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Abstract. We consider adaptive space-time processing for wireless receivers in
CDMA networks. Currently, the 2D RAKE is the most widely used space-time
array-processor which combines multipath signals sequentially, first in space, then
in time. We introduce incremental processing improvements to arrive ultimately
at a more efficient one-dimensional joint space-time (1D-ST) adaptive processor
named STAR, the spatio-temporal array-receiver. STAR improves the receiver’s
performance by approaching blind coherent space-time maximum ratio combining
(ST-MRC). With blind quasi-coherent joint ST-MRC, STAR outperforms the 2D
RAKE by improving the combing operation with 2 dB gain in SNR. With quasi-
blind coherent joint ST-MRC, STAR can enhance channel identification while re-
ducing significantly the pilot-power or -overhead fraction leading to a 1 dB gain in
SNR. These gains translate to significant performance advantage for all versions of
1D-ST STAR over current 2D RAKE-type receivers.

10.1 Introduction

Recently adopted standards confirm that CDMA is the preferred air-interface
technology for third-generation wireless systems [1]-[3]. They also recognize
adaptive antenna arrays as key means to increasing capacity and spectrum
efficiency. In the context of this important real-world application, adaptive
space-time processing can respond to the need for fast and reliable transmis-
sion over the noisy and time-varying channels encountered in wireless access.
Adaptive space-time processing addresses a broad range of issues that aim
to improve: 1) multipath channel identification and combining [4], 2) syn-
chronization [4], [5], 3) interference reduction [6] or suppression [7], etc. . . We
focus here on the first issue and propose useful upgrades of the 2D RAKE
[8]-[11] that ultimately implement a more efficient adaptive array-processor,
STAR, the spatio-temporal array-receiver [4], [5].

The 2D RAKE, developed first by a research group at Stanford Univer-
sity [8]-[11], is a two-dimensional space-time adaptive array-processor widely
investigated today which combines signals sequentially, first in space, then
in time over CDMA multipath Rayleigh-fading channels. In the blind mode
(i.e., without a pilot), the 2D-RAKE receivers estimate the channel with
phase ambiguities and implement sequential combining, first noncoherent
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spatial MRC, followed by temporal equal-gain combining (EGC). In the pilot-
assisted mode they use the pilot for channel identification [12]-[16] and hence
require a pilot with sufficient power to estimate the channel accurately and
implement first reference-assisted coherent spatial MRC followed by tempo-
ral MRC. This contribution considers an adaptive array-receiver that signifi-
cantly improves receiver performance and approaches that of blind coherent
joint ST-MRC.

First, in the blind mode we exploit the flexibility of the decision-feedback
identification (DFI) procedure [4], [17] for channel estimation in the STAR
receiver [4], [5] to arrive at a 2D-RAKE with an initial feedback mode in
an improved adaptive structure. Further upgrades of the feedback mode in
the DFI procedure ultimately enable identification of the channel within a
constellation-invariant phase ambiguity and hence allow implementation of
quasi-coherent (i.e., differential decoding after coherent detection) joint ST-
MRC with about 2 dB gain in SNR.

Second, in the pilot-assisted mode we exploit a much weaker pilot
than needed by the 2D-RAKE receiver to estimate then compensate the
constellation-invariant phase ambiguity of the channel identified blindly and
more accurately and therefore implement quasi-blind or asymptotically blind
coherent joint ST-MRC [18], [19], [21]. Thereby STAR can outperform the
2D-RAKE receiver by enhancing channel identification and by significantly
reducing the pilot power or overhead fraction (in the range of 1%) and the re-
sulting interference. Both enhancements combined result in a total SNR gain
of 1 dB and enable significant battery power-savings and spectrum-efficiency
gains.

This upgrade process allows us to replace the sequential spatial-temporal
processing in 2D RAKE-type receivers by one-dimensional joint space-time
(1D-ST) processing in STAR and thereby improve channel identification. We
present novel and significant analytical results [17], [19] that establish clearly
the performance advantages of one-dimensional joint space-time processing in
1D-ST STAR over two-dimensional spatial then temporal sequential process-
ing widely implemented today in 2D RAKE-type receivers. We show that
1D-ST structured adaptive receivers reduce both complexity and channel
identification errors, increase robustness to changing propagation conditions,
and speed up convergence over multipath Rayleigh-fading channels.

Organization of this chapter is as follows: in Sect. 10.2 we describe our
data model then provide a brief overview of the blind 2D RAKE receiver
in Sect. 10.3. Section 10.4 proposes incremental upgrades of the 2D RAKE
that ultimately implement blind quasi-coherent ST-MRC in 2D STAR. In
Sect. 10.5, we show the benefits of joint space-time processing in the blind
1D-ST STAR. Section 10.6 considers a last option, namely the use of very
weak pilot signals for channel ambiguity estimation and resolution which im-
plement quasi-blind coherent joint ST-MRC. We finally draw our conclusions
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in Sect. 10.7. Simulations of the enhancements at each stage validate the
significant performance gains achievable with the 1D-ST STAR receiver.

10.2 Data Model

We consider uplink transmission with M receiving antennas at the base-
station. Extension to the downlink with multi-antenna mobile stations fol-
lows along similar lines but the details are left for future consideration. We
consider a multipath Rayleigh fading environment with number of paths P
and Doppler spread frequency fD. For simplicity, we assume perfect synchro-
nization of the multipath delays. Efficient incorporation of accurate timing
in CDMA receivers is addressed in [4], [5].

For air-interface transmission1 we useMPSK modulation, defined by the
following constellation set ofM symbols:

CM={. . . , ck, . . .}=
{
. . . , ej

(2k−1−δ(M−2))
M π, . . .

}
, k ∈ {1, . . . ,M}, (10.1)

where δ(x) = 1 if x = 0, and 0 otherwise. The data symbols bn ∈ CM are
MPSK-modulated at the rate 1/Ts where Ts is the symbol duration then
differentially encoded as:

bn = bnbn−1e
−j(1−δ(M−2))π/M, (10.2)

and hence ideally differentially decoded as:

bn = bnb
∗
n−1e

j(1−δ(M−2))π/M. (10.3)

The phase offset e−j(1−δ(M−2))π/M keeps both bn and bn in theMPSK con-
stellation set CM in the differential encoding and decoding steps, respectively.
We also define the set of constellation-invariant phase rotations as:

RM = {. . . , rk, . . .} s.t. ∀ k′ ∈ {1, . . . ,M} rkck′ ∈ CM, (10.4)

referred to in the following as the rotation set. ForMPSK modulations, the
rotation set is given by2:

RM =
{
. . . , ej2(k−1)π/M, . . .

}
, k ∈ {1, . . . ,M}. (10.5)

After despreading the data at the receiver, we form the M × 1 multipath
despread vector for each path p = 1, . . . , P :

Zp,n = Gp,nεp,nψnbn+Np,n = Gp,nζp,nbn+Np,n = Gp,nsp,n+Np,n, (10.6)
1 The HSDPA standard [3] suggests use of high-order modulations such as MPSK

and MQAM (see Sects. 10.4.5 and 10.6.6) in order to increase the peak rate.
2 Note that the MPSK constellation set CM can be equated to its rotation set
RM, thereby allowing suppression of the phase offset e−j(1−δ(M−2))π/M in both
(10.2) and (10.3). For the sake of generalization, however, we use the conventional
MPSK constellations of (10.1) where CM = RM.
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Table 10.1 Parameters used in the illustrations.
Parameter Value Comment

1/Ts 19.2 KBaud Baud rate

M 4 number of antennas

P 3 number of fading paths

ε̄2p (0, 0, 0) dB average power profile

fc 1.9 GHz carrier frequency

fD 9 Hz Doppler spread (i.e., 5 Kmph)

fPC 1600 Hz power control (PC) frequency

ΔPPC ± 0.25 dB PC adjustment

BERPC 10 % PC-command BER

τPC 0.625 ms PC transmission delay

μ 0.05 adaptation step-size

SNRin 2 − 10 log10
[
sin(π/M)2

]
SNR after despreading in dB

where sp,n = εp,nψnbn = ζp,nbn is the multipath signal component, ψ2
n is

the total received power and ε2
p,n is the normalized power fraction (i.e.,∑P

p=1 ε
2
p,n = 1) of the total power received over the p-th path ζ2

p,n = ε2
p,nψ

2
n.

The M × 1 vector Gp,n, with norm3
√
M , denotes the channel vector from

the transmitter to the multi-antenna receiver over the p-th multipath. The
interference vectors Np,n, mutually independent, have identical spatially-
uncorrelated Gaussian distribution with mean zero and covariance matrix
RN = σ2

N IM after despreading of the data channel. The resulting input SNR
after despreading is SNRin = ψ̄2/σ2

N per antenna element where ψ̄2 denotes
the average total received power. Uncorrelated-Gaussian assumption holds
when a large number of users are active. This motivates us to implement
coherent maximum ratio combining (MRC) in both space and time, the op-
timal combiner in this case. Otherwise, for colored noise situations, we may
incorporate the optimum or the multi-user combining solutions proposed in
[6] and [7], respectively; but that is beyond the scope of this contribution.

The performance of the various receiver structures is verified by simula-
tions at the physical level with parameters4 listed in Table 10.1. Enhance-
ments in terms of capacity at specified transmission rates are best estimated
by system-level simulations [18], [19], but those are beyond the scope of this
contribution.

3 The normalization factors of ‖Gp,n‖2 (in space) and ε2p,n (in time) are both
included in ψ2n.

4 The last two parameters of Table 10.1 are only used in Figs. 10.1 to 10.8. The
SNR value guarantees the same nominal SER for all modulations (see also SNR
in Fig. 10.8 for 16QAM).
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10.3 The Blind 2D RAKE Receiver

To the best of our knowledge, the blind 2D RAKE was the first adaptive
array-processing receiver-structure proposed for DBPSK-modulated CDMA
signals [8]-[11]. This receiver is adaptive in that it carries out iterative channel
identification in order to implement noncoherent spatial MRC. The blind
channel identification step of the 2D RAKE will be explained shortly below.
Here, we extend the 2D-RAKE to DMPSK-modulated CDMA signals.

