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Abstract— In this paper, we consider a pulse shaping
OFDM/BFDM system operating over a doubly dispersive chan-
nel. We propose to search the optimal pulse maximizing the
signal to interference ratio (SIR). We show that the impact of
interference, composed by both inter-symbol interference (ISI)
and inter-carrier interference (ICI), occurring in such a system,
depends crucially on time frequency localization of transmit and
receive pulses. We propose to maximize the SIR, written as a
ratio of two quaternary forms, by altering between transmit
and receive pulse spaces both generated by Hermite Waveforms.
Numerical results show that optimized BFDM systems can
outperform conventional OFDM systems with respect to SIR.
In fact, biorthogonality offers more freedom to design pulses
improving robustness of the multi-carrier system against channel
dispersion.

I. INTRODUCTION

High bit rate transmissions over doubly dispersive channels
induce ISI due to multi-path delays. By dividing the high bit
rate data stream into several low bit rate data sub-streams,
each modulated over a different sub-carrier, multi-carrier
transmission (MC) can significantly decrease the amount of
ISI. But MC transmissions suffer from ICI due to Doppler
effects and frequency synchronization errors. So far, different
techniques have been proposed to suppress ISI/ICI. The ISI
can be suppressed by cyclically extending a rectangular shaped
symbol with a cyclic prefix (CP-OFDM) [1]. Nevertheless, the
used rectangular pulse shape is not adapted to highly frequency
dispersive channels due to its poor frequency localization
proprieties. In pulse shaping OFDM [2] a smoother and more
localized pulse is used to replace the rectangular one. While
pulse shaping OFDM was proposed rather early [3,4,5], only
recently the design of transmit and receive pulses for BFDM
(biorthogonal frequency division multiplexing) systems has
been considered in more detail [6,7]. By considering biorthog-
onality instead of orthogonality, more localized pulses can
be designed for increased dispersion robustness and system
performance improvement.
In this paper, we propose to design orthogonal and biorthogo-
nal transmit and receive pulses which are adapted to the current
channel condition in order to achieve better spectral efficiency
and to reduce combined ISI/ICI. Since we target robustness to
ISI/ICI, well localized pulses are designed in absence of noise.
Furthermore, we only focus on distorsions caused by channel
dispersion so that frequency offsets could be integrated as an
additional Doppler effect. While in [8] the duality of multi-

carrier systems and Weyl-Heisenberg (or Gabor) frames is
elaborated and applied to the design of OFDM and BFDM
systems, our approach is based on linearly combining Hermite
waveforms so that maximum SIR is reached.
This paper is organized as fellows: After a presentation of
an OFDM/BFDM system model in section II, the theoretical
computation of orthogonal and biorthogonal pulses is dis-
cussed in section III. There, an SIR formulation and methods
maximizing it are provided. In section IV, performances of
the optimized MC systems are assessed and performance
comparison between the different OFDM/BFDM variants is
provided. Finally, a conclusion is reached in Section V.

II. SYSTEM MODEL

We consider a pulse-shaping OFDM/BFDM system deploy-
ing a time frequency rectangular lattice. Data symbols are
transmitted on the lattice grid points after being modulated
by carrier waveforms given by:

glm(t) = g(t − lT )ej2πmFt (1)

which are time-frequency shifted versions of the normalized
energy prototype pulse g(t). Note that T is the OFDM symbol
duration and F is the sub-carriers frequency spacing. The
baseband transmit signal is given by:

x(t) =
∞∑

l=−∞

Nc−1∑
m=0

Xlmg(t − lT )ej2πmFt (2)

where Xlm is a complex data symbol transmitted at time
lT and sub-carrier frequency mF . The wireless channel is
modelled as a random linear time varying system H . The
channel output (received signal) is thus given by:

y(t) = H(x(t)) =
∫

ν

∫
τ

h(τ, ν)x(t − τ)ej2πνtdτdν (3)

where h(τ, ν) is the delay-Doppler spread function which is
a random process in (τ, ν) [9]. The statistical description of
the channel is greatly simplified by the wide-sense stationary
scattering (WSSUS) assumption [9]:

E{h(τ, ν)} = 0,
E{h(τ, ν)h∗(τ1, ν1)} = S(τ, ν)δ(τ − τ1)δ(ν − ν1),

(4)

where S(τ, ν) is the channel dispersion function assumed to
be supported within the rectangle [0, Tm] × [−Bd/2, Bd/2],
where Tm and Bd are, respectively, the delay channel spread
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and Doppler channel spread.
We do not include an additive noise component because we are
not interested in noise effects. At the receiver, the demodulator
computes, for each data symbol Xlm, a decision variable Ylm

by calculating the inner product given by:

ylm =
∫

y(t)f∗
lm(t)dt, (5)

where y(t) is the received signal and flm(t) is a time-
frequency shifted version of the normalized energy receive
pulse f(t), defined as:

flm(t) = f(t − lT )ej2πmFt. (6)

In the special case where f(t) = g(t), we deal with a pulse
shaping OFDM system.
In fact, we assume a centered channel since we do not delay
the receive impulse by the mean channel delay Tm/2. Hence:

ylm =
∑
l1m1

Xl1m1hlml1m1(t), (7)

where hlml1m1 represents the global channel given by:

hlml1m1 =
∫ ∫

h(τ, ν)A∗
fg((l1 − l)T + τ, (m1 − m)F + ν)

e−j2πm1Fτej2πlTνe−j2πlFT (m−m1)dτdν,
(8)

where Afg is the cross ambiguity function between f(t) and
g(t) defined as:

Afg(φ, ψ) =
∫

f(t)g∗(t − φ)e−j2πψtdt. (9)

III. MC PULSES AND CORRESPONDING SIR

A. Derivation for arbitrary pulses

The decision variable corresponding to the demodulating
symbols Xlm is expressed as:

Ylm = Xlmhlmlm +
∑

(l1,m1) �=(l,m)

Xl1m1hlml1m1 . (10)

The mean ISI/ICI power is defined as:

σ2
I = E{| Ylm − Xlmhlmlm |2}, (11)

whereas the mean power of the desired component is defined
as:

σ2
S = E{| Xlmhlmlm |2}. (12)

We also assume that Xlm are independent identically dis-
tributed (iid) data symbols with zero mean and average trans-
mit energy Es. We can then show that the ISI/ICI power is
given by:

σ2
I = Es

∑
(l,m) �=(0,0)

∫ ∫
S(τ, ν)|Afg(lT +τ,mF +ν)|2dτdν.

(13)
Similarly, the mean power of the desired component can be
expressed as:

σ2
S = Es

∫ ∫
S(τ, ν)|Afg(τ, ν)|2dτdν. (14)

Then, we define the SIR as:

SIR =
σ2

S

σ2
I

. (15)

According to (13), for the ISI/ICI to be low, |Afg(τ, ν)|2
must be small within all time-frequency plane regions of the
form Rlm = [lT − Tm/2, lT + Tm/2] × [mF −Bd/2,mF +
Bd/2], (l,m) �= (0, 0). Such a behavior is favored by weakly
dispersive channels (small delay spread Tm and Doppler
spread Bd ) and small time-frequency lattice densities (large
time-frequency spacing product TF). Unfortunately, channel
characteristics are generally out of control. While small lattice
densities mean a poor modulation spectrum efficiency, larger
values of TF increase the freedom in designing pulses g(t)
and f(t) satisfying biorthogonality property. Hence, for an
MC system, low ISI/ICI is favored by the use of jointly
well localized pulses and the choice of the lattice density
corresponds to a trade-off between spectral efficiency and
freedom in the system design.

B. Regular CP-OFDM using rectangular pulse

Let us consider an OFDM system employing a cyclic prefix
[1]. Here, T = 1/F + Tg , where Tg denotes the length
of the CP. The OFDM modulator and demodulator, deploy,
respectively rectangular transmit and receive pulses given by:

g(t) = rectT (t), (16)

and

f(t) = rectT−Tg
(t). (17)

The cross ambiguity function of a CP-OFDM system is given
by:

Afg(τ, ν) =
∫

rectT−Tg
(t)rect∗T (t − τ)e−j2πνtdt. (18)

To compute the signal plus interference power Q, we integrate
the periodized version of | Afg(τ, ν) |2 over the support of the
channel dispersion function S(τ, ν). Then, we omit the signal
power from Q to get the interference power.
We have:

Q =
∫ ∫

S(τ, ν)
∑

lm | Afg(lT + τ,mF + ν) |2 dτdν.
(19)

