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Abstract- We propose an efficient signal processing tech- 
nique to exploit smart antennas in IS-95 CDMA. It inte- 
grates decision feedback identification (DFI) and new de- 
cision variables into the adaptive antenna beamforming 
scheme. These two features permit implementation of a 
coherent detection on the uplink without a pilot and spatio- 
temporal maximum ratio combining (MRC). With two an- 
tennas and nonselective fading, the additional gain in SNR 
achieved by either feature is as significant as the gain ob- 
tained by simple antenna beamforming over diversity com- 
bining. Up to 2 dB performance advantage is obtained in 
selective fading as compared to simple beamforming. 

I. INTRODUCTION 
Smart antennas promise to satisfy the challenging de- 

mand for capacity due to the huge amount of wireless data 
to be supported in the future. The current IS95 air in- 
terface standard proposes the use of 3 sectorized antennas 
but does not specify any kind of array processing [1],[2]. 
Antennas may be used in a simple diversity combining 
scheme to achieve improvements in capacity [3]. However, 
simple beamforming, as proposed in [4], achieves better 
performance. Beamforming exploits multipath and space 
diversity as efficiently as diversity combining, however it 
achieves greater interference reduction and increased ca- 
pacity. We show here that additional enhancements are 
still achievable with smart antennas by the integration of 
improved array signal processing with antenna beamform- 
ing. 

Using STAR, a novel Subspace-Tracking Array-Receiver 
[5], we first replace the iterative eigen-decomposition in [4] 
by a very simple LMS-type eigen-subspace tracking proce- 
dure. This adaptive identification step shows faster conver- 
gence and tracking capabilities of the propagation vectors 
[5]. It also allows for the feedback of "forced" decisions 
over estimated symbols as commonly proposed in equaliza- 
tion. This new feature, denoted here by decision feedback 
identification (DFI), removes the phase ambiguity over es- 
timated symbols. Compared to [4], it achieves a coherent 
detection gain of 3 dB in interference reduction on the up- 
link without a pilot. Therefore, it reduces the symbol error 
rate (SER) and results in a potential increase in capacity. 
It also permits the incorporation of a new decision variable 
that implements a spatio-temporal MRC combining with 
further improved results in SER and in capacity, especially 
in selective fading environments. 
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Simulations in both selective and nonselective Rayleigh 
fading environments confirm the effectiveness of the pro- 
posed improvements and clearly show that STAR outper- 
forms the antenna beamforming scheme proposed in [4]. 

11. FORMULATION AND BACKGROUND 
A .  Assumptions and Model 

We consider a CDMA cellular system in which each base- 
station is equipped with M receiving antennas. We are 
particularly interested in the uplink, but we shall see that 
the proposed technique is applicable to the downlink as 
well with similar advantages. 

We consider a multipath environment with P paths. We 
assume that the multipath timedelays are perfectly esti- 
mated and tracked. Time synchronization and tracking 
are addressed in [6] where an efficient transceiver scheme 
combining acquisition and reception is proposed. 

In the present IS-95 standard, information bits are coded 
by a convolutional encoder, grouped into log, (L) bits, then 
coded into Walsh symbols, say wn E (1,. . . , L}. For each 
symbol, the corresponding orthogonal Walsh sequence of 
length L is further spread by a P N  sequence before final 
transmission. For the sake of simplicity, we do not identify 
separately the in-phase and quadrature components, but 
consider transmission over a complex channel. 

At reception, the signal vector received at the M anten- 
nas is fed to a set of L Walsh correlators as shown in Fig. 
1. These correlators implicitly execute the acquisition and 
the tracking of each path component as mentioned earlier. 
They also involve the despreading and sampling of the data 
at the symbol rate. Each correlator outputs signal samples 
on P fingers that correspond to the P multipath compc- 
nents in a RAKE-like structure. Notice however that each 
finger is a ( M  x 1)-dimensional vector denoted by Z;,, and 
referred to as the post-correlation vector. 

