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ABSTRACT In this paper, we introduce for the first time a new method for the estimation of the angular
parameters [i.e., central directions of arrival (DOAs) and angular spreads] of multiple non-circular and
incoherently-distributed (ID) sources. The new method is derived by going through three different stages
to finally obtain a robust solution that allows decoupling the estimation of each central DOA from its
associated angular spread by means of two consecutive 1-D searches. By doing so, we reduce significantly
the complexity of the proposed technique as compared to the brute-force 2D grid search solution. This new
technique is also oblivious to the sources’ angular distribution or any mismatch thereof. By analyzing its
performance, we show that our new estimator outperforms most well-known state-of-the-art techniques in
terms of estimation accuracy and robustness, especially for small DOA separations and/or low SNR levels.
We also derive an explicit expression for the stochastic Cramér–Rao lower bounds (CRLBs) of the underlying
estimation problem. These CRLBs are compared to those for circular ID signals. It will be shown that the
noncircularity of the signals ismore informative about the angular parameters when the sources have different
angular distributions and/or when the angular spreads increase. Besides, the noncircular CRLBs depend on
the noncircularity rate, the noncircularity phase separation, and the DOA separation.

INDEX TERMS Angular spread estimation, central DOAs estimation, multiple incoherently distributed
sources, noncircular signals, stochastic Cramér-Rao lower bound (CRLB).

I. INTRODUCTION
Direction of arrivals estimation for multiple plane waves
impinging on an arbitrary array of sensors has received
a significant amount of attention over the last several
decades [1]. It has typically found many applications in
different areas such as modern wireless communication
systems [2], audio/speech processing systems [3], radar and
sonar [4], just to name a few. In most applications, how-
ever, DOA estimation methods are based on the point-source
model which postulates that the signals are generated from
far-field point sources and travel along a single path to the
receiving antenna array. Using this simplified model, many
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DOA estimators have been developed for both temporally
uncorrelated [5]–[7] and correlated [8], [9] signals. However,
in real-world surroundings, especially in typical urban envi-
ronments, multipath propagation made by a cluster of reflec-
tions close to each mobile causes angular spreading [10].
In other words, the signal radiated by each source hits the
antenna array via different paths with different angles. In this
more realistic model, the source is viewed by the array as
spatially distributed, i.e., with a central DOA and an angu-
lar spread. The latter influences the quality of the com-
munication link and represents an important characteristic
for spatial diversity schemes [11], [12]. DOA estimation
becomes more challenging in presence of local scattering
[13], [14] because the latter affects the signal spatial distribu-
tion. In this context, some studies have shown that classical
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point-source estimation methods suffer from severe perfor-
mance degradation when applied to the distributed-source
scenario [15], [16]. This observation has prompted an increas-
ing interest, over the few recent years, in developing DOA
estimation algorithms that can handle both point and scattered
sources in order to improve direction finding capabilities in
real-world propagation environments.

Depending on the nature of scattering, signal components
arriving from different directions exhibit varying degrees of
correlation. Hence, we distinguish two different types of the
propagation channel. The first one is when the received signal
components originated from a source and scattered at differ-
ent angles are delayed and scaled replicas of the same signal.
This feature is known in the literature as ‘‘coherent source
distribution’’ or ‘‘coherently-distributed (CD) source’’ [17].
The second type of the propagation channel corresponds to
the fact that the signal components of a source impinging
from different scatterers at different angles are uncorrelated.
This is termed in the literature as ‘‘incoherent source distri-
bution’’ or ‘‘incoherently-distributed (ID) source’’ [17], [18].
Therefore, for uncorrelated CD sources, each source con-
tributes rank-one component to the spatial covariance matrix
and, as such, the rank of the noise-free covariance matrix
is equal to the number of sources [17]. Consequently, many
classical DOA estimation methods based on the simplistic
point-source model can be easily extended to CD sources.
Particulary, authors proposed in [19] an efficient DSPE algo-
rithm for estimating the angular parameters of CD sources.
This method enables a decoupled estimation of the DOAs
from that of the angular spreads of sources with small angu-
lar spread. However, for ID sources, the whole observation
space is occupied by signal components, and the noise sub-
space is generally degenerate [17]. Therefore, the rank of the
noise-free covariance matrix is different from the number of
sources; it even increases with the angular spread. This makes
the trivial generalization of traditional point-source subspace-
based methods to the ID case not feasible. To sidestep this
problem, tremendous efforts have been directed to develop-
ing new angular parameters estimators that are specifically
tailored to ID sources. In particular, techniques that are able
to handle a single ID source were developed in [20]–[27].

Many estimators were also developed to estimate the angu-
lar parameters of multiple ID sources. In fact, a class of
subspace methods were proposed in [10], [17], and [18]
wherein the effective dimension of the signal subspace is
defined as the number of the first eigenvalues (of the noise-
free covariance matrix) that reflect most of the signal energy.
More computationally attractive approaches that are based
on the beamforming techniques were later introduced in [26]
and [28]. Despite their good performance, all these estima-
tors assume the angular distributions to be perfectly known
and identical to all the sources. Methods which are able to
handle the multi-source case with known but different angular
distributions were also proposed in [29] and [30]. Recently,
a robust version of the generalized Capon principle [28]
(RGC) has been developed in [31] which, in contrast to all

existing approaches, does not need the a priori knowledge of
the angular distributions. Moreover, the latter does not need
to be the same for all the sources. This robust approach is,
however, statistically less efficient than the aforementioned
subspace-based (high-resolution) methods [10], [17], [18],
especially in the presence of closely-spaced ID sources.

More recently, Zoubir et al. [32] proposed an efficient
subspace-based (ESB) algorithm to estimate the angular
parameters of multiple ID circular sources. ESB enjoys a
good trade-off between estimation performance and compu-
tational complexity. In order to alleviate the computational
burden stemming from eigendecomposing the covariance
matrix, ESB exploits the properties of its inverse and esti-
mates the angular parameters using a 2-D search. Both the
statistical efficiency and high-resolution capabilities of the
subspace-based techniques are maintained and, most interest-
ingly, ESB is not limited to a particular antenna array geom-
etry or to a specific type of scatterers’ angular distribution.
Yet, it still requires the angular distribution to be perfectly
known and identical for all the sources on the top of being
derived specifically for circular sources. Recently, a new
method for tracking the central DOAs assuming multiple ID
mobile sources has been also proposed in [33]. It is based
on a simple covariance fitting optimization technique [30] to
estimate the central DOAs and the Kalman filter to model
the dynamic property of directional changes for the mov-
ing sources. Despite its efficiency, this method requires the
sources’ angular distributions to be perfectly known and is
derived for circular sources only.
Noncircular signals, however, such as binary-phase-shift-

keying (BPSK) and offset quadrature-phase shift-keying
(OQPSK)-modulated signals, are also frequently encountered
in digital communications. Therefore, there has been a recent
surge of interest in deriving new algorithms that are able
to properly handle noncircular signals as well [34], [45].
These estimators extract additional information about the
angular parameters from the unconjugated spatial covariance
matrix that is non-zero for noncircular sources, in contrast to
circular ones. From this perspective, we have been also able
to propose a robust technique which is able to handle both
temporally and spatially correlated sources in presence of
noncircular signals [46]. By accounting for both signals’ non-
circularity and temporal correlation, the proposed estimator
was indeed shown to offer huge performance enhancements
with respect to the main state-of-the-art techniques. Yet, all
the aforementioned estimators [35]–[46] are applicable for
the point-source model only. And, to the best of the authors’
knowledge, no contribution has dealt so far with the problem
of angular parameters estimation (i.e., central DOAs and
angular spreads) of multiple noncircular ID sources.

Motivated by these fact, we tackle in this paper for the very
first time the problem of estimating the angular parameters of
ID noncircular sources.We propose a newmethod that allows
decoupling the estimation of each central DOA from its asso-
ciated angular spread in the presence of noncircular sources.
This method will be derived by going through three different
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stages resulting in two versions of the proposed estimator.
The first one is a new 2-D search algorithm that extends ESB
from circular to noncircular sources. And the second is a
robust version that estimates the angular parameters bymeans
of two successive one-dimensional (1-D) parameter searches.
Towards this goal, we will use unstructured models for the
conjugated and unconjugated noise-free covariance matrices
that depend on the unknown angular spreads only. Most
interestingly, such unstructured models are totally oblivious
to the angular distributions of the sources and, therefore, their
a priori knowledge is not required by the proposed method;
a quite precious degree of freedom in practice. Even more,
unlike all the existing methods, the proposed technique does
not need to assume the same angular distribution across all
the sources.

In order to properly assess the performance of the new
estimator, we also conduct a complete theoretical study of its
statistical properties (i.e., its bias and variance). Furthermore,
we derive an explicit expression for the CRLB of the under-
lying estimation problem. This fundamental lower bound,
which reflects the best achievable performance ever [47], will
be used as an overall benchmark against which we gauge
the accuracy of the new estimator. Computer simulations will
show that the proposed estimator outperforms ESB and RGC
especially at low SNR values and/or low DOA separations.
The new CRLBs will also reveal that the noncircularity of the
signals becomes more informative about the angular parame-
ters when the sources have different angular distributions and
when the angular spreads increase.

The rest of this paper is organized as follows. In Section II,
we introduce the systemmodel and some of the basic assump-
tions that will be adopted throughout the article. In section III,
we derive the new algorithm and in section IV we show how
the estimation of the central DOAs can be decoupled from
that of the angular spreads. In section V, we derive the sta-
tistical bias and variance of the new estimator. In section VI,
we derive an explicit expression for the CRB of the underly-
ing estimation problem. Computer simulations are presented
in Section VII and concluding remarks are drawn out in
Section VIII.

