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ABSTRACT

The localization of speech is essential for improving the quality
of hands-free pick-up as well as for applications such as auto-
matic camera steering. This paper proposes a source localization
method tailored to the distinct nature of speech that is based on
the linearly constrained minimum variance (LCMV) beamform-
ing method. The LCMV steered beam temporally focuses the ar-
ray onto the desired signal. By modeling the desired signal as an
autoregressive (AR) process and embedding the AR coefficients
in the linear constraints, the localization accuracy is significantly
improved as compared to existing techniques.

1. INTRODUCTION
The localization of one or more speech sources is an important
problem both as a prior to spatial filtering, and in applications such
as automated video-camera steering. Source localization may be
viewed as the spatial analogue of spectral estimation [1]: spatial
spectral estimation. The multidimensional Fourier transform of a
space-time signal is known as the wavenumber-frequency trans-
form [2]. The resulting transform is a function of both spatial and
temporal frequencies. As a result, the temporal nature of the in-
volved signals certainly impacts the source localization process.

Source localization algorithms may roughly be divided into
two categories. The first category involves a two-step approach
comprised of time delay estimation in the first step, followed by
a mapping of the relative delays to the source location in the sec-
ond step [3]. The second category is based on parameterized spa-
tial correlation [4], and includes the well known steered-response
power (SRP) algorithm [5], [6].

Human speech has many distinct features: for example, voiced
segments are quasi-periodic with dominant formant regions. In
general, speech is quite colored, and thus may be represented quite
accurately by an autoregressive (AR) process. It is surprising that
the majority of acoustic source localization algorithms proposed to
date have not exploited the predictable nature of speech.

This paper presents a source localization method based on the
well-known linearly constrained minimum variance (LCMV) tech-
nique proposed by Frost [7]. Instead of viewing the LCMV filter as
a beamformer, however, we present the structure as a spatial spec-
tral estimator which takes into account the temporal characteristics
of the desired signal via the LCMV constraints.

2. SIGNAL MODEL
Assume that an array of N microphones samples the sound field
in an anechoic environment. The output of microphone n at time
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sample k is then modeled as:

xn(k) = αn(rs)s [k − τ −F1n(rs)] + vn(k), (1)

where αn(rs), n = 1, 2, . . . , N, models the attenuation of the
source signal at microphone n as a function of the source loca-
tion rs = (rs, φs, θs), where rs, φs, and θs denote the range,
elevation, and azimuth, respectively, s is the source signal, τ is
the propagation time (in samples) from the source to sensor 1,
Fij(rs) is a function that relates the source position to the rela-
tive delay between microphones i and j, and vn is the additive
noise at microphone n. In the far-field case, it is appropriate to
assume αn(rs) = 1,∀n, rs.

The functionFij is related to the distances between the source
and the sensors i and j:

Fij(rs) =
dj,s(rs)− di,s(rs)

c
, (2)

where c is the speed of propagation. When the distance from the
source to the array is large in comparison to the extent of the spatial
aperture, the source is said to be in the “far-field” and the incoming
wave front may be assumed to be planar. In that case, Fij becomes
independent of the source range:

Fij(φs, θs) =
ζT (φs, θs) (zj − zi)

c
, (3)

where

ζ(φs, θs) =
ˆ

sin φs cos θs sin φs sin θs cos φs

˜T (4)

is a unit vector which points in the direction of propagation of the
source, and zi =

ˆ
zi,x zi,y zi,z

˜T is the position vector of
the ith sensor. Furthermore, if the source lies in the same plane
as the array of sensors, ζ becomes independent of the elevation
angle, and as a result, Fij loses its dependence on φs. In that case
zi =

ˆ
zi,x zi,y

˜T and ζ effectively become two-dimensional,
with

ζ(φs, θs) |2−D =
ˆ

cos θs sin θs

˜T
. (5)

3. LCMV SPATIAL SPECTRAL ESTIMATION
Beamforming and source localization are very inter-related. For
example, notice that the conventional delay-and-sum beamformer
(DSB) may be viewed as a spatial filter when applying a single set
of equalizing delays to the microphones and then summing, but
also as a source localizer: by steering the DSB to all candidate
locations and determining the location which radiates the most en-
ergy, the source may be localized. Since the DSB only processes
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one temporal sample at a time, it is unable to perform any tempo-
ral signal discrimination. Though the LCMV filter is celebrated in
the context of signal enhancement, it has never been viewed as a
spectral estimation tool. In this section, it is shown that by using
the LCMV framework, the temporal properties of the desired sig-
nal may be exploited to generate enhanced estimates of the spatial
properties of the signal.

