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Abstract— This paper investigates non-data-aided (NDA) SNR
estimation for QAM transmission over additive white Gaussian
noise channels. It proposes a novel class of moment-based SNR
estimators. This class is found to be a generalization of the
well-known moment-based M2M4 SNR estimation method for
PSK modulation. The performance of the proposed estimators is
evaluated for M-PSK and rectangular 16-QAM modulation.

I. INTRODUCTION

In wireless communication systems, the baseband received
signal can often be modeled as the superposition of attenuated
and phase shifted transmitted signal and additive noise. The
signal-to-noise ratio (SNR) is used to describe the relative
contributions of the true signal and the background noise.
The SNR is one of the important measures of the reliability
of the received data and of the channel quality. Performance
of various digital communication applications, such as power
control, bit error estimation, and turbo decoding, depends on
the knowledge of the signal-to-noise ratio.

SNR estimation for AWGN channels has been studied in
several works [1]-[4]. Generally speaking, these estimators
can be divided into two classes. One class is for data-aided
estimators which assume the knowledge of the transmitted
data, or that the transmitted data can be reconstructed from
the received data and used by the estimator as if it was
perfectly reconstructed. The other class is for non-data-aided
estimators. For this class of estimators, the transmitted data
remain unknown to the receiver. Although the pilot data-aided
estimators perform better, the main advantage of the NDA
estimators is their bandwidth efficiency due to the elimination
of training sets.

Over the past years, there has been growing interest in the
use of non-constant modulus constellations. Unfortunately, the
topic of SNR estimation for this type of modulation is rarely
discussed in the literature. In [1], as in many other studies, only
the case of PSK modulation is addressed. However, in [5] the
authors present a class of estimators for QAM constellations.

In this paper, a novel class of SNR estimators is presented
for QAM modulation over AWGN complex channels. The new
method is a NDA moment-based method. This class is found
to be a generalization of the M2M4 estimator, a very well
known moment-based SNR estimator for M-PSK modulation
[2].

The study of this class establishes that the M2M4 is not
always the best estimator to use within this class. Simulation
results demonstrate that one specific instance of the estimators
class clearly performs better than the M2M4 estimator for PSK
and remains comparable in performance for 16-QAM.

II. SYSTEM MODEL AND NOVEL MOMENT-BASED NDA
ESTIMATORS

A. System Model

We consider QAM modulation over a frequency-flat fading
channel. Symbol-spaced samples at the matched filter output
are given by

yn = han + wn, (1)

where n = 1, 2, ...N is the time index in the observation
interval, yn is the received signal, h = Aejφ is the channel
coefficient assumed complex and constant over the observation
interval, an is the transmitted QAM symbol and wn is a
realization of a zero mean complex white Gaussian random
process of variance N0 = 2σ2. The SNR of the received
symbol is given by:

ρ =
A2

2σ2
=

S

N0
. (2)

We assume that an comes from a constellation that has
Q different amplitudes A1, A2..., AQ, with probabilities of
p1, p2, ..., pQ, respectively. Without loss of generality, we
assume that the average power of the constellation to be
normalized to 1. With these assumptions, it was shown in [5]
that the probability density function (PDF) for |yn| is a mixed
Ricean distribution expressed as follows:

f|yi| (y) =
Q∑

i=1

pi
y

σ2
exp

(
−ρi − y2

2σ2

)
I0

(
y

√
2ρi

σ2

)
, (3)

where ρi = ρA2
i and I0 (.) is the Bessel function of the first

kind and of order 0. Let us define the kth moment of |yn| as:

Mk = E
{|yn|k

}
. (4)

For PSK modulation, Mk is the kth moment of a Ricean
variable:
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Mk = (2σ)k/2 Γ (k/2 + 1) exp (−ρ) 1F1 (k/2 + 1; 1; ρ) ,
(5)

where 1F1 (.; .; .) is the confluent hypergeometric function and
Γ is the gamma function.