We list beforehand some of the common notations adopted
throughout this paper. Matrices and vectors are represented
by bold upper- and lower-case characters, respectively. Vec-
tors are by default in column orientation. Moreover, we con-
sider the following standard notations:

δ(.) : Dirac delta function;
(.)∗ :Complex conjugate;
6 (.) :Phase angle (or argument) in radians;
|.| :Complex modulus;
(.)T :Transpose;
(.)H :Conjugate transpose;
': Approximately equal;
argminK {.} : Position of the K minima of any given

objective function;
tr{A} :Trace of a given matrix A;

diag{v} :Diagonal matrix whose main diag-
onal’s elements are those of vector v;

‖.‖Fro :Frobenius norm;
<{.} :Real part operator;
E{.} :Statistical expectation;
∂n(.)
∂(.)n :nth-order partial derivative;
eig{A} :Eigenvalues of a matrix A;
� :Hadamard-Schur product;
Ip :(p× p) identity matrix;
0p×q :(p× q) zero matrix;
Toeplitz{v} : Symmetric Toeplitz matrix

constructed from a given vector v;
Hankel{v1, v2} :Hankel matrix constructed from the

vectors v1 and v2;
al(θ ) : Response of the lth sensor to a

unit-energy source radiating from
direction θ ;

fl(θ )l=0,2,...,(L−1) : Real-valued transformations of the
scalar DOA parameter θ ;

2̄k : Central DOA of each k th source;
σ̄k : Angular spread of each k th source;
ρk (θ, ψ̄k ) : Normalized angular power density

of the kth source;
pkk (θ, θ ′; ψ̄k ) : Conjugated angular auto

-correlation kernel of the k th source;
p′kk (θ, θ

′
; ψ̄k ) : Unconjugated angular auto

-correlation kernel of the k th source;
pkk ′ (θ,θ ′; ψ̄k , ψ̄k ′ ) : Conjugated angularcross

-correlation kernel between sources
k and k ′;

p′kk ′ (θ, θ
′
; ψ̄k , ψ̄k ′ ) : Unconjugated angular cross

-correlation kernel between sources
k and k ′.

II. SYSTEM MODEL
Consider an array consisting of L identical sensors (i.e., with
the same gain, phase, and sensitivity pattern) that is immersed
in the far-filed of K scattered ID sources with the same
central frequencyω0. Assume that the root mean square (rms)
delay spread is small compared to the inverse bandwidth of
the transmitted signals so that the narrowband assumption
remains valid in the presence of scattering [48]–[50]. Under
these mild conditions, the signal received by the lth sensor,
l = 1, 2, . . . ,L, can be modeled as follows [28]–[32]:

xl(n) =
K∑
k=1

∫
al(θ )sk (θ, ψ̄k , n)dθ + wl(n), (1)

in which n stands for the nth snapshot. Moreover,
wl(n) is an additive zero-mean circularly symmetric
Gaussian-distributed noise. The noise components are
assumed to be temporally and spatially white, i.e., uncor-
related between snapshots and receiving antenna branches,
respectively. Furthermore, sk (θ, ψ̄k , n) is the data-modulated
angular distribution (with respect to θ ) of the signal received
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from the kth source; parameterized here by the vector
ψ̄k = [2̄k , σ̄k ]T .
For any planar configuration of the receiving antenna array,

al(θ ) can be written as:

al(θ ) = ej2π fl−1(θ ). (2)

For mathematical convenience, we gather all the unknown
centralDOAs and angular spreads in the following parameter
vectors:

2̄ ,
[
2̄1, 2̄2, . . . , 2̄K

]T
, (3)

σ̄ , [σ̄1, σ̄2, . . . , σ̄K ]T . (4)

Our goal in the remainder of this paper is to jointly estimate
the angular parameters, 2̄ and σ̄ , of theK noncircular sources
given the set of received signals, xl(n), l = 1, 2, . . . ,L.
To that end, we stack the received data over the L sensors
at each snapshot n in a single vector:

x(n) , [x1(n), . . . , xL(n)]T . (5)

From (1), x(n) is explicitly given by:

x(n) =
K∑
k=1

∫
a(θ )sk (θ, ψ̄k , n)dθ + w(n), (6)

where

w(n) , [w1(n), . . . ,wL(n)]T ,

a(θ ) , [a1(θ ), . . . , aL(θ )]T ,

are the array noise and response vectors, respectively. For ID
sources, the components impinging from different scatterers
are uncorrelated thereby yielding:

pkk (θ, θ ′; ψ̄k ) , E
{
sk
(
θ, ψ̄k , n

)
sk
(
θ ′, ψ̄k , n

)∗}
, (7)

= σ 2
skρk (θ, ψ̄k )δ(θ − θ

′), (8)

where σ 2
sk is the average power of the kth source. Since

the sources are also assumed to radiate noncircular signals,
we adopt the definition of noncircularity in [51] and [52].
Moreover, we exploit the property of signals’ correlation
in the real sense [52], Property 3.1] to prove from (8) that
p′kk (θ, θ

′
; ψ̄k ) can be written as:

p′kk (θ, θ
′
; ψ̄k ) , E

{
sk
(
θ, ψ̄k , n

)
sk
(
θ ′, ψ̄k , n

)}
, (9)

= σ 2
sk γ̄ke

jϕ̄kρk (θ, ψ̄k )δ(θ − θ
′). (10)

Here, 0 ≤ γ̄k ≤ 1 and ϕ̄k are the noncircularity rate and phase
of the kth source, respectively. As emphasized in Section II,
all existing works on angular parameters estimation of ID
sources assume the sources to be circular. As such, none
of them makes use of the unconjugated kernels in (9) since
they are identically zero in this case. In this paper, however,
we consider the case of noncircular sources with maximum
noncircularity rate (i.e., γ̄k = 1), known in the open literature
as strictly second-order noncircular or rectilinear signals.
Examples of such signals include unfiltered BPSK-, OQPSK-
, PAM-, ASK-, AM- and MSK-modulated signals [36]. Their

unconjugated angular auto-correlation kernels are obtained
from (10) as:

p′kk (θ, θ
′
; ψ̄k ) = σ

2
sk e

jϕ̄kρk (θ, ψ̄k )δ(θ − θ
′). (11)

Now, since the sources’ signals are uncorrelated from the
noise components, the conjugated and unconjugated covari-
ance matrices of x(n) defined, respectively, as Rxx =

E{x(n)x(n)H } and R′xx = E{x(n)x(n)T } are explicitly given
by:

Rxx =

K∑
k=1

K∑
k ′=1

∫∫
pkk ′ (θ, θ

′
; ψ̄k , ψ̄k ′ )a(θ )a

H (θ ′)dθdθ ′

+ σ 2
wIL ,

(12)

R′xx =
K∑
k=1

K∑
k ′=1

∫∫
p′kk ′ (θ, θ

′
; ψ̄k , ψ̄k ′ )a(θ )a

T (θ ′)dθdθ ′,

(13)

where σ 2
w is the unknown noise variance. Note here that the

unconjugated covariancematrix of the circular noise vector is
identically zero and, therefore, it vanishes in (13) contrarily
to (12). By further assuming the ID sources to be mutually
uncorrelated, it follows that:

pkk ′ (θ, θ
′
; ψ̄k , ψ̄k ′ ) = pkk (θ, θ ′; ψ̄k , ψ̄k )δkk ′ , (14)

p′kk ′ (θ, θ
′
; ψ̄k , ψ̄k ′ ) = p′kk (θ, θ

′
; ψ̄k , ψ̄k )δkk ′ , (15)

where δkk ′ is the Kronecker delta function defined as δkk ′ = 1
for k = k ′ and 0 otherwise. Now, plugging (8) and (11) in (14)
and (15), respectively, leads to:

pkk ′ (θ, θ
′
; ψ̄k , ψ̄k ′ ) = σ

2
skρk (θ, ψ̄k )δ(θ − θ

′)δkk ′ , (16)

p′kk ′ (θ, θ
′
; ψ̄k , ψ̄k ′ ) = σ

2
sk e

jϕ̄kρk (θ, ψ̄k )δ(θ − θ
′)δkk ′ . (17)

Consequently, (12) and (13) simplify to:

Rxx =

K∑
k=1

∫
σ 2
skρk (θ, ψ̄k )a(θ )a(θ )

Hdθ + σ 2
wIL , (18)

R′xx =
K∑
k=1

∫
σ 2
sk e

jϕ̄kρk (θ, ψ̄k )a(θ )a(θ )
T dθ. (19)

III. ANGULAR PARAMETERS ESTIMATION IN PRESENCE
OF NONCIRCULAR SIGNALS
In order to exploit the additional information contained in
the unconjugated covariance matrix of noncircular signals,
we define the following extended received vector:

x̃(n) ,
[
x(n)T x(n)H

]T
. (20)

whose extended covariance matrix is given by:

Rx̃̃x = E
{̃
x(n)̃x(n)H

}
=

(
Rxx R′xx
R′∗xx R∗xx

)
. (21)
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On the one hand, using the explicit expressions of Rxx and
R′xx established, respectively, in (18) and (19) and resorting
to some algebraic manipulations, it can be shown that:

Rx̃̃x =

K∑
k=1

∫
σ 2
skρk (θ, ψ̄k ) ã(θ, ϕ̄k ) ã(θ, ϕ̄k )

Hdθ + σ 2
wI2L ,

(22)

where ã(θ, ϕ̄k ) is the extended array response vector defined
as:

ã(θ, ϕ̄k ) ,
[
a(θ )T , e−jϕ̄ka(θ )H

]T
. (23)

We also define the extended (normalized) covariance matrix
of the noise-free signal pertaining to the kth source as:

R̃(k)
ss (ψ̄k , ϕ̄k ) ,

∫
ρk (θ, ψ̄k )̃a(θ, ϕ̄k )̃a(θ, ϕ̄k )

Hdθ. (24)

Hence, the extended covariance matrix in (22) is simply given
by:

Rx̃̃x =

K∑
k=1

σ 2
sk R̃

(k)
ss (ψ̄k , ϕ̄k )+ σ

2
wI2L . (25)

Next, we consider the following eigendecomposition of the
extended covariance matrix in (25):

Rx̃̃x = Ũs6ŨH
s + σ

2
wŨwŨH

w , (26)

where Ũs and Ũw denote the eigenvector matrices associated
to the signal and noise subspaces, respectively. Moreover, 6
is a diagonal matrix containing the eigenvalues of the overall
extended noise-free covariance matrix involved in (25), i.e.:

Rs̃s̃ ,
K∑
k=1

σ 2
sk R̃

(k)
ss (ψ̄k , ϕ̄k ). (27)

Traditional subspace-based methods which are all designed
for circular ID sources rely on the fact that the columns of
each kth noise-free covariance matrix, R(k)

ss (ψ̄k ), are orthog-
onal to those of the pseudo-noise subspace, i.e.:

UH
w R(k)

ss (ψ̄k ) = 0(L−r)×L , (28)

in which r is the effective dimension of the pseudosignal
subspace [18]. In principle, the same orthogonality property
in (28) holds for noncircular ID sources:

ŨH
w R̃

(k)
ss (ψ̄k , ϕ̄k ) = 0(2L−r)×2L , (29)

and can be used, as well, to estimate the associated angu-
lar parameters. However, similar to all subspace methods,
the estimation performance is critically affected if the effec-
tive dimension r is not appropriately selected. Besides,
the optimal choice of r depends on the value of the angular
spread which is itself considered as an unknown parameter in
our work. To sidestep this problem, we will rather capitalize
on the inverse of the extended covariance matrix as recently
done in [32]:

R−1x̃̃x = Ũs6
−1ŨH

s +
1
σ 2
w
ŨwŨH

w . (30)

To that end, let ψ and ϕ be the two generic variables that run
over all the possible values of ψ̄k and ϕ̄k , respectively. Then,
right-multiplying (30) by R̃(k)

ss (ψ, ϕ) yields:

R−1x̃̃x R̃
(k)
ss (ψ, ϕ) = Ũs6

−1ŨH
s R̃

(k)
ss (ψ, ϕ)

+
1
σ 2
w
ŨwŨH

w R̃
(k)
ss (ψ, ϕ). (31)

At relatively high SNR levels, the signal eigenvalues in 6
are relatively large and, therefore, the diagonal elements of
6−1 are almost equal to zero. Consequently, the first term
in the right-hand side of (31) does not vary appreciably with
ψ and ϕ. The second term in (31) is thus dominant. Owing
to (29), however, it is identically zero when ψ = ψ̄k and
ϕ = ϕ̄k (for k = 1, 2, . . . ,K ). Therefore, at favorable
SNR conditions, the quantity ‖R−1x̃̃x R̃(k)

ss (ψ, ϕ)‖Fro attains
its minimum at (ψ̄k , ϕ̄k ) for each k = 1, 2, . . . ,K . Based
on this observation, the angular parameters can be estimated
jointly with the sources’ noncircularity phases by resolving
the following K optimization problems:[̂̄ψk ,

̂̄ϕk] = argmin
ψ,ϕ

(∥∥∥R̂−1x̃̃x R̃
(k)
ss (ψ, ϕ)

∥∥∥2
Fro

)
, (32)

= argmin
ψ,ϕ

(
tr
{
R̃(k)
ss (ψ, ϕ) R̂

−2
x̃̃x R̃(k)

ss (ψ, ϕ)
})
,

(33)

where R̂x̃̃x is the sample-mean estimate of the actual extended
covariance matrix, Rx̃̃x, i.e.:

R̂x̃̃x =
1
N

N∑
n=1

x̃(n)̃x(n)H , (34)

in which N stands for the number of snapshots. Further, if the
sources have the same scatterers’ angular distribution

[
i.e.,

R̃(k)
ss (ψ, ϕ) = R̃ss(ψ, ϕ), ∀k

]
, then all the angular parameters

can be estimated jointly by finding the location of the K
smallest values of the common cost function:

f
(
ψ, ϕ

∣∣ R̂−2x̃̃x
)
, tr

{
R̃ss(ψ, ϕ) R̂−2x̃̃x R̃ss(ψ, ϕ)

}
, (35)

where

R̃ss(ψ, ϕ) =
∫
ρ(θ,ψ) ã(θ, ϕ) ã(θ, ϕ)Hdθ. (36)

Note here that the cost function in (35) to be minimized
requires a three-dimensional (3-D) search over the central
DOA,2, the angular spread, σ , and the noncircularity phase,
ϕ. In the following, we will try to reduce the complexity of
the proposed method by reducing the dimensionality of the
cost function in (35).

Actually, using (23) in (36), it can be shown that:

R̃ss(ψ, ϕ) =

 Rss(ψ) ejϕR′ss(ψ)

e−jϕR′∗ss(ψ) R∗ss(ψ)

 , (37)

where Rss(ψ) and R′ss(ψ) are, respectively, the normal-
ized conjugated and unconjugated noise-free auto-covariance
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matrices of the sources which are explicitly given by:

Rss(ψ) =
∫
ρ(θ,ψ)a(θ )a(θ )Hdθ, (38)

R′ss(ψ) =
∫
ρ(θ,ψ)a(θ )a(θ )T dθ. (39)

Assuming small angular spreads, we prove in Appendix A
that Rss(ψ̄k ) can be written for each kth source as:

Rss(ψ̄k ) '
(
a(2̄k ) a(2̄k )H

)
� T(ψ̄k )

' 8(2̄k ) T(ψ̄k ) 8(2̄k )H , (40)

with8(2̄k ) , diag{a(2̄k )} and T(ψ̄k ) is a real-valued (L×
L) symmetric matrix whose (p, l)th entry is given by:

[Tpl(ψ̄k ) =
∫
ρk (θ, ψ̄k ) cos

(
2π
(
f ′p−1(2̄k )

− f ′l−1(2̄k )
)
(θ − 2̄k )

)
dθ, (41)

and f ′p−1(θ ) stands for the first derivative of fp−1(θ ) with
respect to θ .
In the same way, we also show that the normalized unconju-
gated noise-free covariance matrix, R′ss(ψ̄k ), of noncircular
ID sources can be be expressed as:

R′ss(ψ̄k ) '
(
a(2̄k ) a(2̄k )T

)
� T′(ψ̄k )

' 8(2̄k ) T′(ψ̄k ) 8(2̄k )T , (42)

where T′(ψ̄k ) is also a real-valued (L × L) symmetric matrix
whose (p, l)th entry is given by:

[T′]pl(ψ̄k ) =
∫
ρk (θ, ψ̄k ) cos

(
2π
(
f ′p−1(2̄k )

+ f ′l−1(2̄k )
)
(θ − 2̄k )

)
dθ. (43)

Injecting (40) and (42) back into (37) with the generic ψ and
2 being substituted for ψ̄k and 2̄k , respectively, and resorting
to some straightforward manipulations, it can be shown that:

R̃ss(ψ, ϕ) =
(̃
a(2,ϕ) ã(2,ϕ)H

)
� T̃(ψ),

= 8̃(2,ϕ) T̃(ψ) 8̃(2,ϕ)H , (44)

in which 8̃(2,ϕ) = diag{̃a(2,ϕ)} and

T̃(ψ) =

 T(ψ) T′(ψ)

T′(ψ) T(ψ)

 . (45)

For mathematical convenience, we also introduce the follow-
ing notations:

A(ψ) = T2(ψ)+ T′2(ψ), (46)

B(ψ) = T(ψ)T′(ψ)+ T′(ψ)T(ψ), (47)

R̂1 = R̂−2x̃̃x (1 : L, 1 : L), (48)

R̂2 = R̂−2x̃̃x (1 : L,L + 1 : 2L). (49)

Then, plugging (44) back into (35), we prove after tedious
manipulations (cf. Appendix B), that the angular parameters,

{ψ̄k}
K
k=1, can now be estimated by minimizing the following

compressed cost function (i.e., that depends on ψ only):

fc
(
ψ
∣∣ R̂−2x̃̃x

)
= <

{
tr
{
diag

{
a(2)

}
A(ψ)diag

{
a(2)H

}
R̂1

}}
−

∣∣∣∣ tr{diag{a(2)
}
B(ψ)diag

{
a(2)

}T R̂∗2}∣∣∣∣. (50)

Note here that the first version of our proposed method
defined by the cost function in (50) is applicable for a general
class of angular distributions (symmetric distributions with
small angular spreads) and any planar array configuration.
However, it requires the a priori knowledge of the angular
distributions to calculate the matrices A and B from (46)
and (47), respectively. Furthermore, finding the K minima
of (50) with respect to ψ =

[
2, σ

]T still requires a
two-dimensional (2-D) search over 2 and σ and needs the
angular distribution to be identical for all the sources to
estimate jointly the angular parameters. In the following,
we will build upon some properties of the matrices T(ψ) and
T′(ψ) in order to decouple the estimation of the central DOAs
from that of the angular spreads [31]. These properties are
valid for any symmetric source’s angular distribution with
small angular spreads. Hence, the estimator can be imple-
mented by two successive one-dimensional (1-D) parameter
searches, thereby resulting in tremendous computational sav-
ings. Moreover, we will exploit these properties to establish
unstructured models for T(ψ) and T′(ψ) that are totally
oblivious to the symmetric sources’ angular distributions.
Therefore, we will obtain a new version of the proposed
estimator that does not require the a priori knowledge of the
sources’ angular distributions.