For now, assume that estimates of the propagation vectors with phase
ambiguities are available at each iteration n (i.e., Ĝp,n � e−jφp,nGp,n). The
2D RAKE first estimates the multipath signal component s̃p,n over each path
for p = 1, . . . , P by noncoherent spatial MRC:

s̃p,n =
ĜH
p,nZp,n

M
� ejφp,nψnεp,nbn +

ĜH
p,nNp,n

M
� ejφp,nsp,n + ηp,n, (10.7)

where the residual interference ηp,n is zero-mean complex Gaussian with vari-
ance σ2

N/M . The 2D RAKE thereby implements the so called “antenna gain”
by reducing the level of interference by a factor M at the combiner output.
Second, to alleviate the impact of the phase ambiguities φp,n, the 2D RAKE
resorts to noncoherent temporal differential demodulation and EGC of the
multipath signal component estimates in the following decision variable:

dn =
P∑
p=1

s̃p,ns̃
∗
p,n−1, (10.8)

and hence estimates the MPSK symbol bn from dn as follows:

b̂n = argmin
ck∈CM

{∣∣∣dnej(1−δ(M−2))π/M − ck

∣∣∣} . (10.9)

In a channel-coded transmission, the 2D RAKE passes on dn directly to
the channel decoder after appropriate mapping. For power control, the total
received power can be estimated by simple smoothing as follows:

ψ̂2
n+1 = (1− α)ψ̂2

n + α

(
P∑
p=1

|s̃p,n|2
)

, (10.10)

where α � 1 is a smoothing factor. An equivalent estimator of the total
received power sums up estimates of the received powers over paths ζ̂2

p,n =
ε̂2
p,nψ̂

2
n and allows estimation of the normalized power fractions ε̂2

p,n as follows:

ζ̂2
p,n+1 = (1 − α)ζ̂2

p,n + α|s̃p,n|2, (10.11)

ψ̂2
n+1 =

P∑
p=1

ζ̂2
p,n+1, (10.12)

ε̂2
p,n+1 = ζ̂2

p,n+1/

(
P∑
p=1

ζ̂2
p,n+1

)
= ζ̂2

p,n+1/ψ̂
2
n+1. (10.13)
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The normalized power fraction estimates ε̂2
p,n are of no immediate use in

the blind 2D RAKE. However, they will be exploited later to significantly
enhance 2D space-time receivers.

As mentioned above, estimates of propagation vectors Ĝp,n are required
to implement noncoherent spatial MRC of (10.7) in the 2D RAKE. Exploiting
the fact that the interference vector in (10.6) is an uncorrelated white noise
vector, the propagation vector over each path Gp,n can be identified as the
principal eigenvector of RZp , the correlation matrix of the despread vector
Zp,n over the p-th path:

RZp = E
[
Zp,nZ

H
p,n

]
= ψ̄2ε̄2

pGpG
H
p + σ2

NIM (10.14)

= ψ̄2ε̄2
p

(
e−jφpGp

) (
e−jφpGp

)H
+ σ2

NIM ,

where ψ̄2 and ε̄2
p are the average total received power and the multipath power

fraction, respectively. In practice, each vector Gp,n is estimated within an
unknown phase ambiguity φp,n by an iterative principal component analysis
(PCA) method based on a singular- or eigenvalue decomposition of the sample
correlation matrix R̂Zp [8]-[11]. However, in the next section we show that this
iterative PCA method can be replaced by an adaptive channel identification
technique that is less complex and performs better.

In summary, the blind 2D RAKE [8]-[11] implements noncoherent spa-
tial MRC and achieves an antenna gain by reducing the interference power
by a factor equal to the number of antennas and thereby improves capacity
significantly. Additional enhancements may be introduced until the noncoher-
ent differential temporal demodulation and EGC step of (10.9) is completely
replaced by quasi-coherent (i.e., within a constellation-invariant phase ambi-
guity rotation) MRC in both space and time, without a pilot.

10.4 The Blind 2D STAR

We propose incremental upgrades of the blind 2D RAKE that ultimately lead
to a very efficient blind quasi-coherent (i.e., within a constellation-invariant
phase rotation) ST-MRC combiner. The resulting improvement in the com-
bining operation offers about 2 dB gain in SNR with all testedMPSK mod-
ulations.

10.4.1 Decision-Feedback Identification (DFI)

We introduce an adaptive channel identification procedure that offers a uni-
fying framework in terms of a common structure called the spatio-temporal
array-receiver (STAR) [4], [5] by equipping various combiners of DMPSK-
modulated signals with the same channel identification engine. Starting with
the conventional 2D-RAKE, we consider successive simple modifications to
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the feedback signal and obtain incremental improvements until we reach a
blind quasi-coherent ST-MRC combiner.

This procedure, referred to as decision-feedback identification (DFI) [4],
[17], updates the channel estimate5 as follows:

Ĝp,n+1 = Ĝp,n + μp

(
Zp,n − Ĝp,nŝp,n

)
ŝ∗p,n, (10.15)

where μp is an adaptation step-size, and ŝp,n is a feedback signal providing
a selected estimate of the signal component. We show next how improved
choices of the feedback signal lead to enhanced versions of the 2D STAR
receiver.

10.4.2 Parallel and Soft DFI

In a first version of 2D STAR, we implement parallel and soft DFI in that 1)
the DFI procedures of (10.15) over multipaths for p = 1, . . . , P are excited
with independent feedback signals (i.e., parallel), and 2) the feedback signals
are assigned the soft output values of the noncoherent MRC combiners in
(10.7) (i.e., soft):

ŝp,n = s̃p,n. (10.16)

Substituting ŝp,n for s̃p,n in (10.7), the DFI procedure of (10.15) can be
rewritten as:

Ĝp,n+1 = Ĝp,n + μp

(
Zp,n − Ĝp,nĜ

H
p,nZp,n/M

)
ZH
p,nĜp,n/M

= Ĝp,n + μp

(
IM − Ĝp,nĜ

H
p,n/M

)
Zp,nZ

H
p,nĜp,n/M

= Ĝp,n + μpΠp,nṘZpĜp,n/M, (10.17)

and its adaptation gradient now interprets as a projector Πp,n orthogonal
to Ĝp,n of ṘZp , the instantaneous estimate of the correlation matrix RZp .
On average, adaptation errors are minimized when the projector Πp,n sup-
presses the dimension of RZp with the highest energy, i.e., its principal
eigenvector e−jφp,nGp,n [note that Πp,nRZpGp,n = Πp,n × (λGp,n) = 0 if
Ĝp,n = λ′Gp,n, see (10.14)]. The DFI procedure is therefore an adaptive
PCA implementation. Hence, after convergence we have Ĝp,n � e−jφp,nGp,n

and ŝp,n = s̃p,n � ejφp,nsp,n + ηp,n [see (10.7)].
For illustration purposes, we define the channel ambiguity over each path

ap,n and the centroid channel ambiguity an as:

ap,n = ρp,ne
jφp,n = ĜH

p,nGp,n/M for p = 1, . . . , P, (10.18)

an = ρne
jφn =

P∑
p=1

ε̂p,nεp,nĜ
H
p,nGp,n/M =

P∑
p=1

ε̂p,nεp,nap,n. (10.19)

5 Preferably ‖Ĝp,n‖ is forced to
√

M after each DFI update for increased stability
(we do so in this work), although normalization of Ĝp,n to

√
M is asymptotically

guaranteed after convergence.
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Fig. 10.1. Channel ambiguity with BPSK-modulated parallel/soft DFI over (a):
1st path (i.e., a1,n), (b): 2nd path (i.e., a2,n), (c): 3rd path (i.e., a3,n), (d): centroid
channel ambiguity (i.e., an). Constellation-invariant rotation points (i.e., rk ∈ RM)
are denoted by black circles and initial/final channel ambiguities by black/white
squares.

Figure 10.1 shows that ap,n, with parallel/soft DFI, follows the shortest
path from initial position ap,0 towards the unit circle in the learning phase
then remains in its vicinity after convergence (i.e., ρp,n = |ap,n| � 1 and
ap,n � ejφp,n), except during deep fades [e.g., see Figs. 10.1(b) and 10.1-
(c)]. With any random initialization Ĝp,0 different from the null vector (here
with norm

√
M), Ĝp,n indeed converges to the corresponding propagation

vector Gp,n within a phase ambiguity φp,n (i.e., Ĝp,n � e−jφp,nGp,n). The
centroid channel ambiguity an illustrates the difference between this version
of the 2D-STAR and a coherent ST-MRC combiner. As shown in Fig. 10.1,
the phase ambiguities ap,n are mutually independent and combine in an [see
Fig. 10.1(d)] in a destructive manner with parallel/soft DFI, hence the need
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for noncoherent temporal differential demodulation and EGC with (10.8) and
(10.9).

In fact, the 2D STAR version with parallel/soft DFI readily implements
the blind 2D RAKE receiver discussed previously in Sect. 10.3. However, its
DFI procedure offers an adaptive PCA implementation that is much more
efficient than the iterative PCA method considered in the blind 2D RAKE
[8]-[11]. It requires a complexity order per symbol that is only linear in the
number of antennas M and it tracks time-varying channels faster due to its
LMS-type nature (ŝp,n acts as a reference signal). Furthermore, the iterative
PCA method in [8]-[11] is not decision-directed and results in phase ambi-
guities that are almost random from one block iteration to another. With
the DFI procedure, the phase ambiguities ap,n (or φp,n) can be exploited as
“controllable” degrees of freedom to force their convergence to a common
constellation-invariant phase rotation (i.e., rk ∈ RM) by both common and
hard signal feedback.

In the following, we explain hard then common DFI as opposed to soft
and parallel DFI, respectively, then show how combined use of both common
and hard DFI enables implementation of blind quasi-coherent ST-MRC.

10.4.3 Parallel and Hard DFI

In a second version of 2D STAR, we implement parallel and hard DFI in
that the feedback signals, still independent (i.e., parallel), now incorporate
tentative estimates of the transmitted symbol (i.e., hard) as follows6:

ŝp,n = ζ̂p,nb̂p,n = ε̂p,nψ̂nb̂p,n, (10.20)

where b̂p,n is the tentative symbol estimate over the p-th path given by7:

b̂p,n = Hard {ŝp,n} = argmin
ck∈CM

{|s̃p,n − ck|} . (10.21)

Previously we have shown that s̃p,n � ejφp,nsp,n + ηp,n [see (10.7)] with the
DFI procedure. Hence, neglecting momentarily ηp,n in s̃p,n, we have:

b̂p,n � argmin
ck∈CM

{∣∣ejφp,nsp,n − ck
∣∣} = argmin

ck∈CM

{∣∣ejφp,nbn − ck
∣∣} . (10.22)

Hard decision above exploits the phase ambiguity ap,n � ejφp,n as a degree
of freedom with φp,n ∈ [0, 2π) and hence restricts its realization to limited

6 An alternative hard feedback signal ŝp,n = Real
{

s̃p,nb̂∗p,n/|̂bp,n|
}

b̂p,n/|̂bp,n| that

performs nearly the same in the DFI procedure of (10.15) finds more efficient use
in power estimation (see (10.25)). With MPSK modulations, note that normal-
ization of b̂p,n with |̂bp,n| is not needed [in (10.25) as well].

