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Abstract. A new algorithm for simultaneous robust multisource beamforming and multitarget tracking is proposed. Using
a set of optimal conventional beamformers in the presence of uncorrelated white noises, the source signals are first extracted
at each iteration. The steering vectors which are bound to be in the array manifold (i.e. a set of parametrized vectors),
are time—updated by a correcting/tracking procedure generalized {rom a former work we have derived in the single source
case. A separate projection of each steering vector on the array manifold enables us to extract the corresponding location
parameter (i.e. the parametrizing variable), and to resume the iterations of the adaptive algorithm. The beamforming and
tracking performances are then shown to be identical to the single source case. However, it is shown that the additional
use of some kinematic parameters (i.e. speed, acceleration, etc- - ) inferred from the reconstructed trajectories improves the
{racking performance, and overcomes some of the problems of crossing targets. The efficiency of multitarget tracking and
the robustness of multisource beamforming are confirmed by simulation.

1. Introduction

Recently, we proposed in [1,2] a robust adaptive beam-
forming algorithm based on a LMS-like target tracking for
a single source, by allowing the steering vector of a classi-
cal beamiormer to be time-adapted in the array manifold.
This algorithm proved to be robust to strong localization
errors without introducing any SNR loss, and to have an
efficient tracking behavior when in the presence of mabile
sources (target and jammers).

In this paper, our purpose is to generalize this algorithm
to the simultaneous extraction and tracking of multiple
sources. To do so, we assnme that the number and the
location parameters of all point sources are initialized by an
approximate localization technique. Those sources which
are not localized will have relatively small power, and will
be confused with spatially diffuse noise.

Given the propagation model, the idea is to simulia-
neously time-adapt all the steering vectors in tle same
way as in [1,2], with a separate projeciion of each vec-
tor on the array manifold. The source signals vector is
estimated using 2 set of beamformers. For one selected de-
sired source, classical adaptive beamformers such as Frost
or GSC could be used successfully to adaptively cancel alt
the present jammers {(possibly including those unlocalized
sources). Instead, we simply propose the use of a set of
conventional beamformers which are shown to have an op-
timal performance in the presence of uncorrelated white
noise. Their advantage of being non adaptive is that they
avoid the source signal cancellation, even in the presence
of partially coherent interference. Though the unlocalized
sources are not specifically canceled, the performance re-
mains barely unchanged since we assumed these sources
to be confused with the white noise. However, adaptive
beamformers could use in parallel the npdated location pa-
rameters given by the proposed algorithm for a final and
separate source extraction, when in the presence of no co-
herent source interference.

The simulations performed with conventional beamform-
ers confirm the results we expected from the generalization
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of the convergence and performance analyses made in [1,3].
Indeed, the algorithm has the same robustness to location
errors, and presents a comparable tracking behavior for
each source.

However, two problems are encountered as expected the-
oretically. Firsi, the location estimator is biased whenever
the location parameter increment is not zero mean (it can
no longer be considered as a reasonable assumption, when
in the presence of maneuvering targets). Second, the algo-
rithm cannot deal with crossing targets. The presence of
a unique source in the spread of a locking range is a ma-
jor hypothesis we had to assume for the convergence proof
made in {1,3]. We thus introduce an additional procedure
based on the use of some kinematic parameters such as
the speed. It is shown to remove the bias, and to over-
come some of the problems of crossing targets by LMS-like
iteration blocking and trajectory prediction.

2. Mathematical Formulation

We consider the following model of plane wave propagating
signals received by a linear array (see Figure 1}
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where X, is the m-dimensional observation vector, S =
[81.65 82,6, -, 8pu]T is the vector of p desired narrowband
signals to be extracted (p < m), N. is an additive noise vec-
tor, and G is the transfer function {i.e. the m x p steering
matrix) between the emitted sonrces S¢ and the m-sensor
antenna array. All the gquantities considered herein are
complex. F is a parametric modeling function determin-
ing the propagation law and the configuration geometry,
and O¢ = [f1,0,02,¢,+--,8p,¢]7 s the location parameter of
interest. #;; represents the DOA or the spatial coordinates
of the source s;,:. The subscript { stands for time index.
We consider here the simple case of a linear array and
a plane wave propagation model. So, the parameterizing
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function F is given by:
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where 8 2 [« |7 represents a single source location param-
P B P

eter. The wavenumber & 2 22 88?) where ¢ € [—n/2, 7/2[

is the DOA, and A is the wave length. [zq,33,-+-,2,]7 is
the sensor positions vector. 7 represents the phase delay
from the origin to within about an integer multiple of 2w,
and is obviously restricted to [0, 2xf.

We {further make the following assumptions:

Al:
A2:

G, N and S are mutually independent.

Channet G is slowly time varying in comparison to the
variations of N and s. Hence we are able to estimate
& properly, then update it.

A3: A possibly erronecus approximation of &, say Og, is
initially provided either by an approximate a priort

guess, or by a given localization techuigue.

