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ABSTRACT

This paper proposes a new data-aided Carrier Frequency Off-
set (CFO) estimation scheme for OFDM communications suit-
able for frequency-selective fading channels. The proposed
method is based on the transmission of a specially designed
synchronization symbol that creates a particular signal struc-
ture between the received observation samples at the receiver.
This structure is exploited to derive a very accurate Maximum
Likelihood (ML) CFO estimator. To reduce the estimation
complexity, a simplified version with lower computational
load is derived which exhibits only a moderate loss in accu-
racy. This simplified version could typically be employed in
the acquisition phase while the original version would allow
for a very accurate subsequent tracking phase. Simulations
over frequency-selective fading channels confirm the superi-
ority of the proposed method compared to most recent algo-
rithms presented in the literature.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) per-
formance is highly impaired by frequency offsets [1]. The
carrier frequency offset (CFO) should therefore be estimated
and compensated before demodulating the data with the Dis-
crete Fourier Transform (DFT). Several data-aided schemes
of frequency offset estimation in OFDM systems have been
investigated. These methods are based on the cyclic trans-
mission of known data blocks (or training sequences) that al-
lows for the estimation of the CFO from the estimation of the
phase rotation between these blocks at the receiver [2]-[5]. In
[2], the authors used two training symbols. The first one has
two identical halves in the time domain and corrects the car-
rier frequency offset that lies within the subcarrier spacing.
The second compensates the integer part of the carrier fre-
quency offset. An improvement of this method was presented
in [3]. A 50% overhead reduction is reached there by send-
ing a unique training symbol having L identical segments,
thereby offering an acquisition range of ±L/2 the subcarrier
spacing. A training symbol having the same structure was
recently used differently in [4] to achieve a higher accuracy.

More recently, a new synchronization symbol proposed in [5]
allowed for performance gains over Schmidl's algorithm [2].

In this paper we propose a new synchronization symbol
structure and a new CFO estimator that outperforms the pre-
vious techniques in accuracy. Based on the original shape
of the new synchronization symbol, the ML-based CFO esti-
mator is derived, providing high accuracy without involving
a high computational load. Our method has an acquisition
range that can reach ±N/2p the subcarrier spacing, where p
is a user-selected parameter characterizing our synchroniza-
tion symbol and N is the number of OFDM subcarriers. As
supported by simulations, our algorithm provides higher ac-
curacy compared to the previously cited methods.
The paper is organized as follows. In Section 2, the OFDM
system model is described. The designed synchronization
symbol and the ML-based CFO estimator are presented in
Section 3. Numerical examples are illustrated in Section 4.
Conclusions are given in Section 5.

2. SYSTEM MODEL

We consider a discrete-time OFDM system with N subcar-
riers. At the transmitter, N complex-valued symbols Xk,
that belong to a QAM or PSK constellation, modulate N or-
thogonal subcarriers using the Inverse Fast Fourier Transform
(IFFT). Before transmission, a cyclic prefix
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3. CFO ESTIMATION

To estimate the CFO, we propose to periodically transmit the
following synchronization symbol:

Xk+l = ej2kpkNXk, k = O, ... ,N-2, (3)

where p is a user-selected integer such that 1 < p < N -1.
Based on the special structure of this synchronization sym-
bol, we will prove that there is a relationship between r(n)
and r(n + p) that will allow us to easily derive the maxi-
mum likelihood estimator of the CFO. First, let us consider
the noiseless part of r(n + p):
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As N is usually a power of 2, then:

XN- lej27p(N 1)/N = Xo0 if p is even,
-XO, ifpisodd.

Subsequently we have:

f eJj2-[p-n]/N y(n), if p is even,
y(n + p) je27r[pF-n]/Ny(n)y~~~~,2r(n+p)eJnw[pNn2eJ2w[(n±p) n] N 1 XoHO ifpis odd.

Since usually N > 1, then whether the parameter p is odd or
even, we have:
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Based on this last equation, we can now state that:
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Finally, we have the following set of equations:
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In a system with many subcarriers, the inequality N, < N is
always fulfilled. In this case, Hk Hk 1 for k = 1, , N-
1 and HN-1 Ho, which is equivalent to saying that adja-
cent subcarriers experience approximately the same channel,

where n c {O, ... , N- p-1}. The previous equation can be
rewritten as follows:

R1 6Yo (£) + W1

Ro = Yo + Wo (14)

where the following notations have been adopted:

Yo [y(0), y(l), ,y(N- p -1)];
Ri = [r (ip) ...,r(ip + N- p 1)], for i

Wi = [w(ip),..., w(ip + N -p -1)], fori
(£) = ei27pF/Ndiag(lee-j2w/N e-j2w(N-

ej27p/NE

0,1;

= 0, 1;
-p-1)IN)

r(n) (13)

j2-x(n+p)c N-1
c N I:Hk_l j2-(k-I)n

c N Xk (7)N
L k=l



Equation (14) leads to:

Ri ~ (Ro-Wo) (£) + W

Ro6(E) + W1 6W ()-. (15)

The special shape of the synchronization symbol has gener-
ated a structure in the received samples that will facilitate the
estimation of the CFO. The Maximum Likelihood (ML) esti-
mate of E is simply the following:

arg max[f (Rl Ro, )], (16)

where f is the Likelihood function. Since the noise samples
w(i) are white Gaussian with zero mean, then W1 and Wo are
also zero-mean white Gaussian vectors. Hence f is a multi-
variate Gaussian CDF with mean vector Ro (E) and a covari-
ance matrix

E = E[(W1 -Wo6(£))H(W1 -Wo6(£))1, (17)

where the superscriptH denotes the conjugate transpose. This
last equation can be further developed:

Noting, however, that E[WHWl] = E[WHWo] = r2INI-
and6 6)H(£) = IN-P,whereIN-P is the(N-P) X (N-p)
identity matrix, we have:
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3.1. First estimator (ML)

Directly from (21), we can see that the CFO can be obtained
by finding the value that minimizes J(E) over a given search
grid. Since J(E) is periodic with period N the acquisition
range of the proposed algorithm is such that lEl < N, which
means that the search grid will cover this entire range. Find-
ing the CFO this way can entail a high computational load.
This complexity does not come from the inversion of the ma-
trix (IN-P - Q) since this matrix is sparse and it exhibits a
shape similar to that of a tridiagonal matrix which is invertible
by an algorithm with a reduced complexity 0(7(N- p)) [6].
The complexity rather comes from the search of the minimum
which is reached by evaluating J(E) over a large search grid.

Based on this last observation, we have decided to push
further with our derivations. We will show that for p > N

closed-form expression for £ can be obtained. For p < N
we will find a way to simplify the algorithm with only a small
loss in accuracy, but with a huge gain in the computational
load. This simplified version will be used as an acquisition
algorithm. The non-simplified algorithm can be applied over
a smaller search grid for fine tracking.

3.2. Second estimator (i.e., p > N)
By noting that 6(£)6(£) = IN-P, we can easily prove the
following relation:
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And consequently, considering the case where N < p < N
1, it can be shown that

It can be also easily verified that:

2E[WHWo] F.if 1 <p< N

p)0(N-p)x(N-p) i 2 P <N

where

F O(N-2p)xp
OPXP

I(N-2P) X (N-2P) 1
Opx (N-2p) j

dJ(E) 0
dE

N Z tRjEHRoH
47Fp ( ROERH J

(25)

I Equation (25) provides us with a closed-form expression of
the CFO which is only optimal for N < P < N-1, i.e., this2 p ,ie,ti
is the ML estimator when p > N. As it can be seen from
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Eq. (25) the acquisition range of this algorithm is ± N the

4p
(20) subcarrier spacing (half of the acquisition range of the first

estimator).

Hence we have:

£ = arg max[f (R1 Ro, £)] = arg min[J(E)], (21)

where

J(-c) =(R,-Ro6 -'(£c))(IN-p-Q) 6R-Ro()1(2
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FE. For other values of p, i.e., N < p < N -1,

3.3. Third estimator (i.e., p < N' )

Assuming I < P < N2' it is easy to verify that 1 Q 2<
vA1 Q i1 Q ,o < 1 x1. Moreover, we have established
by observation that the value of 1 Q 112 rapidly decreases as p
increases. If 1 Q 2< 1, we can use the following formula:
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This approximation will be more and more accurate as p in-
creases until p exceeds N 1, at which point this approxima-
tion will become an equality as Q = 0.

By replacing (IN-P - Q) 1 with the last approximation
in J(E), and by resolving the equation dJ(E) - 0, we find that
X = eI N is a root of the following polynomial:

P(X) = (-RoEEARH)X4 + (-RoERH+ 2

+ 0 )X3 + (REH RoH- 2

+ Ro5Q R,' )X + R1AH EHRHI, (28)
2

where Q = EF. Hence, the problem of estimating the CFO
amounts to that of finding the roots of a 4th order polynomial,
P(X), and selecting the root that minimizes J(E), i.e.,

arg min [J( )].
Fe {roots of P}
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Fig. 1. Mean square error as a function of p, for N=32 and an
AWGN channel with SNR=20 dB.

(29)

Compared to the ML estimator, this third solution provides
huge savings in the computational load. Simulations will later
show that there is only a relatively modest accuracy degrada-
tion for small values of p due to the approximation made for
p < N . As it has been said before, this simplified version will
be used in the acquisition phase in order to provide a coarse
estimation. Note that the second estimator of Eq. (25) can
also provide a coarse estimation for p < N1 . But this estima-
tion will be less accurate than the one provided by Eq. (29).
The acquisition range of this algorithm is ± N the subcarrier2p
spacing, the same range as the first estimator.

3.4. Estimation Strategy

The carrier frequency offset estimation procedure is always
divided into two phases; the acquisition phase which cor-
responds to coarse estimation and the tracking phase which
refers fine adjustment.

