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Abstract—In this paper, we consider a dual-hop communica-
tion from a source surrounded by MI interferences to a receiver,
through a wireless network comprised of K independent termi-
nals. In the first time slot, all sources send their signals to the
network, whereas in the second time slot, the terminals multi-
ply the received signal by their respective beamforming weights
and forward the resulting signals to the receiver. We design these
weights so as to minimize the interferences plus noises’ powers
while maintaining the received power from the source to a con-
stant level. We show, however, that they are intractable in closed
form due to the complexity of the polychromatic channels arising
from the presence of scattering. By resorting to a two-ray chan-
nel approximation proved valid at relatively low angular spread
(AS) values, we are able to derive the new optimum weights
and prove that they could be locally computed at each terminal,
thereby complying with the distributed feature of the network
of interest. The so-obtained bichromatic distributed collaborative
beamforming (B-DCB) is then analyzed and compared in per-
formance to the monochromatic CB (MCB), whose design does
not account for scattering, and the optimal CSI-based CB (OCB).
Comparisons are made under both ideal and real-world conditions
where we account for implementation errors and the overhead
incurred by each CB solution. They reveal that the proposed B-
DCB always outperforms MCB in practice; and that it approaches
OCB in lightly to moderately scattered environments under ideal
conditions and outperforms it under real-world conditions even in
highly scattered environments. In such conditions, indeed, the B-
DCB operational regions in terms of AS values over, which it is
favored against OCB could reach until 50◦ and hence cover about
the entire span of AS values.

Index Terms—Distributed collaborative beamforming, scatter-
ing, angular distribution/spread, interference, wireless sensor net-
works (WSN).

I. INTRODUCTION

A S A STRONG means to establish a reliable communi-
cation over long distances while avoiding coding and

other high-cost signal processing techniques, beamforming has
gained significant interest in the research community [1]–[24].
Using this technique, a multiple-antenna transceiver transmits
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or receives a message through its K antennas. Each antenna
multiplies its signal by a beamforming weight so that all signals
are constructively combined at the destination. These weights
are properly selected to achieve a specific design objective
while satisfying one or several practical constraints. It has
been shown that beamforming is able to not only substantially
improve the received signal’s quality, but also significantly
reduce the antennas power consumption [6]–[8]. However, in
several real-word scenarios, practical constraints such as size
may rule out the use of multiple-antenna units. In such a case,
collaborative communication among K small single-antenna
battery-powered terminals (sensor nodes, mobile users, relays,
etc.), called collaborative beamforming (CB), can alternatively
be used to emulate the conventional beamforming [9]–[24]. In
fact, CB allows terminals to operate virtually as a single physi-
cal entity and, hence, take advantage of beamforming benefits.

The widely used CB solution that is able to handle both scat-
tering and interference, both present in almost all real-world
scenarios, is the optimal CSI-based CB (OCB) [1]–[4], [9].
When the latter is implemented in the network, it has been
shown that each collaborating terminal’s weight then depends
not only on that terminal’s CSI, but also on the other ter-
minals’ CSI [1]–[4], [9]–[11]. Since terminals are very often
autonomous and located at different physical locations, they
have limited knowledge about each other’s CSI. To compute
their respective interdependent weights, they have to exchange
their local information resulting inevitably in an undesired
overhead. The latter increases with the terminals’ number K ,
the interferences’ number MI as well as the channel Doppler
frequencies [10], [11]. If one of these parameters is large,
this overhead becomes prohibitive and may cause substantial
performance degradation and severe terminals’ power deple-
tion. This critical impediment motivates further investigation of
strategies able to reduce the overhead incurred by OCB.

As such, the optimized CSI or weights’ quantization schemes
such as the Grassmannian scheme in [25] appear to be effi-
cient strategies to achieve this goal. Nevertheless, the latter
usually require a huge codebook that increases the overall cost
of the network if integrated at each terminal. Furthermore, the
quantization itself introduces errors in weights, thereby caus-
ing a CB’s performance degradation. More importantly, such
schemes do not significantly reduce overhead since the latter
still keeps increasing with K , MI , and channel Doppler fre-
quencies. Another strategy to circumvent this problem consists
in ignoring scattering and assuming instead monochromatic
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(i.e, single-ray) channels. This assumption allows terminals to
avoid CSI estimation since the latter will then only depend on
each terminal’s location and the source and interference DoAs
[12], [13]. Several monochromatic CBs (MCB)s have been pro-
posed [12]–[18], but unfortunately shown [19]–[22] to perform
poorly over polychromatic (i.e., multi-ray) channels due to mis-
match. At very small values of the angular spread (AS), the
latter results into slight deterioration that becomes, however,
quickly unsatisfactory at moderate to large AS. In other words,
any overhead gain of MCB against OCB can be achieved only
at the expense of some performance loss. Furthermore, this gain
is far from being sufficient since MCB’s overhead remains lin-
early dependent on K and MI . Some attempts have actually
been made to further reduce MCB’s overhead [23], [24] but
only to exacerbate, despite their relevance, the already-poor
MCB performance losses. To sum up, so far, only OCB and
MCB solutions could be used to handle environments wherein
both interference and scattering exist. The first nominally (i.e.,
in ideal conditions) performs optimally but incurs a huge over-
head, while the second relatively reduces overhead but performs
poorly. This work aims precisely to develop a new CB solution
that approaches the OCB’s high performance level at a very low
overhead-cost.