It is reasonable to assume that time-variations in the 
propagation characteristics are slow compared to the sym- 
bol duration and can be ignored over such an interval (Le. ,  
Walsh sequence). Therefore, at symbol iteration number n, 
we can write the post-correlation vector of the ith Walsh 
correlator for the pth path Zi,n as follows: 

zk,n = G p , n $ n & p , n d ;  + Ni,n = G p , n S ; ? n  + NE.n , (1) 

where Gp,n is the ( M  x 1)-dimensional propagation vec- 
tor over the pth path, whose norm is fixed for convenience 
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to v% (more details about model adjustments are given 
in [5]). The propagation model includes the effects of 
Rayleigh fading over different antennas. This fading is 
assumed independent in the simulations below. The to- 
tal received power $2 contains the effects of shadowing, 
path-loss and power control. The power fractions c;,~ rep- 
resent a normalized power distribution of the total received 
power $2 over the P multipaths ( i e . ,  Cp=l E& = 1). The 
contributions of both the in-cell and out-cell interference 
at each correlator, as well as the background noise and 
self-interference due to  multipath, are reasonably modeled 
by an uncorrelated zero-mean Gaussian white noise vec- 
tor N;,, (z.e., RN = o&I,w). Finally, 6; is the result at 
iteration n of correlating the received Walsh symbol Wn 
by the i th  Walsh correlator. Due to the orthogonality of 
Walsh sequences, 6; is equal to  1 if i = w, and 0 otherwise. 
Therefore, the signal component s ; , ~  = $nEp,ndk is zero at 
the output of all the correlators except the one correspond- 
ing to  the received Walsh symbol (2.  e., s;' = $ n E p , n ) .  

P 

Walsh 

antenna #1 
I I  

antenna #M . 
Walsh . . 

correlator +z;, 
# L  

G , n  

Fig. 1. Correlator structure at the base-station for a desired user: 
each branch implicitly involves baseband IQ demodulation, A/D 
conversion, acquisition and tracking of each path component as 
well as despreading and sampling of the data at the symbol rate. 
The M-dimensional vector 2' is the post-correlation vector of 
the zth Walsh correlator for tpgpth path at the symbol iteration 
number n. 

B. Diversity Combining 

With diversity combining, we simply sum at the output 
of each correlator all the powers collected over the different 
diversity paths (i.e., spatio-temporal square law combin- 
ing). The decision variable at the output of the ith Walsh 
correlator is then defined as follows: 

P 

p= 1 

where the division by the number of antennas M is intro- 
duced for normalization. The L decision variables, each 
having an average value equal to  +:Si + Po&, are then fed 
to  a soft decision Viterbi decoder. 

0.25 

11 

Q 
g 0.1 

0.05 

- 2 0 2 4 6 8  
decision variable 

- 2 0 2 4 6 8  
decision variable 

Fie. 2. Probabilitv distribution 

- 2 0 2 4 6 %  
decision variable 

(4 

- 2 0 2 4 6 8  
decision variable 

function of the decision variable: 
'2 

correct decision (solid), wrong decision (dashed). (a): Diversity 
combining. (b): Simple antenna beamforming. (c): STAR with 
classical decision variable. (d): STAR with new decision variable. 
Configuration: M = 5 antennas, P = 3 paths with power distri- 
bution of 0, -3 and -6 dB, perfect power control (i.e., $$ = 1) 
and post-correlation SNR = 0 dB ( i .e . ,  U$ = 1). 

Fig. 2a shows the probability distribution functions of 
the decision variables d i  for the two cases, (i) when a cor- 
rect correlator is used (i.e., i = w,) and (ii) when it is 
incorrect (i.e., i # w,). Intuitively, the overlap region un- 
der the two curves indicates the symbol error rate (SER) 
at  the input of the soft decision Viterbi decoder, which in 
turn determines the bit error rate (BER) at its output. 

For power control, we need timely estimates of the re- 
ceived symbols. Since the decision variables are decoded 
over relatively long symbol frames, we simultaneously esti- 
mate the received symbols by hard decision as follows: 

6, = ar max {&} . dl ,..., L )  
(3) 

This immediate _decision allows us to  estimate the total 
received power $: for power control by smoothing or av- 
eraging d$ - E,+*, & / ( L  - 1) over a given number of 
symbols [3]. 