A4: N is a white noise with zero mean Gaussian distribu-

tion and autocorrelation matrix o3 7.

The DOA’s are far apart enough to make the source
separation possible, The validity of this assumption
is tested continucusly. Whenever it is invalid, we will
use an alternative procedure presented in section 4.

AS5:

Given these assumptions, our main purpose in this pa-
per is to reduce the error between & and its estimate G.
The idea is to constantly correct the steering matrix &
and time-adapt the classical beamformers say W to the
new look-directions. The beamformers should thus pro-
vide a robust multisource signal extraction, and an efficient
method for multitarget tracking.

3. Multisource beamforming

The algerithm for robust multisource beamforming via
LMS-like target tracking can be sumimed up by the fol-
lowing steps (see Figure 1):
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Figure 1. Block diagram of the algorithm.

Step I Beamforming
At iteration {, we suppose that an estimation of Gi_;,
say G4_; is available. As assumption A2 states that G is
slowly time varying, it is possible io estimate S, with the
steering matrix G approximated by G._, at time t. Hence,
it is straightforward to show that conventional beamform-
ers are optimal for the minimization of the output distor-
tion under the condition that WF G, = Ip:
S =WHX, & (GFL,Geer) T G XL (4)
A¥ denotes the conjugate transpose of A and W, is the
m X p beamforming matrix. Tt must be noted by the virtue
of assumption A5, that the matrix G is full rank and that
GE G, is inversible. Moreover, the condition WH&,_; = Ip
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is fulfilled. Hence, for each one of the p sources say s,
the corresponding bearnformer W; considers the remaining
sources 8; (F # 1) as jammers and rejects them,

Step Il LMS-like

The resulting estimate of S;, say 5., can be used in a
LMS-like procedure to track or correct the steering matrix
variations:

Gt = G +u(Xe—Gua8)8F. (8

1t should be noted at this stage that the column vectors
G, of the LMS-like updated matrix G, obtained in (5),
do not necessarily belong to the array manifold. For this
reason, we denote them at the present by G in (5). The
convergence analysis in {1,3] shows that equation (5) does
not track correctly the steering vectors when assumption
A5 is not verified. This is actually due to the fact that the
noise covariance matrix defined for one selected source can
no longer be approximated by the “nice” form oI, when
one o more sources are present in its locking range. To
overcome this problem, we wifl introduce a new procedure
presented later in section 4.

Step III  DOA estimation

At present, we consider that assumption AS is valid. In
this case, the estimator G of Giy (i** column of G})
can be improved by a DOA adjustment with respect to a
projection over the array manifold, performed separately
for each source as in [1,2]. The ** location parameter

b & [#i,7:,:)7 is then updated as follows for 1 < i< m

)]= (6)

where G, is the ¢"* component of the i** column vector

Gy of the matrix Gy at time ¢, and where Im(.} denotes
the imaginary part. The matrix K is given by:

Ké[
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It must be noted that another alternative is also presented
in [1,2] instead of ().

The delays 7y, are actually estimated to make the projec-
tion consistent. They are now set to zeto to make the ozigin
at the array center (see [1,2] for more details). Hence, we
finally reconstruct the steering matrix:
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Except the matrix inversion in (4), all the above steps in-
volve a number of operations proportional to the number of
sensors m by the number of sources p. The computational
complexity of this algorithm is then of order O(mp + p°).

The performance analysis of the proposed algorithm is
tle same as the single source case presented in [1,3], and
shows for the #** source (1 < i < p} that:

El#i ] = ElRie—](1 - ”0'3;) + P‘UEiE{"‘-t]l 9
where af,. is the variance of g;¢. This equation proves that
the algorithin is able to track each target in the temporal
mean, with a time constant given by r, =1/ (#e?). In
the case of a random walk process, let us define for the i*"



source the target motion incremeni or ”speed” by ;. 2
Kit+1—Ki¢. Then we notice that the above algorithin gives
unbiased location estimators, unless the increments are not
zero mean. This point is addressed in the following section,
where an efficient solution is given.

4. Speed estimation and tracking of cross-
ing targets

We present in this section an additional step in the algo-
rithm, to improve its performance regarding the bias of the
location parameters, and {o avoid some of the problems of
crossing targets. This step is based on the prediction of
the target trajectories, thanks io the extira information ob-
tained on their kinematics. As known in the literature
of motion target analysis [5-7], we use the estimated kine-
matic parameters {o rule the behavior of the targets during
the crossover interval. Whereas outside it, we propose the
use of these parameters to remove the bias of the location
estimators (see Figure 2) .