IV. ROBUST VERSION OF THE PROPOSED ESTIMATOR
To begin with, for any array configuration, recall that T(ψ)
is a real-valued symmetric matrix whose expression is given
by (41). Moreover, we prove in the following that if f ′p−1(2̄k )
is expressed as follows1:

f ′p−1(2̄k ) = (p− 1)g(2̄k ), (51)

where g(2̄k ) is a transformation of the central DOA 2̄k , then
T(ψ̄k ) is a symmetric Toeplitz matrix. In fact, injecting (51)
in (41), we show that [T]pl(ψ̄k ) can be written as follows:

[T]pl(ψ̄k )=
∫
ρk (θ, ψ̄k ) cos

(
2π (p−l)g(2̄k )(θ−2̄k )

)
dθ.

(52)

From (52), we can simply verify that:

[T]pl(ψ̄k ) = [T](p+m)(l+m)(ψ̄k ),∀m. (53)

Consequently, T(ψ̄k ) is a symmetric Toeplitz matrix and,
therefore, it can be fully constructed from its first column
vector denoted here as t1, i.e.:

T(ψ) = Toeplitz
(
t1
)
. (54)

1(51) means that the antenna array must be an equally-spaced linear array.
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Moreover, for any symmetric angular distribution, we prove
in Appendix C that if its angular spread verifies the following
condition:

σ <
1

√
2π (L − 1)g(2̄k )

, (55)

then the elements, {t1(l)}Ll=1, of the vector, t1, satisfy the
following property:

1 = t1(1) ≥ t1(2) ≥ . . . ≥ t1(L) ≥ 0. (56)

(55) is a nonrestrictive condition for propagation envi-
ronments characterized by small angular spreads, e.g.,
macro-cell environments [53]–[55]. Actually, (56) can be
rewritten in the more succinct form2:

JLt1 ≤ eL , (57)

where Jn is from now on a (n× n) matrix given by:

Jn =



1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1
. . . 0

...
. . .

. . .
. . .

...

0 · · · · · · −1 1
0 · · · · · · 0 −1


,

and en is a n−dimensional vector given by en =

[1, 0, . . . , 0]T .
For any array configuration, recall also that T′(ψ) is a
real-valued symmetric matrix whose expression is given
by (43). Moreover, if f ′p−1(2̄k ) satisfies (51), we show that
[T′]pl(ψ̄k ) can be written as:

[T′]pl(ψ̄k ) =
∫
ρk (θ, ψ̄k ) cos (2π (p

+ l − 2)g(2̄k )(θ − 2̄k )
)
dθ. (58)

From (58), we can see that T′(ψ) is a Hankel matrix. There-
fore, it can be constructed from its first and last column
vectors denoted, respectively, as t′1 and t

′
L as follows:

T′(ψ) = Hankel
(
t′1, t
′
L
)
. (59)

Moreover, for any symmetric source’s angular distribution,
we also prove in Appendix C that if σ < 1/

(
2
√
2π (L −

1)g(2̄k )
)
, then the elements of t′1 and t

′
L satisfy the following

properties:

JLt′1 ≤ eL , JLt′L ≤ eL , and t′1(L) = t′L(1). (60)

Furthermore, we verify that the first column vector of T′(ψ)
is identical to the first column vector of T(ψ), i.e., we have
the following relation:

t1 = t′1. (61)

2Note here that the notation v1 ≤ v2 for any tow N−dimensional vectors
x = [x1, x2, . . . , xN ]T and y = [y1, y2, . . . , yN ]T means that xn ≤ yn for
n = 1, 2, . . . ,N .

In order to exploit the interesting properties stated above
in (57), (60) and (61), we consider an auxiliary vector
z = [z1, . . . , zL−1, zL , . . . , z2L−2]T whose elements are all
in [0, 1] and sorted in decreasing order:

1 ≥ z1 ≥ z2 ≥ . . . ≥ zL−1 ≥ zL ≥ . . . ≥ z2L−2 ≥ 0, (62)

or equivalently:

J2L−1z ≤ e2L−1. (63)

Then, we construct the following two auxiliary matrices:

Z = Toeplitz
([
1, z(1 : L − 1)

])
, (64)

Z′ = Hankel
([
1, z(1 : L − 1)

]
, z(L − 1 : 2L − 2)

)
, (65)

which also verify the constraints in (57) and (60), respec-
tively. Therefore, bearing in mind the expressions of the
matrices A and B in (46) and (47), respectively, it follows
that instead of minimizing the 2-D criterion in (50), one can
start by solving the following 1-D constrained optimization
problem in order to find the central DOAs:̂̄2 = argminK

2

(
min
z
g(2, z) subject to (63)

)
, (66)

where

g(2, z)

= <

{
tr
{
diag

{
a(2)

}(
Z2
+ Z′2

)
diag

{
a(2)H

}
R̂1

}}
−

∣∣∣∣ tr{diag{a(2)
}(
ZZ′ + Z′Z

)
diag

{
a(2)T

}
R̂∗2

}∣∣∣∣.
(67)

The optimization task in (66) can be solved efficiently via
the well-known sequential quadratic programming (SQP)
algorithm which is a rapidly converging descent method for
nonlinearly-constrained optimization problems [56]. Inter-
estingly enough, the estimator in (66) is also totally obliv-
ious to the sources’ angular distributions provided that the
latter be symmetric. In fact, the auxiliary matrices Z and
Z′ involved in (63) were built for any symmetric angular
distribution upon some general properties shared by T and
T′, respectively, and not their true expressions as required
in (50). Moreover, this estimator is applicable in the more
challenging scenario where the sources have different angular
distributions. These are actually quite precious degrees of
freedom in practice since the angular distribution may vary
from one environment to another and/or from source to source
in real-world scenarios. After acquiring the central DOAs,̂̄2 =

[̂̄21,
̂̄22, . . . ,

̂̄2K
]
, as in (66), the angular spread

pertaining to each kth source is estimated as follows:̂̄σ k = argmin
σ

fc
(̂̄2k , σ

∣∣ R̂−2x̃̃x
)
, (68)

where fc(.) is the compressed cost function already estab-
lished in (50). Our estimator actually reduces to (66) and (68),
that is after going through three different derivation stages,
from (35) to (50), ultimately leading to our final robust
solution.
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V. STATISTICAL PROPERTIES
In order to assess the theoretical performance limits of
the proposed estimator, we will express its mean square
error (MSE) analytically, based on the minimization of the
original cost function, f

(
ψ, ϕ

∣∣ R̂−2x̃̃x
)
, given in (35) instead

of the compressed one in (50) due to the presence of the
nonlinear modulus operator in it. We will also use αk =
[ψ̄

T
k , ϕ̄k ]

T
= [2̄k , σ̄k , ϕ̄k ]T to denote the entire unknown

parameter vector pertaining to each kth noncircular ID
source. We further use:

b(̂αk ) , E{̂αk} − αk , (69)

V(̂αk ) , E
{(
α̂k − E{̂αk}

)(
α̂k − E{̂αk}

)T}
, (70)

to denote, respectively, the bias vector and covariance matrix
of the estimate α̂k . To begin with, it is easy to show that the
mean square error (MSE), defined as MSE(̂αk ) , E

{
(̂αk −

αk )(̂αk − αk )T
}
, is given by:

MSE(̂αk ) = b(̂αk )bT (̂αk )+ V(̂αk ). (71)

Moreover, similar to [32], let ᾰk denote the asymptotic esti-
mate (obtained when the number of snapshots N →∞), and
define 1αk , ᾰk − αk and 1ᾰk , α̂k − ᾰk . Then,
it immediately follows from (69) that b(̂αk ) decomposes as
the sum of the asymptotic bias and the residual bias stemming
from the finite-sample effects:

b(̂αk ) = E{1αk} + E{1ᾰk}. (72)

Furthermore, using some relatively straightforward algebraic
manipulations, it can be shown that:

V(̂αk ) = E
{
1ᾰk1ᾰ

T
k
}
− E

{
1ᾰk

}
E
{
1ᾰTk

}
. (73)

Plugging (72) and (73) back into (71), it follows that:

MSE(̂αk ) = E
{
1αk1α

T
k
}
+ E

{
1αk

}
E
{
1ᾰk

}T
+E

{
1ᾰk

}
E
{
1αk

}T
+ E

{
1ᾰk1ᾰ

T
k
}
. (74)

In order to establish an analytical expression for MSE(α̂k ),
we will derive hereafter the four expectations involved in (74)
separately. To do so, we use α and R as generic variables for
αk and R̂−2x̃̃x , respectively. We also denote the gradient vector
and Hessian matrix of the scalar-valued objective function,
f (α,R), as follows:

f(α|R) ,
∂f (α|R)
∂α

, (gradient vector)

F(α|R) ,
∂2 f (α|R)
∂α∂αT

. (Hessian matrix)

From (35), the ith element of the vector f(α|R) is given by:[
f(α|R)

]
i ,

∂f (α|R)
∂αi

= tr
{
R R̃[i]

ss

}
, (75)

where

R̃[i]
ss , R̃ss

∂R̃ss

∂αi
+
∂R̃ss

∂αi
R̃ss. (76)