Here, we must distinguish both cases Tm ≺ Tg and Tm � Tg .
In the first case we compute | Afg(τ, ν) |2= T 2sinc2(ν/F )
which does not depend on τ . Then,
∑

lm | Afg(lT + τ,mF + ν) |2= T 2
∑

m sinc2(ν/F + m).
(20)

Using the fact that:
∀ρ � 0, η ∈ �,

∑
n sinc2(nρ − η) = 1/ρ, we verify that (20)

can be calculated using the aforementioned formula by setting
ρ at 1 and η at −ν/F . Hence, Q derives as:

Q = T 2

∫ ∫
S(τ, ν)dτdν = T 2S(0, 0), (21)
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where S(0, 0) is the channel power.
To get the useful signal power, we compute:

Q1 =
∫ ∫ | Afg(τ, ν) |2 S(τ, ν)dτdν

= T 2
∫

sinc2(ν/F )S(ν)dν,
(22)

where S(ν) =
∫

S(τ, ν)dτ is the Doppler spectrum of the
channel.
Hence, the signal to interference ratio is given by :

SIR =
Q1

Q − Q1
=

∫
sinc2(ν/F )Sn(ν)dν

1 − ∫
sinc2(ν/F )Sn(ν)dν

, (23)

where Sn(τ, ν) = S(τ, ν)/S(0, 0), is the normalized power
channel dispersion function. For the case when Tm � Tg ,
a more complicated calculus is derived leading to the SIR
expression given by:

SIR =
Q

T 2 − Q
, (24)

where

Q = 4T 2
∫ Bd/2

0

∫ Tm/2

0
sinc2(ν/F )Sn(τ, ν)dτdν

+4
∫ Bd/2

0

∫ Tm/2

Tg/2
(T − Tg/2 − τ)

sinc2(ν(T − Tg/2 − τ))Sn(τ, ν)dτdν.

(25)

C. SIR optimized Hermite-based pulses

In this section, we present several methods for the op-
timization of the transmit and the receive pulses in the
OFDM/BFDM system. The optimality criterion amounts to
maximizing the SIR given in section 3.1. The optimum pulse
is efficiently searched as combination of Hermite waveforms
uk(t), k � 0. The rationale behind employing Hermite wave-
forms is that the first Hermite waveform is the Gaussian
function and the k-th Hermite waveform uk(t) is the most
localized function orthogonal to u0(t), u1(t)...uk−1(t). Her-
mite waveforms are known to be an orthonormal base of
the Hilbertian space of square integrable functions, and to
provide, in decreasing order, maximum localization in time
and frequency. Hence all candidate pulses are expressed as a
linear combination of Hermite waveforms:

g(t) =
∑

k

αkuk(t) and f(t) =
∑

p

βpup(t). (26)

As noticed in [10] from simulation results, the optimum pulse
coefficients αk, and similarly βk, decrease exponentially with
respect to k. Hence, for complexity reasons, we truncate the
representation of candidate pulses to the N most concentrated
Hermite waveforms. The optimization task amounts, then, to
finding {αk}k=N−1

k=0 and {βk}k=N−1
k=0 so that the target function

SIR = σ2
s/σ2

I is maximized. Using the pulse expressions
below, we can formulate the cross-ambiguity function as:

Afg(τ, ν) =
N−1∑
k=0

N−1∑
p=0

α∗
kβpAkp(τ, ν), (27)

where Akp is the cross-ambiguity of uk(t) and up(t) [10]:

Akp =
∫

up(t)u∗
k(t − τ)e−j2πνtdt. (28)

Akp can be expressed as:

Akp(τ, ν) = (−1)k+p
√

p!
k!e

− 1
2 (τ2+ν2)(

√
π)k−p

(τ + iν)k−pL
(k−p)
p (π(τ2 + ν2)),

(29)

where

La
b (x) =

b∑
i=0

b!(−1)ixi

i!(b − i)!

b∏
k=i+1

(k + a) (30)

is the generalized Laguerre polynomial.
Based on that, the signal power becomes:

σ2
S = Es

∑
k,p≤N−1

∑
k1,p1≤N−1

α∗
kβpαk1β

∗
p1

D(k, p, k1, p1),

(31)
where:

D(k, p, k1, p1) =
∫ ∫

S(τ, ν)Akp(τ, ν)A∗
k1p1

(τ, ν)dτdν.