7 For non-constant-modulus modulations such as MQAM, minimum distance from
constellation CM should be found over |s̃p,n − ζ̂p,nck| in (10.21).
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Fig. 10.2. Same as Fig. 10.1 with parallel/hard DFI.

constellation-invariant rotation points rk ∈ RM that minimize the distance
between the rotated symbol ejφp,nbn and the constellation CM. Indeed, we
have rkbn ∈ CM and hence the minimum distance ideally reduces to zero if
we neglect the residual noise contributions in s̃p,n.

Figure 10.2 shows indeed that ap,n, with parallel/hard DFI, basically fol-
lows the shortest path to the closest rotation point rk ∈ RM from initial
position ap,0 in the learning phase then remains in its vicinity after con-
vergence. Hence, the DFI procedure converges with high probability8 to the
following ambiguity over the p-th path:

ap,n � ejφp,n � rk(p) = arg min
rk∈RM

{|ap,0 − rk|} . (10.23)

8 Higher perturbations in the DFI procedure due to faster channel variations,
higher noise levels or higher adaptation step-size values may prevent ap,n from
converging to the closest rotation point in RM, only to converge to another point
in RM.
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Deep fades may sporadically force ap,n away from rk(p) [see Fig. 10.2(c)].
However, amplitude attenuations away from the unit circle are less significant
than those observed with parallel/soft DFI (see Fig. 10.2). They suggest
that hard DFI has better channel tracking capabilities than soft DFI, by
“anchoring” the phase ambiguities to constellation-invariant phase rotations.

With parallel/hard DFI, the ambiguities ap,n � rk(p) are mutually in-
dependent and still combine in an in a destructive manner as shown in
Fig. 10.1(d), hence the need again for noncoherent temporal differential de-
modulation and EGC with (10.8) and (10.9). For BPSK modulations, how-
ever, hard DFI has an advantage over soft DFI. The constellation is one
dimensional in the complex plane and the desired signals always lie on the
real axis with hard DFI (see Fig. 10.2). Hence for BPSK-modulated hard
DFI, noncoherent spatial MRC of (10.7) can be replaced by quasi-coherent
(i.e., within a sign ambiguity) spatial MRC as follows:

s̃p,n = Real

{
ĜH
p,nZp,n

M

}
� ±sp,n +Real {ηp,n} . (10.24)

This further reduces the residual noise variance by factor 2 and thereby re-
duces the detection errors (see Sect. 10.4.6) in both (10.8) and (10.9).

Reduction of the residual noise power by factor 2 can be also exploited
in enhancing power estimation with hard DFI. However, this improvement
can be achieved for both BPSK and higher-order modulations by rewriting
(10.11) as:

ζ̂2
p,n+1 = (1− α)ζ̂2

p,n + αReal
{
s̃p,nb̂

∗
p,n/|b̂p,n|

}2

. (10.25)

Projection of s̃p,n over the normalized tentative symbol estimate b̂p,n/|b̂p,n|
indeed reduces the variance of the residual noise by half and improves estima-
tion9 of ζ̂2

p,n above as well as ψ̂2
n and ε̂2

p,n in (10.12) and (10.13), respectively.

10.4.4 Common and Soft DFI

In a third version of 2D STAR, we implement common and soft DFI in that
the feedback signals are based on weighted replicas of the same (i.e., common)
soft output value s̃n of noncoherent ST-MRC (i.e., soft):

ŝp,n = ε̂p,ns̃n, (10.26)

9 Projection of s̃p,n over the orthogonal to b̂p,n/|̂bp,n|, given by Im
{

s̃p,nb̂∗p,n/|̂bp,n|
}

[5], [18], enables estimation of the residual noise variance and its subtraction from
ζ̂2p,n for an even more enhanced power estimation. For simplicity, this option will
not be pursued further.
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Fig. 10.3. Same as Fig. 10.1 with common/soft DFI.

where s̃n is simply obtained by noncoherent temporal MRC10 of the soft
outputs s̃p,n of noncoherent spatial MRC in (10.7):

s̃n =
P∑
p=1

ε̂p,ns̃p,n =
P∑
p=1

ε̂p,nĜp,nZp,n/M. (10.27)

Exploiting again the expression for s̃p,n � ejφp,nsp,n+ ηp,n [see (10.7)] estab-
lished with the DFI procedure as well as (10.18) and (10.19), we have:

ŝn =
P∑
p=1

ε̂p,ne
jφp,nsp,n +

(
P∑
p=1

ε̂p,nηp,n

)
(10.28)

=

(
P∑
p=1

ε̂p,nεp,ne
jφp,n

)
ψnbn + ηn = ansn + ηn = ρne

jφnsn + ηn,

10 Note that estimates of ε̂2p,n from (10.13) required for temporal MRC (also used in
hard DFI in (10.20)), with no use in the 2D RAKE, definitely enable significant
enhancements of 2D receivers in the following.
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where the residual output noise ηn is Gaussian with variance σ2
N/M since

ε̂2
p,n sum up to 1. Common DFI exploits the phase ambiguities ap,n � ejφp,n

as degrees of freedom to tie their values after convergence to a unique phase
ambiguity an � ejφn (i.e., ρn = |an| � 1 and ap,n � ejφp,n � an � ejφn after
convergence), in order to maximize the energy of both s̃n and the feedback
signal ŝp,n by constructive combining (see another interpretation later in
Sect. 10.5.3). Hence we have s̃n � ejφnsn + ηn, s̃p,n � ejφnsp,n + ηp,n and
Ĝp,n � e−jφnGp,n after convergence.

Figure 10.3 shows indeed that the centroid ambiguity an [see Fig. 10.3(d)],
with common/soft DFI, follows the shortest path from initial position a0

towards the unit circle in the learning phase, then remains in its vicinity
after convergence. Phase deviations around the unit circle are due to the
time variations of the channel realizations. After convergence, the multipath
ambiguities ap,n are tied together to an (see final values of ap,n and an nearly
at the same position in Fig. 10.3) and hence combine constructively in an.
Amplitude attenuations of an away from the unit circle are less significant
than those of ap,n, themselves weaker than those observed in Fig. 10.1. They
suggest that common DFI has better tracking capabilities than soft DFI, by
exploiting a “kind” of multipath diversity in the feedback signals.

Noncoherent temporal MRC in (10.27), a priori destructive, forces the
phases ambiguities ap,n to a common centroid ambiguity an after conver-
gence and hence becomes constructive a posteriori. With common DFI, we
therefore replace noncoherent temporal differential demodulation and EGC
in the decision variable of (10.8) by noncoherent ST-MRC in (10.27) followed
by differential demodulation:

dn = s̃ns̃
∗
n−1, (10.29)

to reduce detection errors (see Sect. 10.4.6) over the symbol estimate b̂n in
(10.9) and possibly enhance data channel-decoding in the case of channel-
coded transmissions.

Common DFI has an additional benefit. It can exploit the soft output
s̃n of noncoherent ST-MRC of (10.27) to directly estimate the total received
power as follows:

ψ̂2
n+1 = (1− α)ψ̂2

n + α|s̃n|2. (10.30)

Compared to the two equivalent total-power estimates of (10.10) or (10.12)
which sum P squared terms (i.e., temporal EGC), the new estimate sums
one squared term only (i.e., noncoherent ST-MRC) and therefore improves
power control from weaker variance due to residual noise [20].

10.4.5 Common and Hard DFI

In a fourth and last version of 2D STAR, we implement common and hard
DFI in that the feedback signals enclose weighted replicas of the same (i.e.,
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Fig. 10.4. Same as Fig. 10.1 with common/hard DFI.

common) tentative symbol estimate (i.e., hard)11:

ŝp,n = ζ̂p,nb̂n = ε̂p,nψ̂nb̂n, (10.31)

where the tentative symbol estimate b̂n is obtained by hard12 decision over
the soft output s̃n of the noncoherent ST-MRC combiner in (10.27):

b̂n = Hard {s̃n} = argmin
ck∈CM

{|s̃n − ck|} . (10.32)

11 An alternative hard feedback signal ŝp,n =
∣∣∣Real

{
s̃p,nb̂∗n/|̂bn|

}∣∣∣ b̂n/|̂bn| performs

nearly the same in the DFI procedure (see footnote 6).
12 For non-constant-modulus modulations such as MQAM, it is more accurate to

find minimum distance from constellation CM over |s̃n − ψ̂nck|. However, power
control attempts to equalize ψ2n to 1 and hence the rule in (10.32) holds, unlike
(10.21) (see footnote 7).
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Fig. 10.5. Realizations of the noncoherent ST-MRC soft output s̃n in (10.27)
for (a): common/soft DFI, (b): common/hard DFI. Realizations marked with a
small square correspond to the nominal transmitted symbol among the constellation
points ck ∈ CM marked with a large square.

With common/soft DFI, we have just shown that s̃n � ejφnsn + ηn. Hence,
neglecting momentarily ηn in s̃n, we have:

b̂n � argmin
ck∈CM

{∣∣ejφnsn − ck
∣∣} = argmin

ck∈CM

{∣∣ejφnbn − ck
∣∣} . (10.33)

Hard decision above exploits the centroid phase ambiguity an � ejφp,n as
a degree of freedom with φn ∈ [0, 2π) and hence restricts its realization
to limited constellation-invariant rotation points rk ∈ RM that minimize
the distance between the rotated symbol ejφnbn and the constellation CM
(see similar discussion below (10.22)). Simultaneously, common DFI ties all
multipath phase ambiguities ap,n to an and hence ap,n � an ∈ RM after
convergence.

