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ABSTRACT
The need to localize a radiating signal source is necessitated

in applications ranging from distant talker speech pick-up to auto-
matic video camera steering. The majority of literature detailing
source localization is presented in the narrowband signal context;
however, acoustic signals are naturally very broadband. As a result,
classical narrowband techniques do not apply in the strict sense,
and as a result, the broadband localization literature is yet unre-
fined. This paper details the manner in which classical narrowband
localization methods may be generalized to broadband signal envi-
ronments – specifically, a nonlinear parametrization of the spatial
correlation matrix allows one to apply steered beamforming, mini-
mum variance, subspace, and linear predictive spectral estimation
methods to the broadband localization problem.

1. INTRODUCTION

A signal whose energy is confined to a single temporal frequency is
termed “narrowband.” A more sophisticated definition of the term
is provided in [1], but since acoustic signals are “broadband” by any
definition, such definitions need not be considered for this paper.

In general, the need to localize the source of a radiating sig-
nal is vast, since the location of the signal source often conveys
useful information. Examples are radar, sonar, wireless communi-
cations, and room acoustics; classical signal processing techniques
stem from the first two areas. Since these are primarily narrowband
signal environments, it is not surprising that the literature is focused
on narrowband models.

However, the room acoustics problem does not fit into this nar-
rowband framework, despite previous attempts to fit broadband sig-
nals into narrowband frameworks through subband techniques and
subsequent frequency-domain processing. The speech bandwidth is
simply too wide to make this a feasible solution.

Nevertheless, the narrowband signal framework is quite instruc-
tive and elegant, and thus this paper provides a way to extend this
framework to the broadband case through a nonlinear parametriza-
tion of the spatial correlation matrix.

2. SIGNAL MODEL

Assume an array of M microphone elements, distributed in some
fashion in three-dimensional space, whose outputs are denoted by
xm (t), m = 0,1, ...,M−1, where t denotes time. The spherical co-
ordinate system is used, where the range is denoted by r, elevation
by φ , and azimuth by θ . For convenience, denote r = (r,φ ,θ).

Consider a signal source located at rs = (rs,φs,θs). Propagation
of the signal to microphone m is modeled as:

xm(t) = αm (rs)s
[
t− f0,m (rs)

]
+ vm (t) , (1)

where xm is the received microphone output (microphone 0 serves
as the reference), s is the desired signal, vm(t) is the additive noise
at microphone m which includes any background or sensor noise, as
well as reverberation, αm models attenuation of the desired signal

at microphone m due to propagation effects, and the function fi, j re-
lates the source location to the relative delay between microphones
i and j:

fi, j (rs) =
1
c

[
ds, j (rs)−ds,i (rs)

]
, (2)

where c is the speed of sound and ds,i is the distance between the
sound source and microphone i.

The received microphone signals are sampled, and the forth-
coming signal processing is performed on discrete signals.

3. NARROWBAND LOCALIZATION AND THE SPATIAL
CORRELATION MATRIX

In narrowband signal applications, a common space-time statistic is
that of the spatial correlation matrix [2], which is given by

R = E{x(t)xH (t)}, (3)

where E {•} denotes mathematical expectation and

x(t) = [ x0 (t) x1 (t) · · · xM−1 (t) ]T , (4)

the superscript H denotes conjugate transpose, as complex signals
are commonly used in narrowband applications, and T denotes the
transpose of a matrix or vector. To steer these array outputs to a par-
ticular location, one applies a complex weight to each sensor output,
whose phase performs the steering, and then sums the sensor out-
puts to form the output beam. Now if the input signal is no longer
narrowband, each frequency requires its own complex weight to ap-
propriately phase-shift the signal at that frequency. In the context
of broadband spatial spectral estimation, the spatial correlation ma-
trix may be computed at each temporal frequency, and the resulting
spatial spectrum is now a function of the temporal frequency. For
broadband applications, these narrowband estimates may be assim-
ilated into a time-domain statistic, a procedure termed “focusing,”
which is described in [3]. The resulting structure is termed a “fo-
cused covariance matrix.”

