Skciej(φk+Ω)|2

2σ2

}
2πMσ2

.

(22)

The log-likelihood function is then periodic, its period being
equal to the smallest value of Ω, which will be denoted by
ΩC in the following. The ambiguity on the estimation of the
phases is therefore reduced to a multiple of ΩC , depending
on the constellation alphabet C, and does not affect the SNR
estimation. For a QAM constellation, ΩC = π

2 , and for a
M -PSK constellation, ΩC = 2π

M . For example, for a QPSK
constellation, ΩC = π/2, and the possible ML estimates φ̂1 of
φ1 are the following if φ1 ∈ [0, π/2] :

φ̂1 = φ1 , if φ(0)
1 ∈ [0, π/2], (23)

φ̂1 = φ1 +
π

2
, if φ(0)

1 ∈ [π/2, π], (24)

φ̂1 = φ1 + π , if φ(0)
1 ∈ [π, 3π/2], (25)

φ̂1 = φ1 +
3π
2

, if φ(0)
1 ∈ [3π/2, 2π]. (26)

Moreover, it can be seen that the slopes around the maxima
of the log-likelihood function are flatter in Fig. 3 (which is
exactly the shape of the log-likelihood function when the
channel phase is assumed to be perfectly known) than in
Figs. 4 and 5, where the phase is assumed to be completely
unknown. Consequently, the error risk on the estimates at low
SNR values is reduced by taking into account the channel
phase as a coordinate in the search of a maximum of the log-
likelihood function.
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Fig. 3. Log-likelihood function in the hyperplane Ŝ1 = 1.
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Fig. 4. Log-likelihood function in the hyperplane σ̂2 = 0.315.
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Fig. 5. Log-likelihood function in the hyperplane φ̂1 = π/4.

In Fig. 6, the MSE of the SNR estimates in a multicar-
rier system are plotted for different numbers of subcarriers
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experiencing the same noise power 2σ2. We see that, as
expected, the SNR estimates become more accurate as the
number of the subcarriers experiencing the same noise power
σ2 increases, which can be explained by the use of the mutual
information about σ2. In this figure, the MSE of the DA phase-
based SNR estimator presented in [7], which assumes perfect
a priori knowledge of all the transmitted symbols, is also
plotted for comparison purposes. It can be seen that our blind
ML estimator clearly outperforms the phase-based estimator,
despite the fact that the latter relies on the perfect knowledge
of the transmitted symbols.

0 2 4 6 8 10 12 14 16 18 20
10!2

10!1

100

101

SNR (dB)

M
SE

 (d
B2 )

 

 

Phase Based
ML single carrier
ML multicarrier : L=2
ML multicarrier : L=4

Fig. 6. Comparison of MSE for different values of L. N = 100, QPSK.

In Fig. 7, for QPSK signals and with 4 carriers experiencing
the same noise power 2σ2, we compare the performance of our
ML estimator with the corresponding CRLB, recently derived
in [10]. It can be clearly seen that our estimator reaches the
CRLB over the entire considered SNR region.
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100

SNR (dB)

M
SE

 (d
B2 )
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Fig. 7. MSE of the SNR estimates for the first subcarrier, L = 4.
{ρl+1 = ρk + 2}l=1,2,...,L−1, N = 100, QPSK.

V. CONCLUSION

In this paper, we presented a ML subcarrier SNR estimator
based on the EM algorithm. This SNR estimator reaches the
CRLB for a wide of SNR values. It is a NDA technique which
does not require any a priori information about the transmitted
symbols and therefore it does not reduce the throughput of
the system. In the special case of a single-carrier system, this
estimator, which assumes the channel phase to be completely
unknown, outperforms at low SNR values, the existing ML
estimators that assume the channel phase to be perfectly
known at the receiver [4], [9]. For multicarrier systems, it
also outperforms the recently introduced DA per-carrier SNR
estimator [7]. The accuracy of this estimator also increases
with the number of the subcarriers experiencing the same noise
power, since the mutual information between the different
subcarriers is fully exploited.
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