The proposed technique performs both spatial and temporal
discrimination. A delay is first applied to each microphone such
that the propagation delaysF1n(rs) are equalized. This processing
is done for all possible source locations, leading to the parameter-
ized output:

xn,p(k, r) = xn [k + F1n(r)] , (6)

where r is the steered location (i.e., the parameter). When the
steered location r matches the actual location rs, the desired signal
is time-aligned:

xn,p(k, rs) = αn(rs)s [k − τ ] + vn [k + F1n (rs)] . (7)

In vector notation, the received and time-aligned signals are writ-
ten as:

xp(k, r) = A(rs)sp (k − τ, r) + vp(k, r), (8)

where

xp(k, r) =
ˆ

x1,p(k, r) · · · xN,p(k, r)
˜T

,

A(rs) = diag [α1(rs), . . . , αN (rs)] ,

sp (k − τ, r) =
ˆ

s [k − τ ] · · ·
· · · s [k − τ −F1N (rs) + F1N (r)]

˜T
,

vp(k, r) =
ˆ

v1 (k) · · · vN [k + F1N (r)]
˜T

,

and diag(·) is a diagonal matrix whose nonzero entries are indi-
cated by the arguments.

To allow for temporal processing, we append the previous
Lh−1 samples of each microphone to form a spatiotemporal aper-
ture:

xp(k, r, Lh) = A(rs)sp(k − τ, r, Lh) + vp(k, r, Lh), (9)

where

xp(k, r, Lh) =
ˆ

xT
p (k, r) · · · xT

p (k − Lh + 1, r)
˜T

,

A(rs) =

2
6664

A(rs) 0N×N · · · 0N×N

0N×N A(rs) · · · 0N×N

...
...

. . .
...

0N×N 0N×N · · · A(rs)

3
7775 ,

sp(k − τ, r, Lh) =
ˆ

sT
p (k − τ, r) · · ·
· · · sT

p (k − τ − Lh + 1, r)
˜T

,

vp(k, r, Lh) =
ˆ

vT
p (k, r) · · · vT

p (k − Lh + 1, r)
˜T

,

where 0N×N is an N -by-N matrix of zeros and A(rs) has size
NLh-by-NLh. We apply a multichannel finite impulse response
(FIR) filter to the spatiotemporal aperture to yield an array output
that is temporally constrained:

hT (r) A(rs)sp (k − τ, r, Lh) =

Lh−1X

l=0

fls (k − τ − l) , (10)

where

h (r) =
ˆ

hT
:0 (r) hT

:1 (r) · · · hT
:Lh−1 (r)

˜T (11)

denotes the multichannel filter with h:i (r) =ˆ
h1i (r) h2,i (r) · · · hNi (r)

˜T denoting the sub-
filter applied to the set of samples at time sample k − τ − i. The
spatiotemporal filter coherently sums a signal propagating from
location r followed by a temporal filtering which is specified by
the coefficients fl, l = 0, 1, . . . , Lh − 1.

Assuming a source propagating from the steered location r,
the constraints follow from (10) as:

cT
α,l(r)h (r) = fl, l = 0, 1, . . . , Lh − 1, (12)

where

cα,l(r) =

"
0T

N×1 · · · αT (r)| {z }
lth group

· · · 0T
N×1

#T

is the lth constraint vector of length NLh, and

α(r) =
ˆ

α1(r) α2(r) . . . αN (r)
˜T

.

The Lh constraints of (12) may be neatly expressed in matrix no-
tation as:

CT
α(r)h (r) = f, (13)

where

Cα(r) =
ˆ

cα,0(r) cα,1(r) · · · cα,Lh−1(r)
˜
,

f =
ˆ

f0 f1 · · · fLh−1

˜T
.

After forming the desired constraints, the remaining degrees
of freedom are utilized to minimize the average output power:

E
˘
y2 (k, r)

¯
= E

h
hT (r)xp(k, r, Lh)

i2ff
, (14)

where

y (k, r) = hT (r)xp(k, r, Lh),

which corresponds to minimizing the contribution of noise and in-
terference to the spectral estimate. The minimization problem is
thus, for every steered location r:

ĥ (r) = arg min
h

hT Rxpxp(k, r, Lh)h subject to CT
α (r) h = f,

(15)
where

Rxpxp(k, r, Lh) = E
n

xp(k, r, Lh)xT
p (k, r, Lh)

o
.