Diversity combining efficiently exploits space diversity 
introduced by the antennas in addition to multipath di- 
versity. The effect of fading in the total received power 
$: is indeed attenuated by averaging the fades over all 
multipaths and antennas. Therefore, the use of antennas 
in a simple diversity combining scheme reduces the time- 
variations of the total received power (or equivalently the 
average fading). This feature reduces the power control 
errors about the required received power and consequently 
improves the capacity [3]. 
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However, diversity combining does not exploit the array 
processing capability of antennas to reduce interference. It 
simply sums the interference over all diversity branches. 
We show next that antenna beamforming further reduces 
interference by a factor M ( i e . ,  antenna gain) while it 
exploits space and multipath diversity in the same way as 
in diversity combining. 

Estimation of power 
and propagation vcctors 

Viterbi bits 

d; 

Fig. 3. Receiver structure a t  the base-station for a desired user: 
the beamforming of post-correlation vectors at each path and 
the combining of the resulting signal components in a decision 
variable are only shown at the ith Walsh correlator branch of 
Fig. 1. 

C. Antenna Beamforming 
As reference, we consider here a representative antenna 

beamforming method recently proposed by Naguib and 
Paulraj [4]. Assume that estimates of the propagation vec- 
tors are ayailable at each iteration n within a phase ambigu- 
ity (ie., G,,, N e-j@pVnGp,,). This identification step will 
be explained soon below. At the output of each correlator 
(see Fig. 3), Naguib and Paulraj first estimate over each 
path the signal component Si,, by matched beamforming 
(i.e., spatial MRC combining) as follows: 

(4) * H  ~i 
s;,n = Gp,n p,n/M - - ei4p.n$nEp,ndi  + G:nN&/M 

si,, + qb,n 1 
- - e j@p.n  

where the residual interference q;,, has an average variance 
of u$ /M.  In this way, Naguib and Paulraj implement the 
antenna gain and reduce the level of interference by a factor 
M at the beamformer output. Since each signal component 
is estimated with a phase ambiguity, they next perform 
a temporal square law combining of these estimates and 
define the decision variables at the output of the Walsh 
correlators as follows: 

(5) 
p = l  

These L values, which are on average equal to t!.$dA + 
Pa$/M, are finally fed to a soft decision Viterbi decoder. 

As shown intuitively in Fig. 2b, antenna beamforming 
reduces the symbol error rate that is indicated by the over- 
lap region under the two curves, and therefore significantly 
increases the capacity. Due to a better reduction of inter- 
ference, it also improves the estimation of received power 
for power control after hard decision as in Eq. (3). 

As mentioned earlier, estimates of propagation vectors 
are required to achieve this beamforming scheme. Using 
the fact that the interference vector in Eq. (1) is an uncor- 
related white noise vector, the identification of the propa,- 
gation vector over each path G,,, can be simplified from 
[4] to characterize it as the principal eigenvector of the fol- 
lowing matrix: 

R ~ , ,  = E [2;;2;;lH] = @~&;G,G~x + O L I ~  . 
This is the correlation matrix over each path of the received 
post-correlation vector 2;; resulting from the transmit- 
ted symbol W n .  Each vector G,,, is then estimated sep- 
arately within an unknown phase ambiguity by ?n eigen- 
decomposition of the sample correlation matrix Rz, . This 
sample matrix can be easily obtained by averaging or 
smoothing the 2:; selected by hard decision using Eq. 
(3). 

The antenna beamforming technique proposed by 
Naguib and Paulraj [4] efficiently implements the array 
processing gain and introduces a significant improvement 
in capacity. We show next that additional enhancements 
remain achievable. 

111. THE PROPOSED STRUCTURE: STAR 
Assume first that estimates of the propagation vectors 

G,,, are available at each iteration n as in the previous case 
of simple antenna beamforming. One key feature, as ex- 
plained below is the identification of thtse vectors without 
phase ambiguities, contrary to [4] (Le. ,  G,,, N e-j@p.nGP,l,. 
where g5p,n 2: 0). To this end, we apply matched beam- 
forming like Naguib and Paulraj [4], but further take the 
real part of the beamformer output at each correlator as 
follows (see Fig. 3): 

= ?Re {G:,Z&/M} (6) 

- - S e  { e j @ p + n  } + n & p , n d ~  + ~ e { G z n N i , n / M }  

"L s$,n + ge{?i,n} . 