There exist many narrowband spatial spectral estimators, but all
are rooted in the spatial correlation matrix: the Bartlett and Capon
[4] estimators apply a fixed and adaptive linear weighting, respec-
tively. Linear predictive [4] and subspace (eigenanalysis) estimators
[5] provide higher resolution estimates that aid in multiple-source
scenarios. A good overview of the classical narrowband methods is
found in [2].

The wideband nature of speech renders focusing multiple co-
variance matrices over the entire frequency range grossly impracti-
cal for real-time processing. The following section describes how
the general concepts of narrowband localization may be easily ex-
tended into broadband setting by performing a simple, nonlinear
parametrization of the spatial correlation matrix.

4. PARAMETERIZED SPATIAL CORRELATION MATRIX

In the narrowband case, complex weights achieve the desired effect
of aligning the signal – in the broadband case, the signal may be
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aligned by applying a time delay (a nonlinear operation) to each
received signal. To that end, the parameterized spatial correlation
matrix is defined by:

Rr = E
{

xr (t)xT
r (t)

}
, (5)

where

xr (t) =
[

x0 [t] x1
[
t + f0,1 (r)

] · · · x0
[
t + f0,M−1 (r)

] ]T
.

Before proceeding, assume that the desired signal s and addi-
tive noise v are mutually uncorrelated random processes, and also
that the attenuation terms are independent of position: αm (rs) =
αm, ∀rs. In that case, substituting (1) into (5) results in the follow-
ing structure for the parameterized spatial correlation matrix:

[Rr]i, j = αiα jRs,s
[

fi, j (r)− fi, j (rs)
]
+Rvi,v j

[
fi, j (r)

]
, (6)

where
Rx,y (τ) = E {x(t)y(t + τ)} (7)

is the cross-correlation function for two jointly wide-sense station-
ary random processes.

From (6), notice that the parametrization of the spatial correla-
tion matrix spatially decorrelates the noise term Rvi,v j

[
fi, j (r)

]
; if

the additive noise is temporally white, and assuming that the lag
fi, j (r) 6= 0, the noise component of the parameterized spatial corre-
lation matrix is simply:

Rr |noise = σ2
v I, (8)

where σ2
v = Rv0,v0 (0) = σ2

v0
= · · ·= RvM−1,vM−1 (0) = σ2

vM−1
. There-

fore, it is reasonable to assume that the noise component of the pa-
rameterized spatial correlation matrix is diagonal.

Secondly, when r = rs, the signal component of the parame-
terized spatial correlation matrix takes the form of the following
rank-one matrix:

Rr
∣∣signal = σ2

s ααT , (9)

where σ2
s = Rs,s (0) and

α = [ α0 α1 · · · αM−1 ]T . (10)

If the parametrization is not matched to the location of the sig-
nal (i.e., fi, j (r) 6= fi, j (rs) , ∀i, j), the signal component is no longer
rank-one. Assuming that the desired signal is a white process, the
signal component takes the form of

Rr
∣∣signal = σ2

s diag
(

α2
0 ,α2

1 , · · · ,α2
M−1

)
, (11)

where diag(•) is a diagonal matrix with its entries denoted by the
arguments. Putting all of this together, we arrive at

Rr =





σ2
s ααT +σ2

v I, if r = rs

σ2
s diag

(
α2

0 ,α2
1 , · · · ,α2

M−1
)
+σ2

v I, otherwise
. (12)

5. BROADBAND LOCALIZATION METHODS

5.1 Steered Conventional Beamforming and the Steered Re-
sponse Power Method
A delay-and-sum beamformer (DSB) is a simple fixed beamformer
which attempts to time-align the received signals in such a way that
the signal arriving from a certain location is emphasized. Using the
model of Section 2, the output of a DSB steered to a location r is
given as

zr (n) =
M−1

∑
m=0

wr,mxm
[
n+ f0,m (r)

]
. (13)

The delays f0,m (r) steer the beamformer to the desired location,
while the beamformer weights wr,m help shape the beam accord-
ingly. The weights here have been made dependent on the steered
location r for a reason that will become apparent in future subsec-
tions.