Figure 10.4 shows indeed that the centroid ambiguity an, with com-
mon/hard DFI, follows the shortest path from initial position a0 to the closest
rotation point rk ∈ RM, then remains in its vicinity after convergence. The
figure also shows that the multipath phase ambiguities are bound to converge
to the same rotation point. Hence, the DFI procedure converges with high
probability (see footnote 8) to the following phase ambiguity:

an = ap,n � ejφn � rk = arg min
rk∈RM

{|a0 − rk|} . (10.34)

Amplitude attenuations of both ap,n and an are significantly weaker than
those observed in Figs. 10.1, 10.2, and 10.3 with the previous DFI versions.
They suggest that common and hard DFI has better tracking capabilities
than parallel and/or soft DFI, 1) by exploiting a “kind” of multipath diversity
in the feedback signals, and 2) by “anchoring” all phase ambiguities to a
common constellation-invariant phase rotation.
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Fig. 10.6. (a): Centroid phase ambiguity an with QPSK-modulated common/hard
DFI (see caption of Fig. 10.1 for additional explanations). (b): Realizations of
the noncoherent ST-MRC soft output s̃n in (10.27) with QPSK-modulated com-
mon/hard DFI (see caption of Fig. 10.5 for additional explanations).
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Fig. 10.7. Same as Fig. 10.6 with 8PSK modulation instead.

Figure 10.5 shows that common/soft DFI results in a continuous devia-
tion of the ST-MRC output from the constellation points [see Fig. 10.5(a)],
while common/hard DFI rotates them back around the nominal constella-
tion points [see Fig. 10.5(b)] within a constellation-invariant phase rotation
rk [rk � +1 only because a0 was closer to +1 in Fig. 10.4(d), see (10.34)]. The
soft output s̃p,n of ST-MRC, a priori noncoherent with common/soft DFI, be-
comes a posteriori quasi-coherent (i.e., within a constellation-invariant phase
rotation) after convergence with common/hard DFI.

This useful “anchoring” mechanism that casts the soft output of ST-
MRC around the nominal positions of the constellation points, illustrated so
far with BPSK, holds very well with higher-order modulations. With QPSK-
modulated common/hard DFI, Fig. 10.6 shows that the centroid phase am-
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Fig. 10.8. Same as Fig. 10.6 with 16QAM modulation instead (normalized con-
stellation with average unit power and SNRin = 12 dB).

biguity an converges to the closest rotation point rk ∈ RM from a0, i.e.,
rk = −j [see Fig. 10.6(a)], resulting in a rotation of the ST-MRC output by
−π/2 from nominal constellation points [see Fig. 10.6(b)]. Similar observa-
tions can be made from Fig. 10.7 for 8PSK-modulated common/hard DFI
where realizations rotated by −π/4 from nominal positions (i.e., a0 is closer
to rk = (1− j)/

√
2).

In fact, this useful “anchoring” mechanism of common/hard DFI holds
even for MQAM modulations as illustrated in Fig. 10.8 with 16QAM. Due
to its geometry, 16QAM has the same set RM of rotation points rk as QPSK
[see Fig. 10.6(a)]. Hence the centroid phase an, which starts from the same
initial position a0, also converges to rk = −j as the closest rotation point [see
Fig. 10.8(a)], thereby resulting in a rotation of the ST-MRC output by −π/2
from nominal constellation points [see Fig. 10.8(b)]. With standardMQAM
modulations, however, there is no trivial differential coding scheme13 to alle-
viate a channel phase ambiguity even if the phase rotation is constellation-
invariant. The phase “anchoring” mechanism of MQAM-modulated com-
mon/hard DFI finds particularly good application later with pilot-assisted
versions of STAR (see Sects. 10.6 and 10.6.6).

WithMPSK modulations, differential coding at transmission enables de-
tection of symbols with a channel phase ambiguity. We resolve it by nonco-
herent ST-MRC and differential demodulation at the receiver when equipped
with common/soft DFI [see (10.27) and (10.29)]. With common/hard DFI,
however, the soft output s̃n of ST-MRC becomes quasi-coherent (i.e., within a
constellation-invariant phase rotation) and hence enables reliable estimation
of the transmitted DMPSK symbol bn from the tentative symbol b̂n � rkbn

13 Differential detection is possible for instance with a star 16QAM constellation, a
combination of two 8PSK constellations with different amplitudes (e.g., see [22]).
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of (10.32) within a rotation rk ∈ RM. Therefore, power estimation in (10.30)
can be replaced by:

ψ̂2
n+1 = (1− α)ψ̂2

n + αReal
{
s̃nb̂

∗
n/|b̂n|

}2

, (10.35)

for improved power estimation and control14. Additionally, instead of differen-
tial demodulation in (10.29) and hard decision in (10.9), differential decoding
of b̂n enables simple estimation of the MPSK symbol bn as follows:

b̂n = b̂nb̂
∗
n−1e

j(1−δ(M−2))π/M. (10.36)

Detection errors over rkbn in b̂n of (10.32) (i.e., Prob[b̂n �= rkbn]) are those
of coherent ST-MRC, much fewer than those resulting from noncoherent ST-
MRC with common/soft DFI. Differential decoding as in (10.36) doubles
these errors, yet common/hard DFI significantly outperforms common/soft
DFI in symbol detection (see Sect. 10.4.6). For channel-coded transmissions
with soft channel decoding, however, we need to pass on the soft decision
variable dn of (10.29) to the decoder. In this case, the performance gains
after channel decoding are theoretically those of common/soft DFI. Recent
simulations yet suggest that the “anchoring” mechanism of common/hard
DFI enables noticeable improvement from limiting phase deviations in dn.
This issue is however out of the scope of this contribution.

In the following, we compare the SER (symbol error rate) performance of
the four DFI versions discussed previously.

10.4.6 Performance Gains of the DFI Versions

Simple analytical expressions for SER (i.e., Prob[b̂n �= bn]) can be derived
only for BPSK with differential demodulation and forMPSK with differential
decoding, both over Gaussian channels (see general closed-form expressions
in [23], [24] for instance). Here, in Fig. 10.9, we simply plot the SER curves
obtained by simulations for each DFI version when modulated with BPSK,
QPSK, and 8PSK. These curves confirm the performance gains expected from
successive upgrades of the DFI procedure in 2D STAR.

As shown in Fig. 10.9, the 2D STAR version with parallel/soft DFI, which
better approximates the blind 2D RAKE receiver (see Sects. 10.3 and 10.4.2),
performs worst. Parallel/hard DFI outperforms parallel/soft DFI only with
BPSK where noncoherent spatial MRC in (10.7) is replaced by quasi-coherent
spatial MRC in (10.24). Common/soft DFI always outperforms parallel/soft
14 Similarly to (10.25), projection of s̃n over 1) the normalized tentative symbol

estimate b̂n/|̂bn| and 2) over its orthogonal, given by Im
{

s̃nb̂∗n/|̂bn|
}

[5], [18], 1)

reduces the variance of the residual noise by half in (10.35), and 2) enables esti-
mation of this variance then its subtraction from ψ̂2n for an even more enhanced
power estimation (see footnote 9).
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)
in (10.52) (see

Sect. 10.5.4).

DFI by replacing noncoherent temporal differential demodulation and EGC
in (10.8) by noncoherent temporal MRC in (10.27) and differential demodu-
lation in (10.29). The SNR gain however shrinks steadily as the modulation
is changed from BPSK to higher order. Common/soft DFI even outperforms
parallel/hard DFI with BPSK, suggesting that gains from noncoherent tem-
poral MRC vs. EGC are more significant than those of quasi-coherent vs.
noncoherent spatial MRC. Common/hard DFI outperforms all other DFI
versions by implementing quasi-coherent ST-MRC. Regardless of the modu-
lation employed, its offers an SNR gain of about 2 dB over the worst DFI
version, i.e., parallel/soft DFI which better approximates the blind 2D RAKE
receiver.

Overall, we have been able to upgrade the blind 2D RAKE by introduc-
ing incremental improvements to the combining operation thereby enabling
the blind 2D STAR to gain about 2 dB in SNR over blind 2D RAKE-type
receivers with all tested MPSK modulations.

10.5 The Blind 1D-ST STAR

So far, we have exploited the flexibility of the DFI procedure in a 2D struc-
tured receiver, i.e., sequential processing of diversity fingers in two dimen-
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sions: first in space over antennas then in time over multipaths. Ultimately, we
arrive at a quasi-coherent ST-MRC combiner in 2D STAR with common and
hard DFI. Yet by exploiting the common DFI version, further improvements
are achievable by 1) identifying then 2) combining all diversity fingers jointly
in space and time with 1D-ST (space-time) structured versions of STAR. Of
particular interest, the 1D-ST counterpart of the 2D structured STAR with
common and hard DFI, implements quasi-coherent joint ST-MRC with re-
duced complexity, increased robustness to changing propagation conditions,
and increased accuracy and speed of channel estimation.

10.5.1 1D-ST Structured Data Model

Let us simply align the multipath despread vectors Zp,n for p = 1, . . . , P in
an MP × 1 spatio-temporal despread vector [see (10.6)]:

Zn =

⎡⎢⎢⎢⎢⎢⎢⎣

Z1,n

...
Zp,n
...

ZP,n

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

ε1,nG1,n

...
εp,nGp,n

...
εP,nGP,n

⎤⎥⎥⎥⎥⎥⎥⎦ψnbn +

⎡⎢⎢⎢⎢⎢⎢⎣

N1,n

...
Np,n

...
NP,n

⎤⎥⎥⎥⎥⎥⎥⎦ = Hnsn +Nn, (10.37)

where sn = ψnbn is the signal component, Hn is the MP ×1 spatio-temporal
propagation vector and Nn is the MP × 1 zero-mean uncorrelated spatio-
temporal Gaussian noise vector with covariance matrix RN = σ2

NIMP .
This 1D-ST structured data model is actually a simplification of the post-

correlation model (PCM) introduced in [4] to efficiently address the more gen-
eral issue of joint space-time processing with simultaneous multipath time-
delay synchronization in STAR. Exploitation of a similar 1D-ST structured
data model before despreading later allowed development of very efficient
multi-user upgrades of STAR by simultaneous joint-space-time signal com-
bining, channel identification, time-delay synchronization and interference
suppression [7]. To our knowledge, the advantages of simultaneous joint space-
time processing operations were not recognized previously and were not pur-
sued to further integrate the spatial dimension made available by antenna-
arrays (see discussion in [7] and references therein). Below we exhibit the
advantages of joint space-time signal combining and channel identification
using the simplified 1D-ST structured data model above.