For QAM modulation, Mk is the kth moment of a mixed
Ricean distribution:

Mk =
Q∑

i=1

pi (2σ)k/2 Γ (1 + k/2) exp
(−ρA2

i

)
×1F1

(
k/2 + 1; 1; ρA2

i

)
. (6)

For the sake of demonstration, we will present our algorithm
derivation for PSK modulation before looking at QAM signals.

B. PSK Signals

When an comes from a PSK signal, the Mk in (5) is
expressed in terms of the confluent hypergeometric function
1F1 (.; .; .). A very interesting property of this function is
conveyed by the following recurrence identities:

(b − a) 1F1 (a − 1, b, z) + (2a − b + z) 1F1 (a, b, z)
− a 1F1 (a + 1, b, z)=0, (7)

where a, b and z are real numbers. It is also interesting to
express the successive moments of order k, k + 2 and k + 4:

Mk = (2σ)k/2 Γ (k/2 + 1) e−ρ
1F1 (k/2 + 1; 1; ρ) ,

Mk+2 = (2σ)k/2+1 Γ (k/2 + 2) e−ρ
1F1 (k/2 + 2; 1; ρ) ,

Mk+4 = (2σ)k/2+2 Γ (k/2 + 3) e−ρ
1F1 (k/2 + 3; 1; ρ) .

(8)

Using (7), with a = k/2 + 2, b = 1 and z = ρ, we can write
the following expression:

−
(

1 +
k

2

)
1F1

(
k

2
+ 1, 1, ρ

)
+ (k + 3 + ρ) 1F1

(
k

2
+ 2, 1, ρ

)

−
(

k

2
+ 2
)

1F1

(
k

2
+3, 1, ρ

)
=0.

(9)

Combining (9) and (8), we have:

−
(

1 +
k

2

)
Mk

N
k
2
0 Γ
(

k
2 + 1

) + (k + 3 + ρ)
Mk+2

N
k
2 +1
0 Γ

(
k
2 + 2

)
−
(

k

2
+ 2
)

Mk+4

N
k
2 +2
0 Γ

(
k
2 + 3

) = 0.

(10)

This equation simplifies to:

Mk+4 = −
(

1 +
k

2

)2

MkN2
0 + (k + 3 + ρ) Mk+2N0. (11)

In order to eliminate ρ, we use the second envelope moment:

M2 = S + N0 = (ρ + 1) N0. (12)

Finally, we have:

Mk+4 = −
(

1 +
k

2

)2

MkN2
0 +(k + 2) Mk+2N0+M2Mk+2.

(13)
This equation allows the estimation of the noise variance from
estimates of the appropriate moments obtained previously via
sample averaging with:

Mk ≈ 1
N

N∑
n=1

|yn|k. (14)

The estimation of the SNR is obtained using ρ̂ = M2−N0
N0

. For
the special case k = 0, we find that equation (13) is equivalent
to:

M4 = −N2
0 + 2M2N0 + M2

2 (15)

which amounts to the M2M4 estimator. Indeed, the M2M4

estimator is based on the following equation [1]:

M4 = kaS2 + 4SN0 + kwN2
0 , (16)

where ka = E{|an|4}/E{|an|2}2 and kw =
E{|wn|4}/E{|wn|2}2 are the kurtosis of the complex
signal and the complex noise. Indeed, for a PSK signal over
complex AWGN channels, we have ka = 1 and kw = 2.
Hence, (16) simplifies to:

M4 = S2 + 4SN0 + 2N2
0 , (17)

expressed also by using (12):

M4 = −N2
0 + 2M2N0 + M2

2 . (18)

We can demonstrate that equation (13) is valid for all values
of k ≥ −2. Hence, we can derive a class of SNR estimators
which relies on this equation. This class is referred to as
the generalized moment-based (GM) SNR estimators. The
estimator using the k, k+2 and k+4 order moments is referred
to as the GMk estimator. For example, GM0 is equivalent to
M2M4.