The solution to the constrained optimization problem is well-
known; using the method of Lagrange multipliers,

ĥ (r) = R−1
xpxp(k, r, Lh)Cα (r)×
h
CT

α (r) R−1
xpxp(k, r, Lh)Cα (r)

i−1

f. (16)

The source location estimate follows as:

r̂s = arg max
r

SLCMV(r)

= arg max
r

ĥ
T

(r) Rxpxp(k, r, Lh)ĥ (r) , (17)

where SLCMV(r) = ĥ
T

(r) Rxpxp(k, r, Lh)ĥ (r) is the estimate
of the spatial spectrum at the spatial frequency corresponding to
location r.
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4. AUTOREGRESSIVE MODELING
The minimum variance distortionless response (MVDR) tech-
nique, proposed for narrowband signals by Capon [8], and later for
the broadband case by Krolik and Swingler [9], is a particular case
of the LCMV technique which employs Lh = 1 and f = f0 = 1.
The lone MVDR constraint simply passes s(k− τ) through to the
output with unity gain. Since the method uses Lh = 1, it is not
able to provide any temporal signal discrimination. Moreover, due
to the short aperture length, the noise reducing minimization pro-
cedure is limited in the degrees of freedom.

The proposed method alleviates the limitations noted above.
In LCMV spectral estimation, the idea is to estimate the present
sample as a linear combination of the past samples. This naturally
calls for the modeling of the desired signal as an autoregressive
(AR) process:

s(k) =

pX

l=1

als (k − l) + w(k), (18)

where al are the predictive coefficients, p is the order of the AR
model, and w(k) is the prediction error.

In order to determine the constraint vector f, consider (10) –
the goal of the constraint is to estimate s(k−τ) using a linear com-
bination of {s(k − τ), s(k − τ − 1), . . . , s(k − τ − Lh + 1)}:

ŝ(k − τ) = hT (r) A(rs)sp (k − τ, r, Lh)

=

Lh−1X

l=0

fls (k − τ − l) , (19)

where ŝ(k−τ) denotes the estimate of the desired present sample.
The MVDR method chooses f0 = 1, fl = 0, l = 1, . . . , Lh − 1,
yielding an errorless estimate but also meaning that temporal de-
pendence is neglected. In the proposed method, the desired sig-
nal’s temporal properties are taken into account via AR modeling.
The AR parameters of the desired signal are embedded in the con-
straint vector f which in turn shapes the multichannel filter h(r).
Connecting (18) to (19), the LCMV method chooses

f0 = 0, (20)
fl = al, l = 2, . . . , p, (21)

resulting in an estimation error given by s(k − τ) − ŝ(k − τ) =
w(k).

A zero-mean estimation error is incurred by modeling the sig-
nal as an AR process. However, it is expected that the additional
degrees of freedom in the multichannel filter h (r) will lead to a
greater level of noise reduction. Note that the filter h(r) tempo-
rally focuses the steered beam to pick up a signal with the tempo-
ral structure contained in f. Any noise or interfering signal with
a different temporal structure should be attenuated by this tempo-
rally focused filter. In practice, the AR parameters need to be esti-
mated from the microphone signals using either a classical single-
channel method such as solving of the Yule-Walker equations [10],
or a multichannel method that somehow takes into account the data
from all microphones [11].

5. SIMULATION EVALUATION
The proposed localization technique is evaluated in a com-
puter simulation using the image method model of [12]. A 6-
microphone uniform circular array with a 4.25 cm radius is sim-
ulated. The simulated room is rectangular with plane reflective

boundaries and frequency-independent reflection coefficients. The
room dimensions in centimeters are (304.8, 457.2, 381). The cen-
ter of the array sits at (152.4, 228.6, 101.6). The speaker is lo-
cated at (152.4, 406.4, 101.6). The reverberation times are mea-
sured using the method of [13] and range from T60 = 300 ms
to T60 = 900 ms, where T60 is the time for the impulse re-
sponse’s energy to decay by 60 dB. After convolving the source
signal with the synthetic impulse responses, appropriately-scaled
white Gaussian noise is added at the microphones to achieve the
required SNR. SNRs of 10, 20, and 30 dB are simulated. The
source signal is female English speech. The sampling rate is 48
kHz. Due to the planar array geometry and far-field source, the
location space is one-dimensional and comprised of the set of az-
imuth angles in the range 0 − 359 degrees, with a resolution of 1
degree. The azimuth angle estimates are computed once per 64 ms
frame over a one-minute signal. The algorithms are evaluated in
terms of the percentage of anomalous estimates – those that vary
from the true azimuth by more than 5 degrees, and by the root-
mean-square (rms) error for the nonanomalous estimates:

erms =

s
1

Lna

X

l∈χna

“
θ̂l − θl

”2

, (22)

where χna is the set of all nonanomalous estimates, Lna is the
number of elements in χna, and θ̂l and θl are the estimated and
actual azimuth angles of the source for frame l.