10.5.2 2D STAR with Common DFI Reinterpreted

Common DFI enables exploitation of the 1D-ST data model of (10.37) in 1)
reformulating the two sequential spatial and temporal processing steps of 2D
STAR in a compact form, 2) reinterpreting the resulting compact form as a
joint space-time processing step, and 3) reimplementing this joint space-time
processing step in a more efficient 1D-ST structure of STAR.
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Using the expressions for Zp,n, ap,n and an in (10.6), (10.18), and (10.19),
respectively, we further analyze the expression for the soft output s̃n of non-
coherent ST-MRC in (10.27) as shown in the upward developments of the
following equation:

s̃n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ansn + ηn
↑(

P∑
p=1

ε̂p,nεp,nap,n

)
sn +

(
P∑
p=1

ε̂p,nηp,n

)
↑(

P∑
p=1

ε̂p,nεp,nĜ
H
p,nGp,n/M

)
sn +

(
P∑
p=1

ε̂p,nĜ
H
p,nNp,n/M

)
.

↓
Ĥ
H

n Zn/M
↓(

Ĥ
H

n Hn/M
)
sn +

(
Ĥ
H

n Nn/M
)

(10.38)

In the downward developments, however, we can reformulate s̃n as the soft
output of the space-time propagation vector estimate Ĥn combining the
space-time despread vector Zn by ST-MRC, noncoherent or quasi-coherent
depending on whether soft or hard DFI was used jointly with common DFI.

Exploiting the 1D-ST structured data model of (10.37) and equating the
developments above allows reinterpretation of the two sequential spatial then
temporal MRC combining steps of (10.7) and (10.27) (i.e., 2D structured) as
a single joint ST-MRC combining step (i.e., 1D-ST structured). Additionally,
the centroid channel ambiguity an of (10.19) can be considered as the nor-
malized scalar product ĤnHn/M that measures the total distortion between
the space-time propagation vector Hn and its estimate Ĥn. The above rein-
terpretations of the processing steps in 2D STAR with common DFI along
the 1D-ST data model call for directly estimating the space-time propaga-
tion vector Hn in a single joint space-time identification step using 1D-ST
structured DFI.

10.5.3 1D-ST Structured DFI

Driven by the same channel estimates as 2D-STAR with common DFI, joint
space-time processing suggests merely simple rearrangements of the data
structure processed sequentially in space then in time. The 2D and 1D-ST
structured STAR versions would be identical and would have the same perfor-
mance. Actually, the benefits of joint spatio-temporal processing go beyond
compact spatio-temporal data modeling when they reach the steps of signal
combining and channel identification. Indeed, joint space-time processing re-
places the P disjoint DFI procedures of (10.15) for all paths, referred to as



304 S. Affes, P. Mermelstein

2D structured DFI, by a single joint spatio-temporal DFI update15:

Ĥn+1 = Ĥn + μ
(
Zn − Ĥnŝn

)
ŝ∗n, (10.39)

where μ is an adaptation step-size, and the common feedback signal ŝn is a
selected estimate of the spatio-temporal signal component. As shown later
in Sect. 10.5.4, this 1D-ST structured DFI procedure outperforms its 2D
structured counterpart by reducing channel estimation and power control
errors.

A first version of 1D-ST STAR transforms 2D structured common/soft
DFI (see Sect. 10.4.4) into 1D-ST structured soft DFI using the following
feedback signal in (10.39):

ŝn = s̃n, (10.40)

where the soft output s̃n of joint noncoherent ST-MRC:

s̃n = Ĥ
H

n Zn/M, (10.41)

replaces that obtained by (10.27). Estimation of the total received power ψ̂2
n,

the decision variable dn and theMPSK data symbol b̂n follow using (10.35),
(10.29), and (10.9), respectively.

Substituting s̃n for ŝn in (10.41), the 1D-structured DFI procedure can
be rewritten as [see (10.17)]:

Ĥn+1 = Ĥn + μ
(
Zn − ĤnĤ

H

n Zn/M
)

ZHn Ĥn/M

= Ĥn + μ
(
IMP − ĤnĤ

H

n /M
)

ZnZ
H
n Ĥn/M

= Ĥn + μΠnṘZĤn/M, (10.42)

and its adaptation gradient interprets as a projector Πn orthogonal to Ĥn

of ṘZ, the instantaneous estimate of the correlation matrix RZ of Zn [see
(10.14)]:

RZ = ψ̄2
(
Hne

−jφn
) (

Hne
−jφn

)H
+ σ2

N IMP . (10.43)

On average, adaptation errors are minimized when the projector Πn sup-
presses the dimension of RZ with the highest energy, i.e., its principal eigen-

vector e−jφnHn (note that ΠnRZHn = Πn× (λHn) = 0 if Ĥn = λ′Hn). This
new interpretation of the 1D-ST DFI procedure as an adaptive PCA imple-
mentation provides a more intuitive justification as to why the multipath
ambiguities ap,n are tied, converging in parallel with the centroid ambiguity
15 Preferably ‖Ĥn‖ is forced to

√
M after each DFI update for increased stability

(we do so in this work), although normalization of Ĥn to
√

M is asymptotically
guaranteed after convergence (see footnote 5).
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an to the same phase ambiguity with common DFI (see discussion below
(10.28)).

A second version of 1D-ST STAR transforms 2D structured common/hard
DFI (see Sect. 10.4.5) into 1D-ST structured hard DFI using the following
feedback signal16 in (10.39):

ŝn = ψ̂nb̂n, (10.44)

where the tentative symbol estimate b̂n is estimated in (10.32) by hard de-
cision over s̃n of (10.41). Estimation of the total received power ψ̂2

n and
the decision variable dn follow by (10.35) and (10.29), respectively. Since
1D-ST hard DFI implements joint quasi-coherent ST-MRC by forcing the
centroid channel ambiguity to converge to a constellation-invariant rotation
point rk ∈ RM, the MPSK data symbol bn is directly estimated by dif-
ferential decoding of b̂n in (10.36). As discussed previously in Sect. 10.4.5,
common/hard DFI in 1D-ST hard DFI outperforms common/soft DFI in 1D-
ST soft DFI by significantly reducing detection errors over the data symbols
bn (see Sect. 10.4.6). Theoretically, they perform equally over channel-coded
transmissions although current investigations suggest that the “anchoring”
mechanism in hard DFI reduces channel decoding errors (see Sect. 10.4.5).

In the case of a single path (i.e., P = 1 in nonselective fading) the 1D-
ST and 2D STAR versions become identical when both implement either
hard or soft DFI. In the case of a single receive antenna (i.e., M = 1 on
the downlink for instance), the differences between all the 1D and 2D ver-
sions of STAR persist and offer the same potential improvements17. We have
shown in Sect. 10.4.6 that common/hard DFI outperforms all other versions
of 2D STAR by implementing quasi-coherent ST-MRC. Hence next we only
compare this 2D version of STAR with its 1D-ST counterpart to show the
performance advantages of the latter.

10.5.4 Performance Gains of 1D-ST STAR over 2D STAR

We establish below a theoretical performance result that channel identifi-
cation errors with 1D-ST STAR are smaller than those with 2D-STAR. To

16 An alternative hard feedback signal ŝn = Real
{

s̃nb̂∗n/|̂bn|
}

b̂n/|̂bn| that performs

nearly the same in the DFI procedure of (10.39) finds more efficient use in power
estimation [see (10.35)].

17 Note in this case that the 1D-ST DFI version amounts to identifying the multi-
path fades as a temporal channel vector. Similarly, the 2D DFI versions, applied
here to the identification of spatial propagation vectors Gp,n, could easily be
combined with another “temporal” DFI procedure applied to the soft outputs
s̃p,n of (10.7) aligned as a temporal observation vector for identification there of
εp,nejφp,n as a temporal P ×1 channel vector with norm 1. This option is beyond
the scope of this contribution. It shows however that 1D-ST DFI amounts to
jointly applying two DFI procedures, one in space and another in time.
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our knowledge, this is the first analytical explanation as to when and why
joint space-time processing outperforms sequential space and time process-
ing. Later we validate this proof by simulations and show the resulting perfor-
mance advantage of 1D-ST STAR over 2D STAR and current 2D RAKE-type
receivers.

We define the mean square error per diversity branch of channel identifi-
cation in both space and time, referred to in the following as misadjustment,
as [17]:

β2 =
E
[‖ΔHn‖2

]
MP

=
E
[
‖Ĥn −Hn‖2

]
MP

. (10.45)

In [17] we carried out a detailed convergence and performance analysis of
channel misadjustment using the 1D-ST structured DFI of (10.39). Here we
provide a summary of the main analytical results derived there. We show that
the DFI procedure converges in the mean square sense with the following time
constant [17]:

τ =
1

2μψ̄2
(
1− μψ̄2

2

) � 1
2μψ̄2

, (10.46)

and establish the analytical expression for steady-state (i.e., after conver-
gence) misadjustment [17]:

β2
(
ψ̄2, σ2

N , fDTs, P, μ
)
=

μσ2
N

2
(
1− μψ̄2

2

)+ 2
P

[
1−B0

(
2πfDTs

μψ̄2

)]
, (10.47)

where B0(x) is the Bessel function of the first kind of order 0. This expression
for misadjustment reflects two contributions, the first from noise, increases
with larger values of the adaptation step-size μ due to higher gradient up-
date perturbations. And the second, from the Doppler spread, increases with
smaller values of μ due to slower tracking of the channel variations. We hence
establish the following analytical expressions for the optimum step-size and
the resulting minimum misadjustment [19] and time constant (not necessarily
the smallest):

μopt

(
ψ̄2, σ2

N , fDTs, P
)
= 2

[
(πfDTs) /

(√
Pψ̄2σN

)] 2
3
, (10.48)

β2
min (SNRin, fDTs, P ) =

3
2

[
(πfDTs) /

(√
PSNRin

)] 2
3
, (10.49)

τopt (SNRin, fDTs, P ) � 1
4

[√
P/
(
πfDTs

√
SNRin

)] 2
3
. (10.50)

To the best of our knowledge, these expressions (which apply to reference-
assisted receivers as well, see Sect. 10.6) are the first to provide practical
means for optimal tuning of adaptive channel identification and for prediction
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of step-size, misadjustment and convergence time in a multipath Rayleigh
fading environment.