Furthermore, the entries of the Hessian matrix, F(α|R), are
obtained as follows:[

F(α|R)
]
ij ,

∂2f (α|R)
∂αi∂αj

= tr
{
R R̃[i,j]

ss

}
. (77)

where

R̃[i,j]
ss ,

∂R̃ss

∂αi

∂R̃ss

∂αj
+ R̃ss

∂2R̃ss

∂αi∂αj
+
∂2R̃ss

∂αi∂αj
R̃ss +

∂R̃ss

∂αj

∂R̃ss

∂αi

A. DERIVATION OF E{1αk } AND E{1αk1α
T
k }

First, using the properties of the complex Wishart distri-
bution [57, p. 273], it can be shown that the asymptotic
sample-mean estimate of the extended covariance matrix,
R̆x̃̃x = limN→∞ R̂x̃̃x, is a consistent estimate of the Hermitian
matrix Rx̃̃x. This means that as N →∞, we have:

R̆−2x̃̃x = R−2x̃̃x . (78)

To derive the asymptotic bias,1αk , we use as in [58] and [59]
the first-order Taylor series expansion of f(α,R−2x̃̃x ) around the
actual parameter vector αk :

f
(
α
∣∣R−2x̃̃x

)
' f

(
αk
∣∣R−2x̃̃x

)
+ F

(
αk
∣∣R−2x̃̃x

) (
α − αk

)
. (79)

By noticing that the asymptotic estimate, ᾰk , also minimizes
f (α|R−2x̃̃x ), it follows that f(ᾰk |R

−2
x̃̃x ) = 0. Therefore, by eval-

uating (79) at α = ᾰk , it follows that:

f
(
αk
∣∣R−2x̃̃x

)
+ F

(
αk
∣∣R−2x̃̃x

)
(ᾰk − αk ) ' 0, (80)

from which 1αk , (ᾰk − αk ) is obtained as:

1αk ' − F−1
(
αk
∣∣R−2x̃̃x

)
f
(
αk
∣∣R−2x̃̃x

)
. (81)

Consequently, the approximate expression for the asymptotic
bias, 1αk , and E

{
1αk1α

T
k

}
are obtained as follows:

E{1αk} ' − F−1
(
αk
∣∣R−2x̃̃x

)
f
(
αk
∣∣R−2x̃̃x

)
,

and

E{1αk1αTk }

'F−1
(
αk
∣∣R−2x̃̃x

)
f
(
αk
∣∣R−2x̃̃x

)
f
(
αk
∣∣R−2x̃̃x

)T
F−1

(
αk
∣∣R−2x̃̃x

)
.

B. DERIVATION OF E{1ᾰk } and E{1ᾰk1ᾰ
T
k }

After tedious algebraic manipulations, we also show in
Appendix D that 1ᾰk is expressed as follows:

1ᾰk = F−1(ᾰk |R−2x̃̃x ) v(ᾰk |R
−2
x̃̃x , R̂

−2
x̃̃x ), (82)

where v(ᾰk |R−2x̃̃x , R̂
−2
x̃̃x ) is a 3-dimensional vector whose ith

element is explicitly given by

vi
(
ᾰk |R−2x̃̃x , R̂

−2
x̃̃x
)
= tr

{[
∂

∂R
tr
{
R R̃[i]

ss

}]T
1R−2x̃̃x

} ∣∣∣∣ α=ᾰk
R=R−2x̃̃x

.

(83)
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Recall here that R̃[i]
ss was already defined in (76) and we

further define 1R−2x̃̃x as follows:

1R−2x̃̃x , R̂−2x̃̃x − R−2x̃̃x . (84)

Then, by exploiting the fact that ∂tr{AB}/∂A = BT for any
two matrices A and B, it follows that:

vi
(
ᾰk |R−2x̃̃x , R̂

−2
x̃̃x
)
= tr

{
R̃[i]
ss 1R−2x̃̃x

}
=

[
vec
{
R̃[i]T
ss
}]T

vec
{
1R−2x̃̃x

}
, (85)

where the last equality follows from the identity tr{AB} =
vecT {AT

}vec{B}. Consequently, the vector v
(
ᾰk |R−2x̃̃x , R̂

−2
x̃̃x
)

is expressed as follows:

v
(
ᾰk |R−2x̃̃x , R̂

−2
x̃̃x
)
= GT

ssvec
{
1R−2x̃̃x

}
, (86)

where the matrix Gss is given by

Gss =

[
vec
{
R̃(1)T
ss

}
vec
{
R̃(2)T
ss

}
vec
{
R̃(3)T
ss

}]
. (87)

Plugging (86) back into (82), one obtains:

1ᾰk = F−1(ᾰk |R−2x̃̃x ) G
T
ssvec

{
1R−2x̃̃x

}
, (88)

whose expectation yields the required residual bias as fol-
lows:

E
{
1ᾰk

}
= F−1

(
ᾰk |R−2x̃̃x

)
GT
ss vec

{
E
{
1R−2x̃̃x

}}
. (89)

Furthermore, in presence of noncircular signals, it can be
shown that E{1R−2x̃̃x } is accurately approximated by3:

E
{
1R−2x̃̃x

}
'

1
N − 2L

2L∑
n=1

1
λ2n
ẽñeHn ,

where ẽn is an eigenvector associated to the nth eigenvalue,
λn, of the extended covariance matrix Rx̃̃x. From (88), it also
immediately follows that:

E
{
1ᾰk1ᾰ

T
k

}
=F−1

(
ᾰk | R−2x̃̃x

)
GT
ss H Gss F−1

(
ᾰk | R−2x̃̃x

)
,

(90)

where

H = E
{
vec
{
1R−2x̃̃x

}
vec
{
1R−2x̃̃x

}T}
. (91)

The entries of H are also evaluated using the following accu-
rate approximation:

E
{ [
1R−2x̃̃x

]
ij

[
1R−2x̃̃x

]
pl

}
'

1
N − 2L

2L∑
n=1

2L∑
n′=1

ωnn′
[̃
eñeHn

]
il

[̃
en′̃eHn′

]
pj
, (92)

in which the weighting coefficients, ωnn′ , are simply given
by:

ωnn′ = λ
−1
n λ−1n′

(
λ−1n + λ

−1
n′
)2
. (93)

3See [32] and [59] for more details about the proof in the case of circular
sources that we generalize here to the noncircular case using the appropriate
extended covariance matrices.

VI. NEW CRLB FOR NONCIRCULAR GAUSSIAN
DISTRIBUTED SIGNALS GENERATED FROM ID SOURCES
In this section, we assume that the transmitted signals
{s(t)}t=1,2,...,N are zero-mean Gaussian distributed and gen-
erated from noncircular ID sources. We also assume that the
noncircularity rate of the signals is 0 ≤ γ ≤ 1. Now recall
from (21) that the extended covariance matrix of the received
signals is given by:

Rx̃̃x =

(
Rxx R′xx
R′∗xx R∗xx

)
. (94)

Moreover, using (38) and (39) in (18) and (19), respectively,
it follows that:

Rxx =

K∑
k=1

σ 2
skR

(k)
ss (ψ̄k )+ σ

2
wIL , (95)

R′xx =
K∑
k=1

σ 2
skR
′(k)
ss (ψ̄k ). (96)

Then, using (40) and (42) in (95) and (96), respectively, leads
to:

Rxx =

K∑
k=1

σ 2
sk8(2̄k )T(ψ̄k )8(2̄k )H + σ 2

wIL , (97)

R′xx =
K∑
k=1

σ 2
sk e

jϕ̄kγk8(2̄k )T′(ψ̄k )8(2̄k )T . (98)

Recall also that the explicit expressions of 8(2̄k ), T(ψ̄k )
and T′(ψ̄k ) were already given in Section III. Our goal in
this section is to find the CRLB of the unknown parameters
of interest (i.e., namely the angular parameters) which are
gathered in the following vector:

η ,
[
2T , σ T

]T
. (99)

The unknown nuisance parameters which are the noise vari-
ance, σw, the sources’ powers, β ,

[
σ 2
s1 , . . . , σ

2
sK

]T
, and

their noncircularity phases, ϕ , [ϕ1, . . . , ϕK ]T , are also
gathered in the vector:

ξ ,
[
βT , ϕT , σ 2

w

]T
. (100)

We will also group all the parameters in (100) an (99) in a
single vector:

υ ,
[
ηT , ξT

]T
. (101)

The CRLB of the entire unknown parameter vector, υ,
is defined as follows [47]:

CRLB(υ) , I−1(υ), (102)

where I(υ) is the so-called Fisher information matrix (FIM).
Since the extended snapshot vectors, {̃x(t)}Nt=1, defined
in (20) are mutually independent, then according to [60]
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the (i, j)th entry of the FIM associated to the underlying
estimation problem is given by:

[I]ij =
N
2
tr
{
∂Rx̃̃x

∂υi
R−1x̃̃x

∂Rx̃̃x

∂υj
R−1x̃̃x

}
, (103)

where υi is the ith element of the whole parameter vector
given in (101). Using (97) and (98), we show in Appendix E
that the CRLB for the angular parameters alone in presence
of uncorrelated ID noncircular sources is explicitly given by:

CRLB(η) =
(
Iη,η − ITξ ,ηI

−1
ξ ,ξ

Iξ ,η
)−1

, (104)

where the expressions of Iη,η, Iξ ,η, and Iξ ,ξ are provided in
Appendix E.