For comparison, the proposed estimators are compared to the
SRP [5], [6] and MVDR [9] methods. The generalized cross-
correlation (GCC) phase transform (PHAT) method [14] is em-
ployed to whiten the observed cross-correlations for all three meth-
ods. To estimate the AR coefficients of the desired signal, the
Yule-Walker or “autocorrelation” method is employed using data
collected from the first microphone. The parameterized spatiotem-
poral correlation matrix Rxpxp(k, r, Lh) has size NLh-by-NLh

and requires inversion – numerical stability problems may occur
in practice. As a result, prior to inversion, the matrix is regularized
using the Tikhonov method [15]:

R−1
xpxp(k, r, Lh) ← ˆ

Rxpxp(k, r, Lh) + δINLh×NLh

˜−1
, (23)

where ← denotes assignment, INLh×NLh is the NLh-by-NLh

identity matrix, and δ is the regularization parameter, which is
taken in the simulations as:

δ =
1

NLh
trace

ˆ
Rxpxp(k, r, Lh)

˜
∆, (24)

where ∆ is the normalized regularization constant, with ∆ = 0.1
used in the simulations.

A concluding experiment with real impulse responses mea-
sured in the Bell Labs varechoic chamber [16] is also performed.
The experiment utilizes a 6-element uniform linear array with an
inter-microphone spacing of 10 cm. The reverberation time em-
ployed in the evaluation is 280 ms. SNRs of 0, 10, and 20 dB are
simulated. The array stands near a wall, with the source located
4.43 m from the array at broadside. All other parameters remain
the same as in the image method based simulations.

Table 1 displays the image method simulation results. It is
evident that the proposed method provides increased robustness
against reverberation and especially noise, with the reduction in
anomalies reaching 23 % in the SNR = 10 dB, T60 = 900
ms case. As the SNR is increased, the performance benefit of
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Table 1. Source localization performance of conventional and proposed estimators with synthetic impulse responses.
SRP MVDR LCMV

SNR T60 %anomalies rms %anomalies rms %anomalies rms
(dB) (ms) (%) (degrees) (%) (degrees) (%) (degrees)
10 300 43.12 1.82 42.69 1.82 19.96* 0.85*

600 48.45 1.78 48.67 1.78 31.91* 1.01*
900 53.36 1.81 53.68 1.80 40.88* 1.10*

20 300 18.78 1.48 18.57 1.49 11.21* 0.85*
600 27.32 1.45 27.21 1.44 19.74* 1.02*
900 37.46 1.39 37.46 1.38 29.24* 1.10*

30 300 10.14 1.03 9.82 1.03 10.46* 0.81*
600 21.34 0.99 21.34 0.99 21.99 0.97*
900 30.31 1.03 30.10 1.04 30.42* 1.10*

*regularized with ∆ = 0.1

Table 2. Source localization performance of conventional and proposed estimators with real impulse responses.
SRP MVDR LCMV

SNR %anomalies rms %anomalies rms %anomalies rms
(dB) (%) (degrees) (%) (degrees) (%) (degrees)

0 18.59 1.67 19.23 1.68 13.46* 1.33*
10 12.18 1.33 12.82 1.31 5.77* 1.07*
20 10.90 1.16 10.26 1.13 7.69* 1.13*

*regularized with ∆ = 0.1

the LCMV scheme is somewhat reduced; at SNR = 30 dB, the
LCMV method yields a performance comparable to the conven-
tional methods. The results of the evaluation using real impulse
responses is shown in Table 2. The LCMV technique leads to
superior performance for all values of the SNR. Note that while
the proposed method offers increased robustness to adverse condi-
tions, it is also more computationally complex.

6. CONCLUSIONS
This paper has presented a novel source localization technique
based on the LCMV beamformer proposed by Frost. It was shown
that by accounting for the temporal properties of the desired sig-
nal in the linear constraints via AR modeling, source localization
performance is significantly improved. The presented algorithm
provides one way of accounting for the nature of speech in local-
ization applications.
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