Let us assume the source speeds @, S (@ —©:21) to be
slowly time-varying, as it can be stated by assumption AZ2.
We are then able to estimate them by replacing equation
(6) by the following procedure (for 1 < i < p):

Eit Rie—1 }: z4Im ('Gq,f,:ejz"k“"’)

- = ' - K -
[ Ti,t ] [ 0 ] I [ E]:m (Gq,i,:GquNi"“i) ’(10)
Rip = @R 41— ) (Bie — &ijpmi )y (11)
Rig = Fit+ f‘%o‘,:- (12)

The speed & is estimated in {11) via the lowpass AR
filtering of an intermediate location estimator &, with a
smoothing factor a. This factor must be chosen respec-
tively to the stationarity of ©@; and the time constants
of the algorithm. For trajectories with increments slowly
time-varying in average, it can be seen easily that the in-
termediate location estimator in (10) is biased with a delay
equal to the product of the speed by the corresponding time
constant. Hence, it can be shown that the final location
estimator in (12) catchs up with the bias at convergence,
under some additional stability conditions on o and pu.

X; Beamforming §l

r
Speed Estimation 'é
and DOA prediction

1 &
DOA Estimation

LS-like

Figure 2. The block diagram with speed estimation.

Crossover
Detection

However, when the targets are not distant enough, and
when they are in the same locking range, the algorithm fails
in tracking them properly. For each source, we therefore
define the following test of validity of assumption A5:

T‘l Eﬂ.hn,h"'iTP-k]T'

e

3744 | Wi — | e
otherwise

e

(13)
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If this assumption is not valid, the adaptation of the LMS-
like equation (5) should be blocked for the corresponding
crossing targets. Hence we modify it as follows:

G: = G;-] -+ H dia.g{T;] (X: —_ G.t..], S:) S;H (14)
We are now able to hold on the tracking of the crossing
trajectories, even during the crossover intervals, where we
can see that the speed estimates remain constant. This is
actually a good and reasonable approximation for targets
locally crossing with uniform speed,

In the case where the motion of the targets is more com-
plex (e.g. uniformly accelerated trajectories, etc..), we
may estimate higler order increments in an alternative pro-
cedure (i.e. acceleration, 3™ derivative, etc...). It should
be noted that the estimation and the use of higher order
increments do not imprave significantly the precision of the
source localization, but enable however a better prediction
of the target trajectory during the crossover interval (see
Figure 3). This problem is addressed in a more general
work, presently under preparation.
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Figure 3. Target tracking with the estimation of higher order
increments for complex crossovers.

This additional step finally improves the target tracking
performance in real situations, and does not introduce a
kigher order computational complexity.

5. Simulation Results

To illustrate the efficiency of the algorithm proposed in sec-
tion 3, we considered the case of an equidistant linear array
of 16 sensors. 4 planewave narrowband and uncorrelated
moving sources are emitting with a unit power from sep-
arafe initial angles. Spatially diffuse white noise is added
at a mean SNR of 10dB.

The simulation results show that the algorithm gener-
alized to the multisource case has the same properties as
[1,2] regarding robustness to errors, tracking behavior (see
Figure 4a), and source signal extraction (see Figure 4b:
22dB =~ 10 logio(m) + SN R improvement). However, we
can see in figure 4 that the tracking and the source signal
extraction are both disturbed when two of the targets get
into the same locking range or cross.

To illustrate the performance of the speed estimation
procedure, we considered the case of two crossing targets
with uniform speeds as shown in Figure 5.

Without the speed estimation procedure, both trackers
produce an estimation delay and turn back at the crossover
point. Although both sources remain tracked, the result is
not satisfactory for source signal extraction and classifica-
tion (see Figures 6a and 6b).

On the other hand, the speed estimation procedure re-
moves the bias, and maintains the tracking during and after
the crossover. Figures 6a and 6b show respectively 34dB
improvement in source localization, and 3dB enhancement
in beamforming. Of course, when the targets are too close
around the crossover point, the sources are confused and
cannot be extracted separately.
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6. Conclusions

We presented in this paper a new algorithm for robust mul-
tisource beamforming and multitarget tracking. We first
described the generalization we have made of the work
recently presenied in the single source case. Given the
assumption that the number and the approximate initial
locations of the most significant sources are known, we
proved the use of the conventional beamformers to be op-
timal in the presence of uncorrelated white noise. Using
the estimated location parameters, it should be noted here
that adaptive beamformers such as the GSC could be used
in a master-slave structure to only extract the source sig-
nals, when no coherent interference is present. We also
showed the resulting algorithm to offer the same robustness
to lacation errors, and to have the same beamforming and
tracking performances. Particularly in the case where the
time increment of a location parameter is not zero mean,
the location estimate is biased. Hence we proposed a new
procedure based on the use of some estimated kinematic
parameters {e.g. the speed), which is proved to yield un-
biased estimates. Simultaneously, the estimated kinematic
parameters are shown to solve some of the problems of
crossing targets via the prediction of their trajectories,

In addition, the algorithm has a complexity of order
O(;,o3 + pm} where p and m are tespectively the number
of sources and array sensors. Hence it can be implemented
in a very easy way.
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