Ifp > N, then there is not much to say, we will have only-2'
to use Eq. (25) which corresponds exactly to the ML estimate.

Since the estimation accuracy increases as the number
of observations used for the estimation increases and as the
length of observation vectors used here is N -p, then it is
expected that by selecting small values of p, we will reach
higher accuracy. For small values of p, using the ML esti-
mator directly will induce a huge computational load since
the search grid will be over l < N . Therefore, we pro--2pro
pose to use the third estimator (or even the second estimator,
if a smaller acquisition range is acceptable) in the acquisition
phase in order to have a coarse estimation. This will insure
that the residual CFO Er is small enough, i.e., lrE < a, where
a < N . The first estimator can be then exploited to provide
a very accurate estimation without involving a high computa-
tional load.
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Fig. 2. Mean square error as a function of SNR in the multi-
path fading channel and E = 0.01.

4. NUMERICAL EXAMPLES

Fig.1 depicts the performance of the first, second and third
estimators in Eq.(21), (25) and (29), respectively, for all val-
ues of p and a CFO fixed at 0.1, N set at 32 and an AWGN
channel with 20 dB of SNR. 500 independent trials were per-
formed for each value ofp to obtain the mean-square error es-
timates. The search-grid resolution for the first estimator was
set at 0.01 (55 points over the E < 0.55 interval). For p> N

the three estimators give roughly the same estimation accu-
racy. This is as expected since the 3 estimators simply solve
the same equation by 3 different means without making any
different simplifying assumptions. When p is near N -1, the
estimation accuracy of the three methods degrades. This can
be explained by the fact that there will be few observations
used for the estimation. For small values of p, the second and
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third estimators give noticeably worst results compared to the
first estimator. This is due to the fact that the approximations
made to obtain these estimators are less exact for small values
of p. But as p increases and tends toward N2, the approxima
tions become more and more accurate, and the three curves

tend to overlap. One also can note that the estimation accu-

racy for even values ofp is higher than the accuracy achieved
for odd values of p. This is imputable to Eq. (11) that trans-
lates an approximation which is more accurate for even values
of p than for odd values. But if we choose a greater value for
N, this effect will be less noticeable.

In the following, we assume that the acquisition phase has
been well performed and we will evaluate only the perfor-
mance of the tracking phase using the first estimator. As a

measure of performance in Fig.2, we have plotted the Mean
Square Error (MSE) as a function of the SNR for our first esti-
mator, and compared it with the methods proposed in [4] and
[5], called here, respectively, Zhang2004 and Zhang2005. For
fair comparisons, the three algorithms are tuned to achieve
best performance, i.e., p = 2 for our algorithm, p 1 for
[5] and (Hh= 7, H= 1 and L = 8) for [4]. For this com-

parison, a system of 128 subcarriers was chosen with cyclic
prefix length of 16. The CFO was fixed at 0.01, and 500 in-
dependent trials were performed. The simulations were con-

ducted in a multipath environment having five paths with path
delays of 0, 5, 9, 12 and 15 samples. The amplitude hi of
the ith path varies independently of the others according to
a Rayleigh distribution with exponential power delay profile,
i.e., E[h1 = exp(-Ti) where Ti is the delay of the ith path.

From Fig.2 we can see that the proposed scheme clearly
outperforms the two other techniques [4] and [5] (which have
been proved to outperform the well known Schmidl's [2] and
Morelli's [3] algorithms ). At an MSE equal to 2 x 10-3, the
SNR gain is around 4 dB. For an SNR equal to 0 dB, the MSE
is 7.25 x 10-4 for our algorithm and around 1.25 x 10-3 for
the others schemes. At a relatively high SNR (around 10 dB),

our algorithm and the one presented in [4] exhibit the same
performance, but they are still superior to the one presented
in [5].

Fig. 3 shows the MSE for different values of the CFO
going from 0.001 to 0.5 at an SNR equal to -5 dB and for the
same channel used previously. It can be seen that whatever
the CFO value, the proposed algorithm has always a better
accuracy. The estimation accuracy of the schemes [4] and
[5] begins to degrade near E = 0.5. This is imputable to
the fact that the tracking algorithms there have, respectively,
the following estimation ranges 1E1 < L/(2Hh) and 1E1 <
N/(2(N -2)) which translate here to 1E < 0.5714 and 1 <
0.5079.

5. CONCLUSION

In this paper, a new carrier frequency offset estimation scheme
for OFDM has been presented. The estimation is based on the
transmission of a specially designed synchronization symbol.
The particular structure in the received samples of our syn-
chronization symbol allows us to derive an ML-based esti-
mator. This estimator can provide very high accuracy over
a wide acquisition range. A simplified low-complexity ver-
sion that can provide a coarse estimation was presented as an
acquisition algorithm. Simulations have also proved that this
new technique gives higher accuracy than the methods pro-
posed in the literature.
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