The estimate of the spatial spectral power at location r is given
by the power of the beamformer output when steered to azimuth r.
The steered-beamformer spectral estimate is given by

SDSB (r) = E
{

z2
r (n)

}
. (14)

Substitution of (13) into (14) leads to

SDSB (r) = wT
r Rrwr, (15)

where
wr = [ wr,0 wr,1 · · · wr,L ]T . (16)

The location estimate is thus given by

r̂s = argmax
r

wT
r Rrwr. (17)

The well-known steered response power (SRP) algorithm [6]
follows directly from a special case of (17), where wr = 1 for all r,
and 1 is a vector of ones:

r̂s,SRP = argmax
r

1T Rr1. (18)

For this special case of fixed unit weights, this means that the max-
imization of the power of a steered DSB is equivalent to the maxi-
mization of the sum of the entries of Rr.

It is interesting to note that in the narrowband case, the spatial
correlation matrix is location-independent and the weights perform
the delay operation. In the broadband case, the spatial correlation
matrix is parameterized by the location and thus the delay opera-
tions are embedded in the matrix. Nevertheless, the weights add
more design degrees of freedom in the estimation procedure.

It is somewhat surprising that even though the SRP algorithm
has attracted significant attention recently (see [6], [7], and [8]), the
weighting wr = 1 is used exclusively in the literature. This weight-
ing is fixed with respect to both the data and the steered location.
Notice that from (15), this is an effectively “narrowband” weight
selection, in that the pre-aligning of the microphones requires only
the selection of a single weight per channel. Note, however, that this
weight selection must be performed for all locations r. To that end,
the following section presents one such adaptive weighting scheme,
proposed (in a somewhat different context to be explained in the
next section) by Krolik and Swingler [9].

5.2 Minimum Variance
The minimum variance approach to spatial spectral estimation in-
volves selecting weights that pass a signal [i.e., a broadband plane
wave s(t)] propagating from location r with unity gain, while min-
imizing the total output power, given by wT

r Rrwr. The application
of the minimum variance method to broadband spatial spectral esti-
mation is given in [9].

The unity gain constraint proposed by [9] is

wT
r 1 = 1. (19)

and the 1 vector follows from the fact that the signal is already time-
aligned across the array before minimum variance processing. It is
as if the signal is coming from the broadside of a linear array.

Using the method of Lagrange multipliers in conjunction with
the cost function wT

r Rrwr, the minimum variance weights become

wr,mv =
R−1

r 1
1T R−1

r 1
. (20)
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The resulting minimum variance spatial spectral estimate is found
by substituting the weights of (20) into the cost function:

Smv (r) = wT
r,mvRrwr,mv =

(
1T R−1

r 1
)−1

. (21)

The broadband minimum variance DOA estimator is thus given by:

r̂s,mv = argmax
r

(
1T R−1

r 1
)−1

. (22)

The interesting part of Krolik and Swingler’s proposal is in
what they term the “steered covariance matrix” – although it might
seem at first glance that this matrix is equivalent to the parameter-
ized spatial correlation matrix, Krolik and Swingler propose esti-
mating this steered covariance matrix in the frequency-domain us-
ing subsequent combining of the frequency bands. In this paper, it
is clearly understood that the parameterized spatial correlation ma-
trix is to be computed using simple cross-correlation in the time
domain.

5.3 Subspace Approach
A subspace approach to broadband spatial spectral estimation was
first presented in [10] and [11]. Referring to (12), consider only
the signal component of Rr. It may be easily shown that this ma-
trix has one non-zero eigenvector, that eigenvector being α , with
the corresponding eigenvalue being σ2

s ‖α‖2. The vector of atten-
uation constants α is generally unknown; however, from the above
discussion, it is apparent that the vector may be estimated from the
eigenanalysis of Rr.

To that end, consider another adaptive weight selection method,
which follows from the ideas of narrowband beamforming [2]. This
weight selection attempts to non-trivially maximize the output en-
ergy of the steered-beamformer for a given location r:

emax,r = argmax
wr

wT
r Rrwr (23)

subject to
wT

r wr = 1. (24)

It is well-known that the solution to the above constrained opti-
mization is the vector that maximizes the Rayleigh quotient [12],
wT

r Rrwr
wT

r wr
, which is in turn given by the eigenvector corresponding

to the maximum eigenvalue of Rr. The resulting spatial spectral
estimate is given by:

SEIG (r) = eT
max,rRremax,r = λmax,r, (25)

where λmax,r is the maximum eigenvalue of Rr and emax,r is the
corresponding (principal) eigenvector. The localization involves
searching for the r that produces the largest maximum eigenvalue
of Rr:

θ̂EIG = argmax
r

λmax,r. (26)

In addition to producing another spatial spectrum estimate, the
above eigenanalysis allows one to estimate α:

α̂ = emax,θ̂EIG
. (27)

5.4 Linear Predictive Methods
Linear spatial prediction involves predicting the output of one mi-
crophone with a linear combination of the remaining microphones.
In a broadband setting, this requires the pre-aligning of the micro-
phones with respect to a certain location. Interestingly, the result-
ing broadband linear spatial predictive model is intimately related to
the parameterized spatial correlation matrix. This concept was first
presented in [13] and [14] in the context of linear array time delay
estimation; the idea was generalized to arbitrary array geometries,

transforming the problem from time delay estimation to localization
in [10].

Using a spatial autoregressive (AR) model, the linear predictive
framework is given by

x0 (t) =
L

∑
l=1

ar,lxl [t + fl (r)]+ e(t) , (28)

where e(t) may be interpreted as either the spatially white noise
that drives the AR model, or the prediction error. For each r in the
azimuth space, one finds the weight vector

ar = [ −1 ar,1 · · · ar,L ]T (29)

which minimizes the criterion

Jr = E
{∣∣∣−aT

r xr (t)
∣∣∣
2
}

(30)

subject to the constraint

δ T ar =−1, (31)

where

δ = [ 1 0 · · · 0 ]T . (32)

Using the method of Lagrange multipliers, the optimal predictive
weights are given by:

ar,opt =− R−1
r δ

δ T R−1
r δ

, (33)

and the resulting minimum mean-squared error (MMSE) is

Jr,min =
1

δ T R−1
r δ

. (34)

Note that both the optimal predictive coefficients and the MMSE
are a function of the steered location r.

In [13] and [14], it is shown that

0≤ det
(

R̃r
)
≤ Jr,min

E
{

x2
0 (t)

} ≤ 1, (35)

where the following factorization is used [13], [14]:

Rr = DR̃rD, (36)

where

D =




√
E{x2

0 (t)} 0 · · · 0

0
√

E{x2
1 (t)} · · · 0

...
. . .

. . .
...

0 · · · 0
√

E{x2
M−1 (t)}




(37)

is a diagonal matrix,

R̃r =




1 ρr,0,1 · · · ρr,0,M−1
ρr,0,1 1 · · · ρr,1,M−1

...
. . .

. . .
...

ρr,0,M−1 · · · ρr,M−2,M−1 1


 (38)

is a symmetric matrix and

ρr,k,l =
E{xk [t + fk(r)]xl [t + fl(r)]}√

E{x2
k (t)}E{x2

l (t)}
, k, l = 0,1, ...,M−1, (39)
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is the cross-correlation coefficient between xk [t + fk(r)] and
xl [t + fl(r)].

Essentially, minimizing the prediction error corresponds to
minimizing det

(
R̃r

)
, and thus the following spatial spectrum is

proposed:

SMCCC (r) = ρ2
r = 1−det

(
R̃r

)
= 1−det

(
D−1RrD−1

)
, (40)

where ρr is the multichannel cross-correlation coefficient (MCCC).
The location estimation easily follows as

θ̂MCCC = argmax
r

ρ2
r . (41)

6. SIMULATION EVALUATION

The proposed estimators are evaluated in a computer simulation us-
ing the image method model of [15]. A 10-microphone uniform
circular array of 6.9 cm is simulated. The simulated room is rectan-
gular with plane reflective boundaries (walls, ceiling and floor). The
room dimensions in centimeters are (304.8, 457.2, 381). The centre
of the array sits at (152.4, 228.6, 101.6). The speaker is located at
(152.4, 406.4, 101.6). The reverberation times are measured using
the method of [16]: three reverberation levels ranging from T60 = 0
ms to T60 = 600 ms are considered. The source signal is convolved
using the synthetic impulse responses. Appropriately-scaled tem-
porally white Gaussian noise is then added at the microphones to
achieve an SNR of 0 dB. Two signal types are examined: white
Gaussian noise and female English speech. The DOA estimates are
computed once per 128 ms frame over a two-minute signal. The
sampling rate is 48 kHz. Due to the planar array geometry and
far-field source, the location space is limited to the set of azimuth
angles in the range 0−360 degrees, with a resolution of 1 degree.