C. QAM Signals

A QAM constellation could be seen as the sum of different
PSK constellations with different amplitudes Ai. The kth
envelope moment for the constellation of amplitude Ai is given
by:

Mk,i = (2σ)
k
2 Γ
(

1 +
k

2

)
exp

(−ρA2
i

)
1F1

(
k

2
+ 1; 1; ρA2

i

)
.

(19)
The kth envelope moment for the all constellation is given by:

Mk =
Q∑

i=1

piMk,i. (20)

Equation (11) for each PSK constellation yields to:

Mk+4,i = −
(

1 +
k

2

)2

Mk,iN
2
0 +

(
k + 3 + ρA2

i

)
Mk+2,iN0.

(21)
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Combining (20) and (21), we have:

Mk+4 = −
(

1 +
k

2

)2

MkN2
0 + (k + 3) Mk+2N0

+ (M2 − N0) ×
Q∑

i=1

piA
2
i Mk+2,i, (22)

which can be expressed as:

Mk+4 = −
(

1 +
k

2

)2

MkN2
0 + (k + 3) Mk+2N0

+ (M2 − N0) × E{|an|2|yn|k+2}. (23)

Substituting k = 0 in (23), we have:

M4 = −N2
0 + 3M2N0 + (M2 − N0) E{|an|2|yn|2}. (24)

On the other hand:

E{|an|2|yn|2} = E{(anyn) ∗ (anyn)∗}
= E{(an (han + wn)) ∗ (an (han + wn))∗}
= E{a2

n} (kaS + No) . (25)

Combining (24) and (25), we have the following equation:

M4 = (ka − 2) N2
0 + (4 − 2ka) M2N0 + kaM2

2 , (26)

which we use in GM0 to estimate N0. As in the PSK case,
GM0 is a version of the M2M4 estimator applied to QAM
signals.

It turns out that, for k even, the term E{|an|2|yn|k+2} is
a polynomial function of N0 of order k+4

2 . Hence, in this
case, equation (23) is a polynomial equation of order k+4

2 .
For example, for a 16-QAM signal with k = 2, N0 satisfies
this equation:

−1.32N3
0 − 3.96M2N

2
0 +

(
5M4 − 0.6M2

2

)
N0

+ 1.96M3
2 − M6 = 0. (27)

Equation (23) is more difficult to handle in the case of k odd.
For example, for k = −1, we have the following equation:

M3 = − (1/2)2 M−1N
2
0 +2M1N0+(M2 − N0) E{|an|2|yn|},

(28)
with

E{|an|2|yn|} =
Q∑

i=1

piA
2
i (2σ)1/2 Γ (3/2) exp

(−ρA2
i

)
×1F1

(
3/2; 1; ρA2

i

)
. (29)

The problem amounts to resolving an equation of the type
f (ρ) = 0. For k = −1, f is found to be monotonic. Hence, we
can simply use the dichotomy method to resolve this equation
(See Fig. 1). Finally, rederiving (23) without the assumption∑i=1

Q piA
2
i = 1, we find the general expression (30) which is

applicable to QAM signals over AWGN channels.
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ρ)

Function f for k=−1 and SNR= 5dB

Fig. 1. Function f for k = −1 with 16-QAM signals and SNR = 5dB.

III. SIMULATION RESULTS AND COMPARISON

Simulation results are provided for the novel class of SNR
estimators GMk. Specifically, 8-PSK and 16-QAM modulated
signals over complex AWGN channels are simulated. Notice
that since all the estimators are envelope-based estimators, the
results for PSK modulation are independent from the constel-
lation order. For comparison, we provide also the performance
of M2M4 (GM0) and the best estimator introduced in [5] (i.e.
ρ̂1,2 for 8-PSK and ρ̂2,4 for 16-QAM). For 8-PSK, we choose
the number of symbols N = 64. For 16-QAM, N = 1000 is
used. For the ρ̂1,2, a lookup table is needed. We used a grid
with spacing of 0.1 corresponding to a table size 100. The DA
CRB is also included as a reference [1].