(32)
Similarly, the mean interference power is written as:

σ2
I = Es

∑
k,p≤N−1

∑
k1,p1≤N−1

α∗
kβpαk1β

∗
p1

I(k, p, k1, p1),

(33)
where :

I(k, p, k1, p1) =
∫ ∫

S(τ, ν)
∑

(l,m) �=(0,0)

Akp(lT + τ,mF + ν)A∗
k1p1

(lT + τ,mF + ν)dτdν.
(34)

Let UT = [α0...αN−1] and V T = [β0...βN−1], then the SIR
becomes:

SIR =
(U ⊗ V ∗)HD(U ⊗ V ∗)
(U ⊗ V ∗)HI(U ⊗ V ∗)

, (35)

where ⊗ is the Kronecker tensor product, D is a (N2 × N2)
hermitian matrix of elements D(k, p, k1, p1) and I is a (N2×
N2) hermitian positive matrix of elements I(k, p, k1, p1).
Formulated as below, the SIR is the target function to be
maximized so that optimal pulses are reached. Next we present
pulse design algorithms for both orthogonal and biorthogonal
cases based on SIR maximization. In the orthogoanal case,
optimal pulse search is done in one Hermite generated space
since transmit and received pulses are the same. In the
biorthogonal case, optimal pulse search is done by exploring
two different Hermite generated spaces to get the optimal
coefficients U and V and therefore, g(t) and f(t).

1) Optimization of biorthogonal receive and transmit pulses
(PS-BFDM): The optimization procedure is based on altering
between transmit and receive Hermite generated spaces by
iteratively and alternatively fixing the transmit and the receive
pulse to optimize the other. By fixing either U or V , the
SIR becomes a ratio of two quadratic forms easy to optimize.
In the initialization step, we begin by setting V or U at a
random vector. In the i-the iteration, the optimal achievable
SIR corresponds to the maximum generalized eigenvalue of
the pair of symmetric matrices (D(i)

1 , I
(i)
1 ) given by:

λmax(D(i)
1 , I

(i)
1 ) = sup UHD

(i)
1 U

UHI
(i)
1 U

= sup{λ/det(λI
(i)
1 − D

(i)
1 ) = 0},

(36)
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where D
(i)
1 (respectively I

(i)
1 ) is the entry-wise product of D

(respectively I ) by V (i)∗V (i)T

. Since transmit and receive
pulses have symmetric roles, we always set V (i+1) at the
obtained vector U in the i-th iteration. The convergence of
this procedure is interpreted as a precision on the maximum
achievable SIR relative to the initialization value. Thus, the
global maximum can be reached by using many different
random initializations. Moreover, by simulation tests, we show
that by increasing the iteration number, local maxima can be
avoided and the algorithm converges to the global maximum
of the target function.

2) Optimization of orthogonal pulses (PS-OFDM): Here
we deal with an orthogonal system deploying the same pulse
shape in transmission and reception, i.e. g(t) = f(t). The
SIR becomes a ratio of two quaternary forms with respect to
U = V . While optimizing the SIR with respect to U is rather
hard, we opt for a constrained maximization with respect to
the (N2×1) vector ξ = U⊗U∗ which element number kN+p

is {αkα∗
p}. The cost function is ψ(ξ) = σ2

s

σ2
I

= ξHDξ
ξHIξ

. Hence,

σ2
s and σ2

I are quadratic forms in ξ. The projected gradient
algorithm is used for a constrained optimization of the pulse
shape g(t) with respect to ξ. The optimum solution is reached
by iteratively computing:

α
(i+1)
k = α

(i)
k + ηC(k), (37)

where:
CT = (JT

ξ Jξ)−1JT
ξ

−→∇ξψ, (38)

η is a positive multiplicative factor and Jξ is the Jacobian
matrix of ξ with respect to {αk}N−1

k=0 at {α(i)
k }N−1

k=0 . Note
that in this section we suppose real-valued pulses so that we
can compute the Jacobian matrix. Otherwise more complicated
derivations are necessary.

IV. NUMERICAL RESULTS

We consider a pulse shaping OFDM/BFDM system using a
time frequency lattice with TF � 1, transmitting over a WS-
SUS channel. For simplicity, we consider a constant square-
shaped channel scattering function with Tm = Bd =

√
β,

where β is the channel spread factor. Moreover, for evident
symmetry reasons with respect to Doppler and delay spread
characteristics, we assume the time-frequency lattice to be
square-shaped, with equal carrier separation and symbol period
T = F =

√
TF , where TF = 1/δ and δ is the lattice density.