VII. SIMULATION RESULTS
In this section, we assess the performance of the newly
proposed method and gauge it against the most recent state-
of-the-art techniques that are geared toward multiple ID
sources, namely ESB [32] and RGC [31]. Although the latter
were derived specifically for ID circular sources, they can
be applied to the noncircular case as well after completely
ignoring the non-zero unconjugated covariance matrix. All
the methods will be also gauged against the CRLB. In all sim-
ulations, we consider complex Gaussian transmitted signals
and a uniform linear array of 6 sensors separated by half a
wavelength.

A. ASSESSMENT OF THE NEW ESTIMATOR
In this subsection, the root mean-square error (RMSE) of
each estimator is computed empirically by means of 2000
Monte-Carlo runs. We first consider in Fig. 1 two uncorre-
lated ID noncircular sources with the same noncircularity rate
(γ1 = γ2 = 1) and noncircularity phases ϕ1 = π

3 and ϕ2 =
π
4 . Both ID sources have a Gaussian angular distribution
(i.e., GID) and are located at central DOAs 2̄1 = 10◦ and
2̄2 = 30◦ with respective angular spreads σ̄1 = 1.5◦ and
σ̄2 = 3◦. The SNR is fixed to 5 dB while the number of
snapshots used to estimate the sample covariance matrix is
increased from 100 to 1000 in steps of 100. Figs. 1(a) and 1(b)
depict the empirical RMSEs of all tested methods. Clearly,

FIGURE 1. RMSE of the three estimators versus N for SNR = 5 dB.

our estimator is statistically more efficient and outperforms
ESB and RGC both in terms of central DOAs and angu-
lar spreads estimation accuracy. Moreover, the performance
improvements of the proposed method over ESB and RGC
hold almost the same irrespectively of N . Therefore, we will
hereafter fix N = 1000.
Figs. 2(a) and 2(b) depict the empirical RMSEs of all

tested methods versus the SNR. The analytical RMSE of
the new estimator established in Section V is also plotted
there. These figures show a very good agreement between the
empirical and analytical RMSEs of the proposed estimator,
thereby corroborating our analytical performance analysis
of Section V. It also suggests that the proposed estimator
outperforms ESB and RGC, both in terms of central DOAs
and angular spreads estimation capabilities, especially under
the adverse conditions of low SNR levels.

FIGURE 2. RMSE of the three estimators versus SNR for N = 1000,
sources with the same angular distribution.

FIGURE 3. RMSE of the three estimators versus SNR for N = 1000,
sources with different angular distributions.

In Fig. 3, we consider two uncorrelated ID noncircular
sources with different angular distributions. More specifi-
cally, the first source is uniformly distributed (UID) with
central DOA, 2̄1 = 10◦, and angular spread σ̄1 = 1.5◦

while the second is GID distributed with central DOA, 2̄2 =

30◦, and angular spread σ̄2 = 3◦. To apply ESB in this
setup, however, we assume that both sources are GID. In
fact, in contrast to the proposed method and RGC, ESB was
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specifically derived in the case where all the sources have the
same angular distribution. By comparing Figs. 2 and 3 (i.e.,
sources truly having the same distribution), we observe that
ESB suffers from severe performance degradation. It even
becomes less accurate than RGC at low SNR levels, that is
in stark contrast to what was earlier reported in Fig. 2. The
proposed estimator, however, keeps its superiority in terms
of estimation accuracy thereby making it more attractive in
practice where the sources are more likely to have different
angular distributions.

Next, we examine the impact of the sources’ separation
on the performance of the three estimators. To that end,
we reconsider the case of noncircular ID sources with the
same angular distribution (GID). The first source is kept fixed
at 2̄1 = 10◦ with angular spread, σ̄1 = 1.5◦, while the second
(with σ̄2 = 3◦) is shifted from 18◦ to 30◦ with 2◦. The results
are plotted in Fig. 4 at 5 dB SNR and suggest that all estima-
tors expectedly improve their accuracy as the DOA separation
increases. Yet, the proposed approach significantly outper-
forms ESB and RGC for small DOA separations, a more
challenging scenario in practice. Finally, we consider in Fig. 5
an even more challenging scenario where two uncorrelated
GID noncircular sources with the same noncircularity rate
(γ1 = γ2 = 1) and noncircularity phases ϕ1 = π

3 and ϕ2 = π
4

are located at central DOAs 2̄1 = 10◦ and 2̄2 = 15◦ with
respective angular spreads σ̄1 = 2◦ and σ̄2 = 4◦. The number
of snapshots is fixed to N = 100. Figs. 5(a) and 5(b) show
that the performance of the three methods is satisfactory,
especially at high SNR values. However, our new estimator
still outperforms the two other methods both in terms of
central DOAs and angular spreads estimation performance.

FIGURE 4. RMSE of the three estimators versus DOA separation for
N = 1000 and SNR = 5 dB, sources with the same angular distributions.

B. ASSESSMENT OF THE NEW CRLBS
In this subsection, we illustrate the newly derived CRLBs
(i.e., CRLBnoncir) in different scenarios.We first consider two
equipowered ID sources with identical noncircularity rate,
γ = 1, and noncircularity phases ϕ1 = π/3 and ϕ2 = π/4.
The sources are located at central DOAs 2̄1 = 10◦ and
2̄2 = 30◦ with respective angular spreads σ̄1 = 3◦ and
σ̄2 = 5◦. Figs. 6(a) and 6(b) show both log(CRLBnoncir) and

FIGURE 5. RMSE of the three estimators versus SNR for N = 100, sources
with the same angular distributions.

FIGURE 6. CRLBnoncir and CRLBcir as function the SNR.

log(CRLBcir) of 2̄1 and σ̄1, respectively, when the sources
have: i) the same Gaussian angular distribution, and ii) differ-
ent angular distributions (the first source is UID and the sec-
ond source is GID). We see from Fig. 6 that the CRLBs
for noncircular ID sources are lower than their counterparts
derived assuming ID circular sources, especially at low SNR
values. This illustrates the performance gain that is achieved
by exploiting the non-circularity feature of the sources in
the estimation process. Moreover, CRLBcir converges faster
to CRLBnoncir, at high SNR, when the sources have the
same angular distribution (GID-GID in our case). Therefore,
at high SNRs, the noncircularity of the signals is more infor-
mative about the angular parameters when the sources have
different distributions. Next, we examine the impact of the
angular spread on the estimation of the angular parameters,
by fixing σ̄2 and varying σ̄1. Fig. 7 depicts log(CRLBnoncir)
and log(CRLBcir) as a function of the SNR for three different
values of σ̄1. Moreover, we consider in Fig. 7(a) the case
of point (or non-distributed) sources which corresponds to
σ̄1 = σ̄2 = 0◦. As intuitively expected, CRLBnoncir and
CRLBcir increase with the angular spread and so does the
difference between them. This reveals that as the angular
spread increases, there is more room for the noncircularity
of the signals to improve the estimation performance. In fact,
the signals become more dispersed and thus the unconju-
gated covariance matrix becomes more informative about the
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FIGURE 7. CRLBnoncir and CRLBcir versus the SNR for different values of
σ̄1.

FIGURE 8. Ratio of CRLBs as a function of the noncircularity rate γ for
different values of DOA separation (12), ϕ1 = π/3 and ϕ2 = π/4.

FIGURE 9. CRLBnoncir(2̄1) and CRLBnoncir(σ1) as a function of the
noncircularity phase 1ϕ for different values of DOA separation (12) for
γ = 1.

angular parameters. In Figs. 8 and 9, we study the effect of
the signals’ noncircularity parameters on CRLBnoncir under
different sources’ separations,12, in terms of central DOAs.
The first source is UID and fixed at 2̄1 = 10◦ whereas
the second source is GID and its central DOA, 2̄2, is varied
from 18◦ to 30◦. The respective angular spreads of the two
sources are σ̄1 = 3◦ and σ̄2 = 5◦. The number of snapshots
is fixed to N = 1000 and the SNR = 5 dB.
We observe from Figs. 8-(a) and 8-(b) that CRLBnoncir

of the two angular parameters decrease as the noncircularity
steps rate increases. Moreover, the gap between CRLBnoncir

and CRLBcir increases as the DOA separation12 decreases.

In fact, the ratio between the two CRLBs tends to zero at low
DOA separations (for 12 = 8◦). More specifically, at low
DOA separations, CRLBnoncir becomes very small compared
to CRLBcir, meaning that huge performance gains can be
achieved in this challenging scenario by exploiting the addi-
tional information carried by the unconjugated covariance
matrix. Fig. 9 also reveals that CRLBnoncir is more sensitive to
the noncircularity phase separation at small DOA separations.

VIII. CONCLUSION
In this paper, we developed a new method for the estimation
of the angular parameters in the presence of noncircular ID
sources. The new estimator decouples the estimation of the
central DOAs from that of the angular spreads by means of
two consecutive 1-D searches, thereby resulting in tremen-
dous computational savings as compared to the brute-force
2D grid search solution. It is also oblivious to the sources’
angular distribution or any mismatch thereof. This estimator
is particulary interessant for symmetric sources’ distributions
with small angular spreads.

The proposed estimator outperforms most recent state-
of-the-art techniques, especially for small DOA separations
and/or low SNR levels. Its performance was also assessed
analytically and the obtained results were corroborated by
Monte-Carlo simulations. In order to benchmark the new esti-
mator, we also derived for the first time an explicit expression
for the stochastic CRLBs of the underlying estimation prob-
lem. The analysis of the new CRLB unambiguously shows
that the noncircularity of the signals brings valuable addi-
tional information about the angular parameters especially
when the sources have different angular distributions and/or
when the angular spreads increase. Besides, the noncircular
CRLBs decrease as the noncircularity rate increases. And,
they are much smaller than the circularCRLBs at small DOA
separations. In which case they also becomemore sensitive to
the noncircularity phase separation.