As a result, the variance of the residual interference 
%e {vi,,} is reduced by half relative to [4], down to U,',, = 
&/2M without distorting the signal component. This ad- 
ditional 3 dB gain is usually obtained in a coherent de- 
tection scheme after the recovery of the phase offset from 
the pilot on the downlink. So far, it has not been imple- 
mented on the uplink. This 3 dB coherent detection gain 
is achieved here by avoiding phase ambiguities without a. 
pilot signal as explained shortly below. 

Notice first that using Eq. (5), we can feed the L result- 
ing decision variables d i  to a soft decision Viterbi decoder 
(see Fig. 3). Here, the decision variables have an average 
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power of $:Si + Pa$/2M. Fig. 2c indicates the reduced 
symbol error rate at the decoder input and potential im- 
provements in capacity and in power control compared to 

Instead of the classical definition of Eq. ( 5 ) ,  we now 
consider new decision Variables given by a weighted com- 
bination of the signal components (see Fig. 3): 

[41, 

P 

p=l 

where the squares of the weighting coefficients i$,n are the 
estimates of the normalized power fractions E ; , ~ .  These 
estimates are computed as follows: 

In Eq. (8), the estimate of the total received power 4: is 
given by: 

P 

(9) 
p= 1 

and allows for power control (see [5],[6]). On the other 
hand, the quantities <:,n which estimate here the amount 
of power received over each path $:E;+ are updated after 
hard decision of Eq. (3) by simple smoothing as follows: 

- 2  E+*, (d;)2 
ores = (1 - a)  +;lks + a 

L - 1  , 
where Q is a smoothing factor, and where 8:es is a smoothed 
estimate of the variance of the residual interference after 
beamforming (see below Eq. (6)). 

Contrary to Eq. (5) where the squared magnitudes are 
added to avoid phase ambiguities, the signal components 
are weighted in Eq. (7) by their respective normalized mag- 
nitudes (Le. ,  notice that xfz1 i& = 1) before summation. 
This multipath matched-beamforming scheme implements 
a temporal MRC combining. Thus, the two consecutive 
spatial and multipath beamforming steps used to derive 
the new decision variables implement overall an optimal 
spat io- temporal  MRC combining'. 

Notice that while the power of residual interference is ac- 
cumulated over all paths and multiplied by P in Eq. (5), it 
is maintained in Eq. (7) at the same level2 for all individual 
paths regardless of their number. This additional interfer- 
ence reduction, that we may call here multipath gain (by 
analogy to the antenna gain M ) ,  provides STAR a certain 
robustness to selective fading, as confirmed below by sim- 
ulations. Additionally, the new decision variables, which 

'Spatio-temporal MRC combining could be implemented in one 
step as done in [6] in a different context. 

2This explains the fact that we estimate crzes in Eq. (11) by smooth- 
ing an average power of the decision variables over the wrong symbols; 
to subtract it later as a bias in Eq. (10). 

are on average equal to $n&, are not limited to positive 
values and allow the distributions to be better separated. 
As shown in Fig. 2d, the overlap region of the two distri- 
butions is further reduced, improving the resulting symbol 
error rate at  the input of the soft decision Viterbi decoder 
and resulting in additional improvements in capacity and 
in power control. 

As mentioned earlier, the above results rely on the iden- 
tification of propagation vectors Gp,n without phase ambi- 
guities. To do so, we propose a simple and fast LMS-type 
eigen-subspace tracking procedure [5] ,[6] given by: 

where pp,n is an adaptation step-size, possibly normalized, 
and where the reference signal S z n  = ( p , n  = $nE^p.n is 
actually the signal component estimate forced to be real 
and positive (not to be confused with S2n). 