Due to the π/2 rotational invariance of the rectangular lattice,
the most localized prototype function should be searched
among all orthonormal prototype functions with π/2 rotational
invariant ambiguity functions [11]. To achieve this, we require
the ambiguity function of each candidate function to be also
invariant to a π/2 rotation. As shown in (27), To guarantee
the π/2 rotational invariance of Afg(τ, ν), we should keep in
(26) only Hermite waveforms for which the cross-ambiguities
Akp(τ, ν) are also π/2 rotational invariant. By examining
the expression of Akp(τ, ν) in (29), we see that rotational
invariance is guaranteed whenever p−k modulo 4 is 0. Then,
both p and k can be written as 4c+l, l = 0, 1, 2, 3, and c is any
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Fig. 1. PS-BFDM optimized SIR as a function of TF with increased
number of Hermite waveforms .

non-negative integer. Since we want to keep the most localized
Gaussian function in the representation of all candidate pulses,
we should choose l = 0 . Hence, we express g(t), and similarly
f(t) as:

g(t) =
∑

k

α4ku4k(t) and f(t) =
∑

p

β4pu4p(t). (39)

Simulation number one aims at finding the optimal compu-
tational size N of the subset of Hermite waveforms with
indices multiple of four used to form optimal biorthogonal
pulses. In figure 1, we show that BFDM system performance
in terms of SIR is greatly improved while increasing the
number N of Hermite waveforms. Nevertheless, this SIR
improvement decreases with N . Adding to that the fact that
increasing N induces computational complexity and even
causes instability in the optimization algorithm , we choose
N = 8 as an optimal size offering good SIR level and
acceptable algorithm complexity. In figure 2, we present an
exemple of optimized biorthogonal pulses in transmission
and reception for a lattice density δ = 0.8 and a channel
dispersion β = 10−3. In figure 3, we compare optimized
PS-OFDM and PS-BFDM system performances using eight
Hermite waveforms. The use of biorthogonal pulses improves
visibly the SIR for high lattice densities (low values of TF
approaching 1). In fact, biorthogonality offer more freedom
to design more localized pulses with greater capability to
overcome channel dispersion. The difference in performance
between BFDM and OFDM vanishes for small lattice densities
(large values of TF , far from 1). In figure 4, we compare
our optimized PS-BFDM design with a conventional state-
of-the-art CP-OFDM system which both are biorthogonal
modulations deploying, respectively, well and poor frequency
localized pulses. We show the SIR obtained with the two
systems as a function of the normalized maximum Doppler
frequency for three different normalized channel delay spread
values. The CP-OFDM system deploys a cyclic prefix (CP) of
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Fig. 3. PS-BFDM/PS-OFDM performances comparison .

length Tg = 0.25T which corresponds to TF = 1.25 for both
systems. A BFDM system outperforms a CP-OFDM system
for a large range of channel dispersion, especially in the case
of a highly frequency dispersive channel thanks to the use
of well frequency localized pulses. When Tm = Tg , the CP-
OFDM system might slightly outperform the BFDM system
when the Doppler spread vanishes (slowly varying channel).
However, since we have a trend for higher mobility, then the
aforementioned situation is not frequent. Moreover, since a
rectangular pulse is the combination of an infinite number
of hermite waveforms, the performance limitation of BFDM
systems when Tm = Tg can be overcome by increasing N .
Algorithm complexity can be accepted since we design the
optimal pulse only once, offline.

V. CONCLUSION

For wireless communications over fast varying channels,
pulse-shaping multi-carrier systems achieve lower interference
than the CP-OFDM system, because pulse shaping avoids the
poor spectral concentration of the rectangular pulse employed
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Fig. 4. PS-BFDM/CP-OFDM performances comparison .

by CP-OFDM. To leverage this advantage, it is necessary
to design well time-frequency localized transmit and receive
pulses in accordance with the statistical properties of the
wireless channel. In this paper, we proposed pulse optimization
techniques maximizing the SIR for given channel statistics. We
have shown that a PS-BFDM system outperforms both PS-
OFDM and CP-OFDM systems for high spectral efficiency
and for a large range of channel dispersion.
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