The algorithms are evaluated in terms of the percentage of
anomalous estimates – those that vary from the true azimuth by
more than 5 degrees, and by the root-mean-square (RMS) error for
the nonanomalous estimates. For comparison, the proposed estima-
tors are compared to a standard two-step algorithm [10] that consists
of TDOA measurements in the first stage and maximum likelihood
least-squares mapping of relative delays to source location in the
second stage; this algorithm is indicated by TDOA in the tables.

Following the publication of [10], a bug was found in the pro-
gram used to evaluate the algorithms. The bug has been fixed and
the results presented herein reflect that correction.

Tables 1 and 2 display the results. In the white signal case,
all estimators based on the parameterized spatial correlation ma-
trix yield no anomalies even in the heavily reverberant case. The
TDOA-based algorithm yields a low (i.e., 2 %) anomaly rate in the
heavily reverberant environment. However, the simulations using a
speech signal yield much higher anomaly rates; in all speech sim-
ulations, the proposed estimators yield significantly more accurate
localization than the TDOA-based method. In an anechoic envi-
ronment, the SRP and MVDR methods prove to be most effective.
However, the MCCC method shows the greatest robustness to the
effects of reverberation, as it significantly outperforms all other es-
timators in the the moderately and heavily reverberant case.

7. EVALUATION WITH REAL RECORDINGS

The estimators are also evaluated with data obtained using the
IDIAP Research Institute’s Smart Meeting Room – please refer to
[17] for details. The array used is a planar, uniform circular array
with M = 8 omnidirectional microphones and a radius of 10 cm.
The planar geometry of the array, coupled with its small radius,
means that in a far-field setting, only the azimuth angle of arrival
can be reasonably extracted. Thus, the evaluation focuses on locat-
ing the source in the azimuth plane only.

The room dimensions are 8.2-by-3.6-by-2.4 m. The array
rests on a centrally located table with dimensions 4.8-by-1.2 m.
Throughout the recording process, the speaker moves to 16 loca-
tions in an L-shaped corner area of the room and utters a sequence

of digits, followed by “this is position 1 (i.e.).” The generalized
cross-correlation (GCC) method of [18] using the phase transform
(PHAT) is employed to compute the cross-correlation measure-
ments. The microphones are sampled at 16 kHz; since this sampling
rate is lower than that required for fine location resolution, the GCC
measurements are interpolated by a factor of 20 before running the
searches. The frame length is 1024 samples or 64 ms. The location
estimates are computed for all 3498 frames – however, in the per-
formance evaluation, only the frames during which the speaker is
active (for details, please see [17]) are taken into account; there are
1426 such frames.

Table 3: Performance of estimators in a real environment: percent-
age of anomalies (%) and RMS error (degrees).

TDOA SRP MVDR MAX-EIG MCCC
Anomaly rate 29.10 35.27 36.25 35.20 30.43

RMS error 1.84 1.66 1.55 1.75 1.84

The results, listed in Table 3. The TDOA and MCCC tech-
niques provide the lowest anomaly rates. The former algorithm’s
good performance is somewhat of a surprise. Notice that the SRP-
PHAT method, generally considered to be the most robust local-
ization algorithm to date, is outperformed by the proposed MCCC
estimator in conjunction with the PHAT preprocessing. Further
research is required to thoroughly evaluate the robustness of the
proposed estimators in comparison to conventional two-stage tech-
niques in real environments.

8. CONCLUSION

This paper has described how a nonlinear parametrization of the
spatial correlation matrix allows for the extension of classical nar-
rowband spectral estimation methods to the broadband source local-
ization problem. In general, the linear predictive MCCC estimator
shows the highest level of robustness to the effects of noise and re-
verberation. Nevertheless, acoustic signal location anomaly rates
are still higher than would be desired in many applications, and the
problem continues to be somewhat open; with the parameterized
spatial correlation matrix serving as the framework for broadband
localization, further research into how to exploit the location infor-
mation contained in this matrix is likely to yield even more robust
methods.
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