Other eigen-subspace tracking techniques are not ex- 
cluded a priori. However, what it is original about the 
adaptive identification procedure we propose is that it in- 
cludes decision feedback through the estimates of the signal 
components S F n .  Without this feature (2.e.: in Eq. (12), 
using 2pn of Eq. (4) with the decision variables of Eq. ( 5 )  
instead of s z n ) ,  the estimated propagation vectors Gp9n 
would converge to G,,, within an unknown phase ambigu- 
ity as in [4]. This ambiguity would also rotate the constella- 
tion of the estimated signal component (Le. ,  + n E p , n e J Q P ' n .  

see Eq. (4)). We see this rotation as a degree of freedom 
that allows for the incorporation of an additional constraint 
on the required position of the signal constellation (i.e., 
Qntfp,,).  Therefore, assigning S F n  to be real and positive 
by Eq. (6) and Eq. (10) respectively and feeding it back 
in the tracking equation (12) as a reference signal removes 
the ambiguity by preventing this rotation and forces all 
the phases dp,n to 0. We refer to this adaptive process as 
decision feedback identification (DFI) . Through coherent 
detection and MRC combining, it allows for significant im- 
provements in capacity and in power control as mentioned 
above and as verified below by simulations. 

The convergence of GP,,,, to G p , n  without ambiguity is 
made possible by the flexibility of the adaptive identifica- 
tion of Eq. (12), which enables the integration of deci- 
sion feedback. Other eigen-subspace methods such as the 
eigen-decomposition proposed by Naguib and Paulraj [4] 
identify propagation vectors with phase ambiguities, but 
usually have no control over them and/or do not incorpo- 
rate decision feedback, leading to poorer performance. In 
addition, it should be noted that eigen-decomposition in- 
troduces a memory effect in the estimation of the sample 
matrix which is undesirable when tracking rapidly chang- 
ing channels. On the other hand, LMS-type adaptive eigen- 
subspace tracking yields better tracking of propagation vec- 
tors in the presence of strong nonstationarities and is ca- 
pable of adapting to high variations in received power [ 5 ] .  

Notice finally that the interference reduction achieved by 
the extraction of the real part in Eq. (6) can be obtained 

h 

- 
h 

- 
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with DBPSK signaling as well [5]. Also, the resulting gain 
in SNR is still achievable in the case of M = 1 antenna. 
Hence, an application of STAR to the downlink could be 
viewed with the same potential enhancements. This issue 
is presently under study. 

IV. SIMULATION RESULTS 

We compare in this section the performance in SER ob- 
tained by hard decision at the input of the soft decision 
Viterbi decoder with the post-correlation SNR. The results 
are given for diversity combining, simple antenna beam- 
forming, STAR with the classical decision variables of Eq. 
(5) and STAR with the new decision variables of Eq. (7). 
The decision variables for the first three cases are simply 
estimated in parallel from the data processed by STAR 
with the new decision variables of Eq. (7). Therefore, they 
do not include the effects of errors in identification and/or 
power control errors that may result when these variables 
are fed back to separate processes. Hence, for all but the 
last case the resulting SER values are slightly optimistic. 

The evaluations consider voice calls at a data rate of 9.6 
kb/s spread over a 1.25 MHz band using a processing gain 
of 128. We use 2 antennas and assume a slow Rayleigh 
fading channel with a Doppler frequency shift of fo = 2 
Hz simulated by Jakes’ model [7]. We also assume that 
the data has been coded by a convolutional encoder at the 
rate 1/3 and mapped into 64-ary Walsh symbols at the 
rate of 4.8 kb/s before interleaving with a 32 x 6 matrix. 
We finally introduce a 10% error over the power control 
bit which is transmitted every 1.25 ms ( i e . ,  duration of 
6 symbols) with a delay of 1.25 ms. This bit indicates to 
the mobile to either increase or decrease its power by a 
constant step-size of 0.5 dB. 