APPENDIX A
PROOF OF (41)
From (38), the (p, l)th element of Rss(ψ̄k ) has the following
expression:[

Rss
]
pl(ψ̄k ) =

∫
ρk (θ, ψ̄k )ap(θ )a

∗
l (θ )dθ, (105)

where ap(θ ) = ej2π fp−1(θ ).
Otherwise, we denote by θ̃ the deviation of the direction θ

from the central DOA 2̄k as follows:

θ̃ = θ − 2̄k . (106)

For small angular spreads, θ̃ tends to zero. We can therefore
use the following approximation:

fp−1(θ ) ' fp−1(2̄k )+ θ̃ f ′p−1(2̄k ), (107)

where f ′p−1(θ ) stands for the first derivative of fp−1(θ ) with
respect to θ . Hence, we obtain the following expression
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for
[
Rss
]
pl(ψ̄k ):[

Rss
]
pl(ψ̄k )

' ej2π (fp−1(2̄k )−fl−1(2̄k ))

×

∫
ρk (2̄k + θ̃ , ψ̄k )e

j2π
(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃
d θ̃ . (108)[

Rss
]
pl(ψ̄k ) can be written equivalently as follows:[

Rss
]
pl(ψ̄k ) '

(
a(2̄k ) a(2̄k )H

)
pl
×
[
T
]
pl(ψ̄k ), (109)

where
[
T
]
pl(ψ̄k ) is given by:

[T]pl(ψ̄k ) =
∫
ρk (2̄k + θ̃ , ψ̄k )e

j2π
(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃
d θ̃ .

(110)

From (110), the complex conjugate of [T]pl(ψ̄k ) is given by:

[T]∗pl(ψ̄k ) =
∫
ρk (2̄k + θ̃ , ψ̄k )e

−j2π
(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃
d θ̃ ,

=

∫
ρk (2̄k + θ̃ , ψ̄k )e

j2π
(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃
d θ̃ ,

= [T]lp(ψ̄k ). (111)

Moreover, by assuming that the angular distribution is sym-
metric with respect to the central DOA 2̄k , we have the
following relation:

ρk (θ, ψ̄k ) = ρk (2̄k + θ̃ , ψ̄k ) = ρk (2̄k − θ̃ , ψ̄k ). (112)

From (112), it follows that:

[T]∗pl(ψ̄k )

=

∫
+∞

−∞

ρk (2̄k + θ̃ , ψ̄k )e
j2π

(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
(−θ̃ )

d θ̃ ,

=

∫
−∞

+∞

ρk (2̄k − θ̃1, ψ̄k )e
j2π

(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃1 (−d θ̃1),

=

∫
+∞

−∞

ρk (2̄k + θ̃1, ψ̄k )e
j2π

(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃1d θ̃1,

= [T]pl(ψ̄k ). (113)

From (111) and (113), we have that:

[T]∗pl(ψ̄k ) = [T]pl(ψ̄k ) = [T]lp(ψ̄k ). (114)

This proves that T(ψ̄k ) is a real-valued (L × L) symmetric
matrix. Otherwise, exp{j2π

(
f ′p−1(2̄k )− f ′l−1(2̄k )

)
θ̃} can be

written as:

e
j2π

(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃

= cos
(
2π
(
f ′p−1(2̄k )− f ′l−1(2̄k )

)
θ̃
)

+ j sin
(
2π
(
f ′p−1(2̄k )− f ′l−1(2̄k )

)
θ̃
)
.

Therefore, [T]pl(ψ̄k ) can be expressed as follows:

[T]pl(ψ̄k )

=

∫
ρk (2̄k + θ̃ , ψ̄k ) cos

(
2π
(
f ′p−1(2̄k )− f ′l−1(2̄k )

)
θ̃
)
d θ̃

= j
∫
ρk (2̄k + θ̃ , ψ̄k )sin

(
2π
(
f ′p−1(2̄k )− f ′l−1(2̄k )

)
θ̃
)
d θ̃ .

Since T(ψ̄k ) is a real-valued matrix, then we can deduce that:∫
ρk (2̄k + θ̃ , ψ̄k ) sin

(
2π
(
f ′p−1(2̄k )− f ′l−1(2̄k )

)
θ̃
)
d θ̃=0.

(115)

Consequently, [T]pl(ψ̄k ) can be reduced to:

[T]pl(ψ̄k )

=

∫
ρk (2̄k + θ̃ , ψ̄k ) cos

(
2π
(
f ′p−1(2̄k )−f ′l−1(2̄k )

)
θ̃
)
d θ̃ ,

=

∫
ρk (θ, ψ̄k )cos

(
2π (f ′p−1(2̄k )− f ′l−1(2̄k ))(θ−2̄k )

)
dθ,

thereby leading to the result given in (41). Moreover, since,
we have:

cos
(
2π (f ′p−1(2̄k )− f ′l−1(2̄k ))(θ − 2̄k )

)
≤ 1, (116)

then we can conclude that ∀p, l, we have:

[T]pl(ψ̄k ) ≤
∫
ρk (θ, ψ̄k )dθ = 1. (117)

APPENDIX B
PROOF OF (50)
Substituting (44) in (35) and using the identity tr{ABC} =
tr{CAB} for any square matrices, A,B and C, along with the
fact that 8̃(2̄, ϕ)H 8̃(2̄, ϕ) = I2L , we obtain:

f
(
ψ, ϕ

∣∣ R̂−2x̃̃x
)
= tr

{
8̃(2̄, ϕ)T̃2(ψ)8̃(2̄, ϕ)H R̂−2x̃̃x

}
. (118)

On the other hand, by recalling the expression of the
extended array response vector, ã(2̄, ϕ), in (23), it follows
that 8̃(2̄, ϕ) = diag{̃a(2̄, ϕ)} is given by:

8̃(2̄, ϕ) =

 diag
{
a(2̄)

}
0L×L

0L×L e−jϕdiag
{
a(2̄)

}H
 . (119)

Furthermore, by recalling the expression of T̃(ψ) in (45), it is
easy to show that:

T̃(ψ)2 =
(
A(ψ) B(ψ)
B(ψ) A(ψ)

)
, (120)

where

A(ψ) = T(ψ)2 + T′(ψ)2,

B(ψ) = T(ψ)T′(ψ)+ T′(ψ)T(ψ).

Similar to (26), the estimated extended covariance matrix,
R̂x̃̃x, is eigendecomposed as follows:

R̂x̃̃x =
̂̃Us6̂s

̂̃UH
s +

̂̃Uw6̂w
̂̃UH
w , (121)
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from which it can be shown that:

R̂−2x̃̃x =
̂̃Us6̂

−2
s
̂̃UH
s +

̂̃Uw6̂
−2
w
̂̃UH
w . (122)

Moreover, as shown in [36], ̂̃Us and ̂̃Uw can be partitioned as
follows: ̂̃Us = [ÛT

s , Û
′T
s ]T with Û′s = Û∗sDs, (123)̂̃Uw = [ÛT

w, Û
′T
w ]T with Û′w = Û∗wDw, (124)

whereDs andDw are some diagonal matrices whose complex
diagonal entries are of unit modulus.
Injecting (123) and (124) back into (122), we show after

some algebraic manipulations that R̂−2x̃̃x has the following
block diagonal structure:

R̂−2x̃̃x =

(
R̂1 R̂2

R̂∗2 R̂∗1

)
, (125)

where

R̂1 = Ûs6̂
−2
s ÛH

s + Ûw6̂wÛH
w , (126)

R̂2 = Ûs6̂
−2
s D∗s Û

T
s + Ûn6̂wD∗wÛ

T
w. (127)

Substituting (119), (120), and (125) back into (118), and
resorting to some algebraic manipulations yields the follow-
ing result:

f
(
ψ, ϕ

∣∣ R̂−2x̃̃x
)
= 2<

{
z1(ψ)+ ejϕz2(ψ)

}
, (128)

in which the complex numbers z1(ψ) and z2(ψ) are explicitly
given by:

z1(ψ) = tr
{
diag{a(2)}A(ψ)diag

{
a(2)H

}
R̂1

}
, (129)

z2(ψ) = tr
{
diag{a(2)}B(ψ)diag

{
a(2)T

}
R̂∗2
}
. (130)

In order to reduce the dimensionality of the optimization
problem at hand, we begin by minimizing the underlying cost
function with respect to the unknown noncircularity phase
ϕ. To that end, we use z2(ψ) = |z2(ψ)|exp{j 6 z2(ψ)} and
rewrite (128) as follows:

f
(
ψ, ϕ

∣∣ R̂−2x̃̃x
)

= 2<
{
z1(ψ)

}
+ 2|z2(ψ)|<

{
ej
6 z2(ψ)ejϕ

}
, (131)

= 2<
{
z1(ψ)

}
+ 2|z2(ψ)| cos

(
ϕ + 6 z2(ψ)

)
. (132)

From (132), it is clear (for a fixed ψ) that the function f (.)
attains its minimum (with respect to ϕ) at the point:

ϕ̂(ψ) = π − 6 z2(ψ). (133)

Substituting (133) back into (132) and recalling (129)
and (130), we obtain the following cost function that depends
on ψ only:

fc
(
ψ
∣∣ R̂−2x̃̃x

)
= <

{
tr
{
diag

{
a(2)

}
A(ψ)diag

{
a(2)H

}
R̂1

}}
−

∣∣∣∣ tr{diag{a(2)
}
B(ψ)diag

{
a(2)

}T R̂∗2}∣∣∣∣, (134)

which is equivalent to the result given in (50).