We exploit the theoretical results above to compare the minimum mis-
adjustments and the corresponding time constants of 1D-ST and 2D STAR
denoted by β2

1D,min, τ1D,opt, β2
2D,min and τ2D,opt, respectively. We already

have β2
1D,min = β2

min in (10.49) and τ1D,opt = τopt in (10.50). For 2D-STAR
we derive the expression for β2

2D,min as follows:

β2
2D,min =

E
[
‖Ĥn − Hn‖2

]
MP

=
E
[∑P

p=1 ‖ε̂p,nĜp,n − εp,nGp,n‖2
]

MP

=
P∑
p=1

ε̄2
p

P

E
[‖ΔGp,n‖2

]
M

+
1
P

P∑
p=1

E
[|Δεp,n|2

]
, (10.51)

where ΔGp,n = Ĝp,n − Gp,n and Δεp,n = ε̂p,n − εp,n denote the estimation
errors over Gp,n and εp,n, respectively, both assumed independent.

Although the analytical expressions of (10.46) to (10.49) assume perfect
equalization of the total received power (i.e., ψ2

n = ψ̄2) [17], we apply them
to 2D DFI with step-size optimization assuming a constant received power
over each path ε̄2

pψ̄
2 and therefore have:

μp,opt

(
ε̄2
pψ̄

2, σ2
N , fDTs

)
=2
[
(πfDTs) /

(
ε̄2
pψ̄

2σN
)] 2

3 =
P

1
3

ε̄
4
3
p

μopt, (10.52)

yielding:

E
[‖ΔGp,n‖2

]
M

= β2
min

(
ε̄2
pSNRin, fDTs, 1

)
=

P
1
3

ε̄
4
3
p

β2
1D,min. (10.53)

Using the expression above in (10.51), we have:

β2
2D,min =

[
P∑
p=1

1
P

(
ε̄2
pP
) 1

3

]
β2

1D,min + β2
ε = κβ2

1D,min + β2
ε , (10.54)

where β2
ε denotes the average estimation errors over multipath amplitudes

given by the second summation term in (10.51). Theory provides bounds
to the factor κ between 0 and 1. With realistic average multipath power
profiles18, however, values for κ are actually close to 1 so that in practice we
have:

β2
2D,min � β2

1D,min + β2
ε > β2

1D,min. (10.55)
18 With equal-power paths (i.e., ε̄2p = 1/P ), note that a feedback signal with average

power ψ̄2/P in 2D DFI yields μp,opt = Pμopt and E
[‖ΔGp,n‖2

]
/M = Pβ21D,min

in (10.52) and (10.53), respectively. In (10.54), note also that κ = 1 and β22D,min =
β21D,min + β2ε .
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This steady-state misadjustment is reached after convergence with a time
constant dominated by the weakest multipath power, say ε̄2

min:

τ2D,opt�τopt

(
ε̄2
minSNRin, fDTs, 1

)� 1

(ε̄2
minP )

1
3
τ1D,opt ≥ τ1D,opt. (10.56)

Intuitively, a joint 1D-ST DFI update with the total received power in the
feedback signal ŝn of (10.39) results in 1) less misadjustment and 2) faster
convergence than separate 2D DFI updates with fractioned and possibly un-
balanced19 powers in the multipath feedback signals ŝp,n of (10.15). Addi-
tionally, a joint 1D-ST DFI update estimates the multipath amplitudes εp,n
implicitly in the space-time channel estimate Ĥn and hence avoids the addi-
tional misadjustment β2

ε in (10.55) that arises inevitably with separate 2D
DFI updates regardless of the multipath amplitude estimation technique em-
ployed (see footnote 17).

To our knowledge, the theoretical results above provide the first analytical
explanation as to when and why joint space-time processing outperforms
sequential space and time processing widely implemented today in RAKE-
type receivers (see Sect. 10.3). We illustrate them below by simulations with
focus on the minimum misadjustment and the resulting SER.

In Fig. 10.10(a) we plot the minimum misadjustment for the 1D-ST and
2D versions of STAR using the corresponding optimum step-sizes. To widen
the scope of comparisons between the 1D-ST and 2D versions of STAR,
we increase the Doppler up to about 90 Hz (i.e., speed of 50 Kmph) in
Fig. 10.10(b). For both low and high Doppler, misadjustment curves in
Fig. 10.10 show a very good fit between the theoretical and experimental
values of β2

1D,min in (10.49) with 1D-ST STAR. They also suggest that ana-
lytical expressions of (10.46) to (10.49) derived for BPSK in [17], [19] hold for
higher-oder modulations as well, the fit to the experimental curves improv-
ing at even higher SNR values. More importantly, the misadjustment curves
confirm the theoretical proof of (10.55) above that indeed 2D STAR performs
worse in channel identification than 1D-ST STAR, the gap in misadjustment
being larger at faster Doppler.

Nevertheless, reduction of misadjustment in Fig. 10.10 is not sufficient to
result in a noticeable SER reduction in Fig. 10.11, especially at lower SNR
where the gap in misadjustment between 1D-ST and 2D STAR is smaller.
This suggests that 1D-ST STAR performs nearly the same in SER as 2D
STAR over a large range of Doppler despite gains in minimum misadjust-
ment achieved with optimum step-sizes. However, the little gap that appears
between the SER curves in Fig. 10.11(b) suggests that noticeable SNR gains
can be expected with 1D-ST STAR at very high Doppler, especially at high
SNR and with higher-order modulations.
19 With equal-power paths (i.e., ε̄2p = ε̄2min = 1/P ), we have τ2D,opt � τ1D,opt

in (10.56). With unbalanced multipath power profiles, 2D DFI is hence slower.
Furthermore, simulations indicate that it produces even higher misadjustment.
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Fig. 10.10. Minimum misadjustment in dB vs. SNR in dB for 1D-ST and 2D
STAR with MPSK modulations and optimum step-sizes μopt and μp,opt of (10.48)
and (10.52), respectively. (a): Doppler of 9 Hz. (b): Doppler increased up to 90 Hz.

−4 −2 0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

(a)

SNR
in

 [dB]

S
E

R

BPSK
QPSK
8PSK
2D STAR
1D−ST STAR

−4 −2 0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

(b)

SNR
in

 [dB]

S
E

R

BPSK
QPSK
8PSK
2D STAR
1D−ST STAR

Fig. 10.11. Same as Fig. 10.10 with SER vs. SNR in dB instead.

Table 10.2 Complexity per symbol for the 2D and 1D-ST versions of STAR.

operation . + . . × . ./.
√

.

number of operations (complex for +, × and /)

2D STAR 3MP + 2P − 2 3MP + 5P + 1 MP + 2P 2P + 1

1D-ST STAR 3MP 3MP + 5 MP + 1 2

reduction in number of operations with joint processing

M = 4, P = 3 10% 20% 30% 70%

M = 2, P = 3 20% 30% 40% 70%

There are actually other performance criteria where joint space-time pro-
cessing in 1D-ST STAR readily outperforms sequential space and time pro-
cessing in 2D RAKE-type receivers. In terms of complexity, joint space-time
processing requires less computations than sequential space and time process-
ing. As shown in Table 10.2, reduction in the number of operations with joint



310 S. Affes, P. Mermelstein

processing is significant with M = 4 antennas and increases with M = 2 an-
tennas. The computational gain shrinks, however, with larger antenna-arrays.

In terms of robustness to changes in propagation conditions, 1D-ST STAR
is insensitive to multipath power profile variations. Indeed, it requires opti-
mization of a single step-size value μ regardless of the average multipath
power fractions. On the other hand, 2D STAR requires optimization of mul-
tiple step-sizes μp with constant adjustments to the average multipath power
fractions20, in order to cope with changing propagation conditions. Without
such adjustments, simulations with variable multipath power profiles (not
shown for lack of space) suggest that 2D STAR looses about 0.5 dB in SNR
(with steps-size values optimized for equal-power paths) while 1D-ST STAR
performs the same. Joint space-time processing in 1D-ST STAR is hence more
robust to changes in propagation conditions than sequential space and time
processing in current 2D RAKE-type receivers and alleviates the demanding
burden of continuous step-size optimization.

So far the comparisons between 1D-ST and 2D-STAR have been limited to
the link level. In fact, 1D-ST STAR has additional benefits at the system level
where reduced variance of the total received power reduces the probability of
outage [25]. Indeed, more accurate channel estimation with 1D-ST DFI results
in more accurate estimation of the total received power. Additionally, while
the power variations of the feedback signal ŝn of 1D-ST DFI in (10.39) are
“equalized” by power control, those of the feedback signal ŝp,n of 2D DFI in
(10.15) are not. Reduced variation in the power of the feedback signal further
reduces channel estimation and power control errors and hence increases the
performance advantage of 1D-STAR over 2D STAR at the system level. This
is however beyond the scope of this contribution.

In summary, joint space-time processing in 1D-ST STAR outperforms
sequential space and time processing in current 2D RAKE-type receivers in
many ways21:

• it requires less complexity, especially with small antenna arrays;
• it increases robustness to changing propagation conditions and alleviates
the demanding burden of continuous steps-size optimization;

• it identifies multipath Rayleigh channels faster and more accurately and
offers noticeable22 link-level SNR gains at very high Doppler;

• it reduces power control errors and offers potential system-level capacity
gains (see footnote 22).

20 If required, notice that (10.52) enables instantaneous optimization of variable
step-sizes μp,n using ε2p,n instead of ε̄2p,n.

21 Another advantage of joint processing is that it increases the dimension of the
observation space from M (or P ) to MP thereby allowing implementation of null
constraints with less noise enhancement and more efficient interference suppres-
sion [7]. This is however beyond the scope of this contribution.

22 In fact, performance evaluations at the link and system levels with active syn-
chronization [5] both showed significant gains of blind 2D STAR over the blind
2D RAKE, more so at high Doppler.
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We previously reported on the capacity gains achievable by 1D-ST
STAR over 2D STAR and 2D RAKE-type receivers with orthogonal Walsh-
modulated CDMA signals [20]. There we proposed similar incremental up-
grades of the 2D DFI procedure in 2D STAR (see Sect. 10.4) that ultimately
implement blind coherent23 ST-MRC with 1D-ST STAR. WithMPSK mod-
ulations so far, we have been able to implement blind quasi-coherent (i.e.,
within constellation-invariant rotation point) ST-MRC. In the next section
we propose further upgrades of 1D-ST STAR that implement quasi-blind (i.e.,
with very weak pilot signals) or “asymptotically” blind coherent ST-MRC.