First of all, we start by looking at the performance of
the different estimators GMk for 8-PSK signals. In Fig. 2,
we present the NMSE (Normalized Mean Squared Error) for
different values of k at different SNR values. It is immediately
apparent from Fig. 2 that the NMSE of GM−1 is the smallest
over the entire range of tested SNR values and outperforms
M2M4 ≡ GM0, the most popular moment-based estimator.
However, the M2M4 estimator is better than GM1.

In Fig. 3, we plot the normalized bias of the estimators under
study as a function of the SNR values. In terms of bias, it is
observed that GM−1 has the smallest bias and hence emerges
as the best estimator from the introduced class of estimators.
Simulation results not shown here demonstrate that k = −1
is optimal in terms of NMSE and bias.

In Fig. 4, with N = 64, we compare the NMSE of the esti-
mator GM−1, ρ̂1,2, and M2M4 for 8-PSK constellation. ρ̂1,2

has the lowest NMSE and outperforms M2M4 and GM−1.
ρ̂1,2 employs an equation based on measured (M2

1
M2

) to estimate

the SNR using an equation of the form ρ̂1,2 = f−1
1,2 (M2

1
M2

). A
disadvantage of this approach is the use of a lookup table. The
newly introduced estimator GM−1 performs relatively well in
comparison with ρ̂1,2 and with a similar order of complexity.

Fig. 5 compares the bias for the different estimators. ρ̂1,2
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Mk+4 = −(1 + k/2)2MkN2
0 + (k + 3) Mk+2N0 +

M2 − N0

E{|an|2}
E{|an|2|yn|k+2}.

(30)
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Fig. 2. True SNR normalized mean squared error of different GMk

estimators with 8-PSK signals, N = 64.
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Fig. 3. Normalized bias of different GMk estimators with 8-PSK signals,
N = 64.

has the lowest bias. At high SNR, when GM−1 and M2M4

exhibit the same bias, ρ̂1,2’s bias is slightly smaller.
Fig. 6 shows the NMSE for N = 1000 samples with

16-QAM signals. Further investigation for ρ̂2,4 demonstrates
that this estimator is equivalent to M2M4 in the case of 16-
QAM modulation. For GM−1, in order to resolve equation
(28), we use a dichotomy algorithm with a precision of
10−4. GM−1 offers comparable performance to the M2M4

estimator. Nevertheless, M2M4 exhibits the same performance
without the complexity introduced in the GM−1 estimator.
Hence, for 16-QAM, among all the GM estimators, GM0, i.e.,
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Fig. 4. True SNR normalized mean squared error of the estimators with
8-PSK signal, N = 64.
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Fig. 5. Normalized bias of the estimators with 8-PSK signals, N = 64.

M2M4 (or ρ̂2,4) remains the best estimator. For SNR> 10 dB,
the performance degrades gradually with SNR increasing. This
effect is common for moment-based methods for QAM sig-
nals. At a high SNR range, we have to use longer observation
data.

Fig.7 shows the normalized bias vs. the actual SNR. For 16-
QAM signals, M2M4 is the best estimator in terms of bias.
Notice that GM2 has a large bias while GM−1 practically
presents the same bias as M2M4.
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Fig. 6. True SNR normalized mean squared error of the estimators with
16-QAM signals, N = 1000.

IV. CONCLUSION

In this paper we have derived a family of moment-based
SNR estimators. It was shown that this class is a generalization
of M2M4. Simulation results show that for PSK modulation,
a more accurate estimator could be derived from this family
that outperforms the M2M4, considered until this work as
the best moment-based estimator both in performance and
simplicity. On the other hand, for QAM modulation, M2M4

still remains the best candidate in terms of performance and
complexity.
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Fig. 7. Normalized bias of the estimators with 16-QAM signals, N = 1000.
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