APPENDIX C
PROOF OF (56) AND (60)
T(ψ) is a symmetric Toeplitz matrix constructed from its first
column vector t1 as follows:

T(ψ) = Toeplitz
(
t1
)
, (135)

where the lth element of the vector t1 is given from (52) by:

t1(l) = [T]l1(ψ̄k ),

=

∫
ρk (θ, ψ̄k ) cos

(
2π (l − 1)g(2̄k )(θ − 2̄k )

)
dθ.

(136)

For small angular spreads, we use a second-order Taylor-
series development of cos

(
2π (l − 1)g(2̄k )(θ − 2̄k )

)
to

obtain the following equality:

cos
(
2π (l − 1)g(2̄k ))(θ − 2̄k )

)
' 1− 2π2(l − 1)2g2(2̄k ))(θ − 2̄k )2.

Then, t1(l) can be approximated as follows:

t1(l) '
∫
ρk (θ, ψ̄k )dθ − 2π2(l − 1)2g2(2̄k )

×

∫
(θ − 2̄k )2ρk (θ, ψ̄k )dθ,

= 1− 2π2(l − 1)2g2(2̄k )σ̄ 2
k . (137)

From (137), we clearly see that the elements, {t1(l)}Ll=1, of the
vector, t1, satisfy the following property:

1 = t1(1) ≥ t1(2) ≥ . . . ≥ t1(L). (138)

Moreover, if σ < 1/
(√

2π (l − 1)g(2̄k )
)
∀ l = 1, . . . ,L or

equivalently σ < 1/
(√

2π (L − 1)g(2̄k )
)
, then t1(L) ≥ 0.

In the same way, T′(ψ) is a Hankel matrix defined from its
first and last column vectors t′1 and t′L as follows:

T′(ψ) = Hankel
(
t′1, t
′
L
)
, (139)

where the lth elements of the vectors t′1 and t′L are given,
respectively, by:

t′1(l) = [T′]l1(ψ̄k ),

=

∫
ρk (θ, ψ̄k ) cos

(
2π (l+1− 2)g(2̄k )(θ−2̄k )

)
dθ,

=

∫
ρk (θ, ψ̄k )cos

(
2π (l − 1)g(2̄k )(θ−2̄k )

)
dθ,

(140)

t′L(l) = [T′]lL(ψ̄k ),

=

∫
ρk (θ, ψ̄k ) cos

(
2π (L+l − 2)g(2̄k )(θ−2̄k )

)
dθ.

(141)
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For small angular spreads, t′1(l) and t
′
L(l) can be approximated

as follows:

t′1(l) ' 1− 2π2(l − 1)2g2(2̄k )σ̄ 2
k , (142)

t′L(l) ' 1− 2π2(L + l − 2)2g2(2̄k )σ̄ 2
k . (143)

From (142) and (143), we see clearly that the elements of t′1
and t′L satisfy the following properties:

1 = t′1(1) ≥ t′1(2) ≥ . . . ≥ t′1(L), (144)

t′L(1) ≥ t′L(2) ≥ . . . ≥ t′L(L). (145)

t′1(L) = t′L(1). (146)

Moreover, if σ < 1/
(
2
√
2π (L − 1)g(2̄k )

)
, then t′L(L) ≥ 0.

APPENDIX D
PROOF OF (82)
For any small vector andmatrix perturbations, δx and δX, and
scalar-valued function g(x,X), we have the following Taylor
series expansion [58], [59] around x0 and X0:

g(x0 + δx,X0 + δX) = g(x0,X0)+
∂g
∂x

(x0,X0)T δx

+ tr
{
∂g
∂X

(x0,X0)T δX
}
. (147)

The result in (147) is applied with x = α and X = R to the
functions:

fαi (α|R) , ∂f (α|R)/∂αi, i = 1, 2, 3 (148)

in order to obtain their Taylor series expansions around the
point (x0,X0) = (ᾰk , R̆−2x̃̃x ). In this way, for k = 1, 2, . . .K ,
the underlying perturbations are given by:

δx = α − ᾰk and δX = R− R̆−2x̃̃x . (149)

By doing so, we obtain for i = 1, 2, 3:

fαi (α|R) = fαi
(
ᾰk |R̆−2x̃̃x

)
+

[
∂fαi
∂α

(ᾰk |R̆−2x̃̃x )
]T

(α − ᾰk )

+ vi(ᾰk | R̆−2x̃̃x ,R), (150)

where

vi(ᾰk | R̆−2x̃̃x ,R) = tr

{[
∂fαi
∂R

(
ᾰk
∣∣R̆−2x̃̃x

)]T (
R− R̆−2x̃̃x

)}
.

(151)

Moreover, notice from (75) and (77) that fαi (α|R) and[
∂fαi (α|R)/∂α

]T are, respectively, the ith element of the gra-
dient vector, f(α|R), and the ith row of the Hessian matrix
F(α|R). Therefore, by further defining the vector v =
[v1, v2, v3]T , the results of (150) for i = 1, 2, 3 are rewritten
in the following matrix/vector form:

f(α|R)= f(ᾰk |R̆−2x̃̃x )+F(ᾰk |R̆
−2
x̃̃x )(α − ᾰk )+v(ᾰk |R̆

−2
x̃̃x ,R).

(152)

Evaluating the expansion in (152) at (α,R) =
(
α̂k , R̂−2x̃̃x

)
and using 1ᾰk , α̂k − ᾰk leads to:

f(̂αk |R̂−2x̃̃x ) = f(ᾰk |R̆−2x̃̃x )

+F(ᾰk |R̆−2x̃̃x )1ᾰk + v
(
ᾰk |R̆−2x̃̃x , R̂

−2
x̃̃x
)
. (153)

The finite-sample and asymptotic estimates, α̂k and ᾰk , are
obtained by minimizing f (α|R̂−2x̃̃x ) and f (α|R̆−2x̃̃x ), respec-
tively. Therefore, the gradient of the latter objective function
is identically zero at α̂k and ᾰk , i.e.:

f (̂αk |R̂−2x̃̃x ) = 03 and f (ᾰk |R̆−2x̃̃x ) = 03. (154)

Exploiting (154) back into (153) and resolving for 1ᾰk , one
obtains:

1ᾰk = F−1(ᾰk |R−2x̃̃x ) v(ᾰk |R
−2
x̃̃x , R̂

−2
x̃̃x ), (155)

in which owing to (78) we also replaced R̆−2x̃̃x by R−2x̃̃x . To
find the explicit expression of v(ᾰk |R−2x̃̃x , R̂

−2
x̃̃x ), involved we

further denote:

1R−2x̃̃x , R̂−2x̃̃x − R−2x̃̃x , (156)

Then, using (75) and (148) in (151), it follows that:

vi(ᾰk |R−2x̃̃x , R̂
−2
x̃̃x )= tr

{[
∂

∂R
tr
{
R R̃[i]

ss

}]T
1R−2x̃̃x

} ∣∣∣∣ α=ᾰk
R=R−2x̃̃x

,

(157)

where R̃[i]
ss is given by (76).

APPENDIX E
DERIVATION OF CRLB(η)
We have the following parameter vector:

υ =
[
ηT , ξT

]T
.

Therefore, the associated FIM can be written as:

I(υ) =
(
Iη,η Iξ ,η
Iη,ξ Iξ ,ξ

)
, (158)

whose ijth entry is expressed as:

[I(υ)]ij =
N
2
tr
{
∂Rx̃̃x

∂υi
R−1x̃̃x

∂Rx̃̃x

∂υj
R−1x̃̃x

}
, (159)

with

∂Rx̃̃x

∂υi
=


∂Rxx

∂υi

∂R′xx
∂υi(

∂R′xx
∂υi

)∗ (
∂Rxx

∂υi

)∗
 . (160)

In (160), υi is the ith element of υ and the involved partial
derivatives of Rxx are given by:

∂Rxx

∂2̄i
= σ 2

si

(
∂8

∂2̄i
T8H

+8
∂T
∂2̄i

8H
+8T

∂8H

∂2̄i

)
,

∂Rxx

∂σi
= σ 2

si8
∂T
∂σi

8H ,
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∂Rxx

∂σ 2
si

= 8T8H ,

∂Rxx

∂σ 2
n
= IL ,

∂Rxx

∂ϕi
= 0L×L .

Furthermore, it can be shown that the partial derivatives of
R′xx are given by:

∂R′xx
∂2̄i

= σ 2
si e

jϕi

(
∂8

∂2̄i
T′8T

+8
∂T′

∂2̄i
8T
+8T′

∂8T

∂2̄i

)
,

∂R′xx
∂σi
= σ 2

si e
jϕi8

∂T′

∂σi
8T ,

∂R′xx
∂σ 2

si

= ejϕi8T′8T ,

∂R′xx
∂σ 2

n
= 0L×L ,

∂R′xx
∂ϕi
= jσ 2

si e
jϕi8T′8T .

Recall that our goal is to find the CRLB of the angular
parameters, η, denoted as CRLB(η). Therefore, we are inter-
ested in the η-block of I−1(υ) only. From (158), the whole
FIM, I(υ), is a block matrix with Iη,η being its first diagonal
block. Thus, we use the block matrices inversion Lemma [61]
to obtain the following expression for CRLB(η):

CRLB(η) =
(
Iη,η − ITξ ,ηI

−1
ξ ,ξ

Iξ ,η
)−1

. (161)
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