10.6 The Pilot-Assisted 1D-ST STAR

Blind 1D-ST STAR implements quasi-coherent ST-MRC by identifying the
channel within a constellation-invariant phase rotation. Conventional use of
pilot signals [12]-[16] in RAKE-type receivers allows channel identification24

without phase ambiguity and hence enables implementation of reference-
assisted coherent ST-MRC. It requires however large-enough pilot-power or
-overhead fractions to guarantee accurate channel identification. We propose
instead enhanced use of pilot signals with much weaker power or overhead
to resolve then compensate the constellation-invariant phase rotation of the
channel identified blindly and more accurately. We hence implement quasi-
blind (i.e., with very weak pilot signals) or “asymptotically” blind coherent
ST-MRC. Enhanced channel identification and reduction of the pilot power or
overhead combined result in a total SNR gain of 1 dB and enable significant
battery power-savings and spectrum-efficiency gains.

10.6.1 Data Model with Pilot Signals

So far we differentially encoded the data symbols bn as bn in (10.2) to com-
pensate for the phase ambiguity inherent to blind channel identification by
differential decoding with hard DFI (or demodulation with soft DFI, see
Sect. 10.5.3). Here we exploit pilot signals to either avoid or resolve this
ambiguity. Hence we avoid differential encoding and simply assign bn = bn
in the following. In both blind and pilot-assisted processing we spread the
data symbols bn by a data code and hence mark the corresponding data-
channel parameters with superscript δ. In pilot-assisted processing, we may

23 With orthogonal Walsh modulation, the constellation set is CM = {0, 1} after
despreading and the only constellation-invariant phase rotation possible is 2π
(i.e., RM = {1}), hence no ambiguity is possible with hard DFI (see Sect. 10.4.5).

24 Note that these techniques (i.e., [12]-[16]) estimate each diversity finger with a
multiple-tap low-pass filter. With less computations here, we identify each fin-
ger with an optimized single-tap adaptive-filter using the DFI procedure (see
Sects. 10.6.2 and 10.6.4).
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Fig. 10.12. Pilot modes (data signals are in grey and pilot signals are in white) . 

Table 10.3 Description of the tested versions of ID-ST STAR. 

11 11 pilot mode 1 pilo~ use 

Rxl none nOlle (i.c., blind without pilot) 
Rx2 pilot-ch arme! chrume! identification (i.c., conventional) 
Rx3 pilot-channcl a mbiguity re>ül rr tion (i .e., cnhanced ) 
Rx4 pilot-symbol channel identification (i.c., convcntional) 
Rx5 pilot-sYlllbol ambiguity resolution (i.e., enhanccd) 

either eodc-multiplex the spread data with a pilot or silOply insert (i.e., time
multiplex) pilot symbols in the data channcl (see Fig. 10.12) and hellce mark 
thc corresponding pilot-channel parameters or pilot symbols wilh superscript 
11" , respectively. H ellce we simply rewrite the data observation vector of (10.37) 
as folIows: 

~, = H"s~, +!t, = H"1/1"b,, + tt, . (10.57) 

Similarly when a pilot-channel is used (see Fig. JO.12), we form tbe M P x I 
pilot observation vector as: 

z;; = H"s~ +!:!:, = H"~1/J,, + l!!.';., (10.58) 

,vhere e < I denotes tbe allocated pilot-to-data power ratio a)1(1 J::t;, is a 
~ero-Illean space-time wlcorrelated Caussian noise vector with the sallle co
,,-nri[lIlcC matri x os tI" (i .c., RN = O";;' J .~ IP). Whcn a pilol-symbol is uscd 
(sec fig. 10.12), the dota scqucncc b" is simply assigncd n consto nt "I" oncc 
every J( symbols, althongh insertion of pilot. blocks is pos~ i ble . Hence we 
have b", K = I und s~, K = s~" K = 1/1", K. In this case, ~2 = 1/ J( denotes the 
allocatcd pilot-to-data ovcrhcad ratio. 

In t he fo llowi ng, we investigate t he five versions of STAR summarized in 
Taille lO.:J, I,he first refereuee versiou Rxl heiug t,he hliud ID-ST STAR wit.h 
hard DFI alrcady describcd in Sect. 10.&.3. 
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10.6.2 1D-ST STAR with Conventional Pilot-Channel Use

The second version of STAR, denoted by Rx2 (see Table 10.3), uses a pilot-
channel for conventional channel identification [14], [16] (see footnote 24). It
exploits the fact that the pilot signal is a known reference signal (a priori con-
stant “1”) to feed it back to the 1D-ST DFI procedure of (10.39) modified25

as follows [18]:

Ĥn+1 = Ĥn + μ
(
Zπn − Ĥnŝ

π
n

)
ŝπn, (10.59)

where ŝπn = ξψ̂n denotes the feedback signal with known positive sign. Esti-
mation of the total received power ψ̂2

n and the tentative symbol estimate b̂n
follow by (10.35) and (10.32).

Note that the modified DFI procedure above operates on the pilot de-
spread vector Zπn with a constellation set C1 = {1} (i.e., pilot symbol is
constant “1”) and a rotation set R1 = {1} (i.e., no possible ambiguity). As
a result, it identifies the channel without ambiguity (i.e., an = 1) and hence
estimates the data symbol and the decision variable as follows:

b̂n = b̂n, (10.60)
dn = s̃δn, (10.61)

where s̃δn in (10.41) denotes now the soft output of coherent ST-MRC. In
contrast to Rx1, Rx2 no longer requires differential decoding of (10.36) and
differential demodulation of (10.29) in the detection steps above. Hence it
reduces detection errors over both channel-uncoded and coded transmissions
by implementing “fully” coherent instead of quasi-coherent ST-MRC.

Note however that Rx2 identifies the channel using the pilot feedback sig-
nal ŝπn with power ξ2ψ̄2 < ψ̄2. Analytical results of Sect. 10.5.4 apply to Rx2
and hence yield the following optimum step-size and minimum misadjustment
as well as the corresponding time constant:

μRx2,opt = 2
[
(πfDTs) /

(√
Pξ2ψ̄2σN

)] 2
3
, (10.62)

β2
Rx2,min =

3
2

[
(πfDTs) /

(√
Pξ2SNRin

)] 2
3
, (10.63)

τRx2,opt � 1
4

[√
P/
(
πfDTsξ

√
SNRin

)] 2
3
. (10.64)

Expressions above indicate that Rx2 performs worse than Rx1 in channel
identification in terms of both misadjustment and convergence speed. Despite
increased detection errors due to differential decoding, Rx1 may outperform
Rx2 from reduced channel identification errors as shown later by simulations.
25 Note that the DFI step of (10.59) could be updated at a slower rate if the pilot

signal is transmitted in short bursts on the pilot channel. Extension in this case
is ad hoc.
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10.6.3 1D-ST STAR with Enhanced Pilot-Channel Use

The third version of STAR, denoted by Rx3 (see Table 10.3), is a hybrid
of Rx1 and Rx2. Like Rx1, it applies the blind DFI procedure of (10.39)
and (10.44) to estimate the channel within a constellation-invariant phase
ambiguity an. Like Rx2, its uses a pilot-channel. However, with much weaker
power it exploits the pilot more efficiently to accurately estimate then resolve
the phase ambiguity an � rk ∈ RM [18]. Noticing that the pilot signal
component estimate26 given by:

s̃πn = Ĥ
H

n Zπn/M � anψnξ + ηπn , (10.65)

is based on a noisy value of an, Rx3 estimates it by hard decision over the
soft output ŝπn averaged over consecutive blocks of A samples, giving for
n ∈ {n′A, . . . , (n′ + 1)A− 1} [18]:

ãn = ãn′ =

A−1∑
i=0

s̃πn′A+i

A
, (10.66)

ân = ân′ =� rk = arg min
rk∈RM

{|ãn − rk|} . (10.67)

The averaging step27 above enables accurate estimation of an with a much
weaker pilot power [18]. Hence, Rx3 estimates the data symbol and the deci-
sion variable by simple phase ambiguity compensation as follows [18]:

b̂n = â∗nb̂n, (10.68)
dn = â∗ns̃

δ
n, (10.69)

and thereby implements coherent ST-MRC, like Rx2, with the same benefits
in reducing symbol detection errors over Rx1.

Note however that expressions for μRx3,opt, β2
Rx3,min and τRx3,opt are ex-

actly those of Rx1 in (10.48) to (10.50), respectively. Rx3 therefore combines
both advantages of Rx1 and Rx2 by 1) exploiting a much weaker pilot than
Rx2 to resolve the phase ambiguity and implement coherent detection and 2)
by exploiting the data channel with much more power than the pilot channel
for more accurate channel identification. Simulations will later confirm the
performance advantage of Rx3 over both Rx1 and Rx2.

26 The power fraction in s̃π
n can be exploited in enhancing power estimation in

(10.35) [18].
27 Long-term averaging is made possible by the “anchoring” mechanism of hard

DFI (see Sect. 10.4.5). With soft DFI, the ambiguity rotates continuously (see
Fig. 10.3) and prevents accurate estimation of an by long-term averaging.
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10.6.4 1D-ST STAR with Conventional Pilot-Symbol Use

The fourth version of STAR, denoted by Rx4 (see Table 10.3), uses pilot sym-
bols for conventional channel identification [12], [13], [15], [16] (see footnote
24). Its DFI procedure is similar to that of Rx1 in (10.39). However, it only
feeds back the signal components containing the pilot symbols inserted in the
data sequence once every K symbols [19]:

Ĥ(n′+1)K = Ĥn′K + μ
(
Zδn′K − Ĥn′K ŝπn′K

)
ŝπn′K , (10.70)

where ŝπn′K = ψ̂n′K . Note that the modified DFI procedure above operates
at time corresponding to the pilot-symbol indices n′K on the data despread
vector Zδn′K with a constellation set C1 = {1} (i.e., pilot symbol is constant
“1”) and a rotation set R1 = {1} (i.e., no possible ambiguity). Similarly
to Rx2, the DFI procedure of Rx4 identifies the channel without ambiguity
(i.e., an = 1) and allows estimation of b̂n and dn using (10.60) and (10.61),
respectively.