In Fig. 4, we first consider a nonselective fading envi- 
ronment (i.e., P = 1 path). Simulation results of Fig. 4a 
clearly indicate that the gain in SNR achieved by STAR 
with the classical decision variables (dotted) over simple 
antenna beamforming (semi-dashed) is as significant as the 
gain achieved by antenna beamforming over diversity com- 
bining (dashed) using 2 antennas. They hence confirm the 
additional improvement due to the single contribution of 
the proposed decision feedback identification (DFI) feature 
in the beamforming scheme. This feature implements a co- 
herent detection gain of 3 dB without a pilot. Besides, sim- 
ulation results show that the gain in SNR achieved by the 
new decision variables over the classical ones is of the same 
order. Hence, they also demonstrate the efficiency of the 
new decision variables which implement an optimal spatio- 
temporal MRC combining. The curves obtained from the 
theoretical situation of perfect power control and identifica- 
tion in Fig. 4b validate the simulation results. They indi- 
cate a slight degradation in Fig. 4a due to imperfect power 
control and identification errors, which becomes more no- 
ticeable at  lower SNR values. 

We next consider a selective fading environment with 
P = 3 paths as shown in Fig. 5. Simulation results of Fig. 
5a again confirm the improvement due to DFI (dotted) 
relative to simple antenna beamforming (semi-dashed) , as 

SNR in dB 

\ \  

6 10 
SNR in dB 

Fig. 4. SER versus post-correlation SNR per symbol: diversity 
combining (dashed), simple antenna beamforming (semi-dashed), 
STAR with classical decision variable(dotted), STAR with new 
decision variable (solid). (a): Simulations. (b): Perfect power 
control and identification. Configuration: M = 2 antennas, 
P = 1 path. 

Fig. 5.  SER versus post-correlation SNR per symbol (see caption of 
Fig. 4). Configuration: A4 = 2 antennas, P = 3 paths with equal 
power distribution. 

\ \  

\ \  

0 2 4 
SNR in dB 

-2 

\ \ \  

\ \  

-2 0 2 4 
SNR in dB 

Fig. 6. BER obtained by simulations after soft decision Viterbi 
decoding versus post-correlation SNR per bit (see caption of Fig. 
4). (a): nonselective fading configuration of Fig. 4. (b): selective 
fading configuration of Fig. 5. 

well as the additional enhancement due to the new deci- 
sion variables (solid). These results are again validated by 
the theoretical curves of Fig. 5b. More importantly, what 
we notice from this set of experiments in selective fading 
is that the gain obtained with the new decision variables 
over the classical ones is more significant in the presence 
of multipath, theoretically a5 well as by simulations. Com- 
pared to the nonselective fading results of Fig. 4, the per- 
formance of the new decision variables remain unchanged 
(see solid line curves), while those of the classical decision 
variables degrade regardless of the combining scheme (see 
other curves). This confirms the robustness of the new de- 
cision variables to multipath, due to the multipath gain 
of the temporal MRC combining step mentioned above in 
section 111. 
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Finally, we give in Fig. 6 the BER computed by simula- 
tions after soft decision Viterbi decoding in both the nons- 
elective and selective fading situations. For each method it 
shows the range of required SNR from which the capacity 
can be derived at a given BER following the methodology 
given in [3] .  

V. CONCLUSION 
The proposed IS-95 CDMA compatible subspace- 

tracking array-receiver (STAR) employs simple eigen- 
subspace tracking and integrates decision feedback identi- 
fication (DFI) and new decision variables. DFI implements 
a coherent detection gain of 3 dB in interference reduction 
without a pilot, while the new decision variables reduce 
SER and impIement a multipath gain and robustness to 
selective fading by an optimal spatio-temporal MRC com- 
bining. At a required SER of lov2, DFI and the new de- 
cision variables each achieve an additional improvement in 
SNR (i.e., capacity) as significant as the gain achieved by 
simple antenna beamforming over diversity combining with 
2 antennas and nonselective fading. These enhancements 
become even more significant in selective fading where a 2 
dB advantage over simple antenna beamforming is realized 
at a SER of by DFI and the new decision variables. 

Compared to diversity combining, even greater gains are 
achievable with more antennas. Finally, STAR provides 
fast channel tracking and efficient power control, and re- 
quires a low complexity of O ( M P )  per correlator branch. 
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