Notice, however, that Rx4 updates the DFI procedure less frequently than
Rx2, namely at the pilot-symbol rate 1/KTs. Exploiting again the analytical
results of Sect. 10.5.4, we have:

μRx4,opt = 2
[
(πfDKTs) /

(√
Pψ̄2σN

)] 2
3
= μRx2,opt, (10.71)

β2
Rx4,min =

3
2

[
(πfDKTs) /

(√
Pξ2SNRin

)] 2
3
= β2

Rx2,min, (10.72)

τRx4,opt � K

4

[√
P/
(
πfDKTs

√
SNRin

)] 2
3
= τRx2,opt, (10.73)

and hence find that Rx2 and Rx4 identify the channel equally well when they
use the same pilot power and overhead fractions28 (i.e., K = 1/ξ2) [19].

On the one hand, the channel subsampled at the DFI-update instants
appears to vary K times faster with a relative normalized Doppler KfDTs.
Thus channel identification errors can be expected to increase with faster
time-variations. On the other hand, the power of the feedback signal in Rx4,
|ŝπn′K |2 = ψ̂2

n′K , isK times stronger than in Rx2 where |ŝπn|2 = ξ2ψ̂2
n = ψ̂2

n/K.
This suggests that channel identification errors will decrease with stronger
feedback signals. Analysis of Sect. 10.5.4 shows a non-trivial result that the
corresponding loss and gain in the performance of adaptive channel identifica-
tion cancel each other [19]. The minimum channel misadjustment achievable
remains constant if we increase or decrease both the relative Doppler and the
feedback-signal’s power by the same factor K. Later we confirm by simula-
tions that Rx2 and Rx4 perform equally well.

28 A similar conclusion regarding misadjustment was reached in [16] based on chan-
nel estimation with low-pass filtering (see footnote 24).
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10.6.5 1D-ST STAR with Enhanced Pilot-Symbol Use

Similarly to Rx3, the fifth version of STAR denoted by Rx5 (see Table 10.3)
is a hybrid of Rx1 and Rx4. It applies the blind DFI procedure of (10.39)
and (10.44) to estimate the channel within a constellation-invariant phase
ambiguity an. However, it uses the pilot symbols to estimate then resolve the
phase ambiguity an [19]. Assume for simplicity that a block of A consecutive
symbols contains exactly Q pilot symbols (i.e., A = QK). Rx4 modifies
(10.66) simply by averaging the pilot signal component estimate over these
Q symbols for n ∈ {n′A, . . . , (n′ + 1)A− 1} [18]:

ãn =

Q−1∑
i=0

ŝπn′A+Ki

Q
, (10.74)

before estimating an by hard decision in (10.67). Similarly to Rx3, Rx5
thereby resolves the phase ambiguity and hence estimates b̂n and dn using
(10.69) and (10.68), respectively. Like Rx3, expressions for μRx5,opt, β2

Rx5,min

and τRx5,opt are exactly those of Rx1 in (10.48) to (10.50), respectively.
Notice that Rx5 in (10.74) estimates the pilot-signal component from

K = A/Q fewer values than Rx3 in (10.66). The variance of the residual
noise present in ãn is thereby increased by factor K. However, bear in mind
that the pilot-signal power in Rx5 is K times stronger than in Rx3. Indeed,
in contrast to (10.65) we have:

s̃πn = Ĥ
H

n Zπn/M � anψn + ηπn . (10.75)

The SNR of ãn before phase ambiguity estimation in (10.67) is therefore the
same for both receiver versions. Despite the differences between Rx3 and Rx5,
the averaging step in (10.66) or (10.74) results in the same phase estimation
error. In the following section we confirm that Rx3 and Rx5 have equivalent
performance.

10.6.6 Performance Gains with Enhanced Pilot Use

In Fig. 10.13, we compare the SER performance of the various receiver ver-
sions of 1D-ST STAR described previously (see Table 10.12) for BPSK,
QPSK, 8PSK and 16QAM29. In Sect. 10.4.5, we have shown that the an-
choring mechanism of hard DFI works well with MQAM modulations (see
Fig. 10.8). Hence its useful feature of casting the phase ambiguity in the ro-
tation set RM can be efficiently exploited to estimate and then compensate
the phase ambiguity with enhanced use of pilot signals in 16QAM-modulated
Rx3 and Rx5.
29 Note that the blind version Rx1, inapplicable with MQAM modulations, is not

evaluated in Fig. 10.13(d).
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Fig. 10.13. SER vs. SNR in dB for different versions of 1D-ST STAR (see Ta-
ble 10.12) with optimum step-size values. (a): BPSK, (b): QPSK, (c): 8PSK, (d):
16QAM.

Simulation results shown in Fig. 10.13 indicate that more efficient ex-
ploitation of pilot channels or symbols for only phase-ambiguity resolution
outperforms their conventional use for channel-identification regardless of the
modulation employed. They also suggest that pilot-channel and pilot-symbol
versions, with either conventional or enhanced pilot use, perform similarly for
all modulations except 16QAM with conventional pilot, thereby confirming
our analytical assertions30.

Note that the receiver versions with enhanced pilot use (i.e., Rx3 and
Rx5) perform practically the same with 1 or 5% fractions of the pilot power
or overhead. This result shows that long-term averaging in (10.66) and (10.74)
indeed significantly reduces phase ambiguity estimation errors in (10.67) from
very weak pilot signals (we used A = 500 in all simulations of Fig. 10.13).
On the other hand, the receiver versions with conventional pilot use (i.e.,
Rx2 and Rx4) see their performance drop when the pilot power or overhead

30 The theoretical results of Sect. 10.5.4 derive from a convergence and performance
analysis in [17] that assumes a constant-modulus modulation. Conventional iden-
tification with weak power or overhead fractions increases channel estimation
errors and likely contributes to further increasing the mismatch with analysis.



318 S. Affes, P. Mermelstein

fraction is reduced by half from 10 to 5%. Simulations actually indicate that
Rx2 and Rx4 with 10% fraction perform worse than Rx3 and Rx5 with 1%
fraction only. They also suggest that Rx2 and Rx4 perform even worse than
blind Rx1 at higher SNR, more so with reduced power fractions.

Figure 10.13 actually suggests that Rx3 and Rx5 with 1% power or over-
head fraction offer about 0.8 dB gain in SNR over Rx2 and Rx4 with 5%
fraction, and about 0.5 dB over Rx2 and Rx4 with 10%. However, capac-
ity gains achievable at the system level by the reduction of the pilot-signals’
interference from 5 and 10% to 1% account for “equivalent” SNR gains of
roughly 0.2 (i.e., 10 log10(1.05/1.01)) and 0.4 dB (i.e., 10 log10(1.1/1.01)) at
the link level, respectively. The total performance gain of Rx3 and Rx5 over
Rx2 and Rx4 with either power/overhead fraction is hence in the range of
1 dB. Reduced power variations and power control errors due to blind iden-
tification of the data channel with stronger signals (see Sect. 10.5.4) should
further increase the performance advantage of Rx3 and Rx5 over Rx2 and
Rx4 at the system level.

The discussion above suggests that optimization of the step-size alone
does not allow for fair comparisons without simultaneous optimization of the
pilot power or overhead fraction ξ2 = 1/K, in order to reflect additional gains
at the system level due to enhanced pilot use with significantly reduced pilot
power or overhead [18], [19]. This is beyond the scope of this contribution. In
[18], [19] however, we provide analytical means for optimizing the five receiver
versions of 1D-ST STAR at the system level and show that enhanced pilot use
allows for significant spectrum efficiency gains in most practical situations.

Overall, pilot-assisted space-time receivers with conventional pilot use
require pilot-power or -overhead fractions large enough to guarantee accu-
rate channel identification and reliable data detection at the receiver. Pilot-
assisted space-time receivers with enhanced pilot use require much weaker
power or overhead (i.e., in the range of 1%) to resolve then compensate
the constellation-invariant phase rotation of the channel identified blindly
and more accurately. They hence implement quasi-blind or “asymptotically”
blind (i.e., with very weak pilot signals) coherent ST-MRC. Enhanced channel
identification and reduction of the pilot power or overhead combined result
in a total SNR gain of 1 dB and enable significant battery power-savings
and spectrum-efficiency gains [18], [19]. Similar gains can be achieved on the
downlink [21].

10.7 Conclusions

Several improvements are proposed to the 2D-RAKE, a widely used space-
time adaptive receiver which combines CDMA signals sequentially, first in
space, then in time. Ultimately we arrive at a more efficient one-dimensional
joint space-time (1D-ST) adaptive processor, STAR, the spatio-temporal
array-receiver. Advantages of STAR are twofold.
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First, STAR carries out an improved combining operation that approaches
that of blind coherent space-time MRC. In the blind mode (i.e., without
a pilot), the 2D RAKE sequentially implements noncoherent spatial MRC
then temporal EGC while STAR implements quasi-coherent (i.e., within a
constellation-invariant phase ambiguity) joint ST-MRC. By improving the
combing rule STAR outperforms the 2D RAKE by about 2 dB gain in SNR.
In the pilot-assisted mode, the 2D RAKE uses the pilot for conventional iden-
tification and hence requires a strong pilot to accurately implement reference-
assisted coherent space and time MRC sequentially. On the other hand, STAR
requires a much weaker pilot to estimate then compensate the constellation-
invariant phase ambiguity of the channel identified blindly and more accu-
rately, and hence implements quasi-blind or asymptotically blind coherent
joint ST-MRC. Enhanced channel identification and reduction of the pilot
power or overhead (in the range of 1%) combined result in a total SNR gain
of 1 dB and enable significant battery power-savings and spectrum-efficiency
gains.

Second, STAR outperforms the 2D RAKE in many ways by implementing
joint space-time processing in a 1D-ST structured adaptive receiver. Indeed,
we provide novel and non-trivial analytical results that clearly establish the
performance advantage of one-dimensional joint space-time processing in 1D-
ST STAR over two-dimensional spatial then temporal sequential processing
in the 2D RAKE-type adaptive receivers widely used today. We show that
1D-ST structured adaptive receivers reduce both complexity and channel
identification errors, increase robustness to changing propagation conditions,
and speed up convergence over multipath Rayleigh-fading channels. These
gains, validated by simulations, translate immediately into enhanced receiver
performance.
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