In this paper, we consider a dual-hop communication from
a source surrounded by MI interferences to a receiver, through
a wireless network comprised of K independent terminals. In
the first time slot, all sources send their signals to the net-
work while, in the second time slot, the terminals multiply the
received signal by their respective beamforming weights and
forward the resulting signals to the receiver. We design these
weights so as to minimize the interferences plus noises’ pow-
ers while maintaining the received power from the source to a
constant level. We show, however, that they are intractable in
closed-form due to the complexity of the polychromatic chan-
nels arising from the presence of scattering. By exploiting a
two-ray channel approximation proved valid at relatively low
angular spread (AS) values, we are able to derive the new opti-
mum weights and prove that they could be locally computed at
each terminal, thereby complying with the distributed feature of
the network of interest. The so-obtained bichromatic distributed
collaborative beamforming (B-DCB) is then analyzed and com-
pared in performance to the monochromatic CB (MCB), whose
design does not account for scattering, and the optimal CSI-
based CB (OCB). Comparisons are made under both ideal and
real-world conditions where we account for implementation
errors and the overhead incurred by each CB solution. They
reveal that the proposed B-DCB always outperforms MCB in
practice; and that it approaches OCB in lightly- to moderately-
scattered environments under ideal conditions and outperforms
it under real-world conditions even in highly-scattered envi-
ronments. We show, indeed, that the proposed B-DCB is able
to approach OCB in terms of average signal-to-interference-
plus-noise ratio (ASINR) in lightly- to moderately-scattered
environments where AS values do not exceed 17 degrees.
Consequently, it can achieve until 6 dB of ASINR gain against
MCB which does not account for scattering. We further com-
pare the three CBs in terms of ASINR achieved under real-word
conditions (i.e., accounting for implementation errors). We

Fig. 1. System model.

hence prove that the proposed B-DCB outperforms OCB in
lightly- to moderately-scattered environments at relatively high
Doppler, thereby increasing its operational region in terms of
AS values over which it is favored against the latter. Under
such conditions, B-DCB always outperforms MCB in prac-
tice. Moreover, we push the comparisons to the throughput
level that accounts for the overhead incurred by each solu-
tion. We show that B-DCB is able, even at high AS values, to
outperform OCB which is then further penalized by its increas-
ingly huger overhead with larger K , MI , and/or Doppler. In
such a case, indeed, the B-DCB operational region could reach
until 50 degrees and, hence, cover about the entire span of AS
values.

Notation: Uppercase and lowercase bold letters denote matri-
ces and vectors, respectively. [·]il and [·]i are the (i, l)-th
entry of a matrix and i-th entry of a vector, respectively.
I is the identity matrix. (·)T and (·)H denote the transpose
and the Hermitian transpose, respectively. ‖ · ‖ is the 2-norm
of a vector and | · | is the absolute value. E{·} stands for

the statistical expectation and (
ep1−→)

p1−→ denotes (element-
wise) convergence with probability one. J1(·) is the first-order
Bessel function of the first kind and � is the element-wise
product.

II. SYSTEM MODEL

As illustrated in Fig. 1, the system of interest consists of
a wireless network or subnetwork comprised of K terminals
equipped each with a single isotropic antenna and uniformly
and independently distributed on D(O, R), the disc with cen-
ter at O and radius R, a receiver Rx , and M far-field sources
including a desired source Sd and MI interfering sources. All
sources are located in the same plane1 containing D(O, R)
[12], [13]. We assume that there is no direct link from the lat-
ters to the receiver due to high pathloss attenuation. Moreover,
let (rk, ψk) denote the polar coordinates of the k-th termi-
nal and (Am, φm) those of the m-th source. Without loss
of generality, (A1, φ1) is assumed to be the location of Sd
with φ1 = 0. Since the sources are in the far-field, we hence
assume that Am � R for m = 1, . . . ,M where M = MI + 1.

1Please note that this assumption is only made for the sake of simplicity. All
the results in this paper could be easily generalized to the case wherein sources
are located in different planes.
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The following assumptions are further adopted throughout this
paper:
A1) The m-th source is scattered by a given number of scat-

terers located in the same plane containing D(O, R).
The latter generate from the transmit signal Lm rays or
“spatial chromatics” (with reference to their angular dis-
tribution) that form a polychromatic propagation channel
[19], [26]– [28]. The l-th ray or chromatic is characterized
by its angle deviation θl,m from the m-th source direc-
tion φm and its complex amplitude αl,m . The θl,m, l =
1, . . . , L are i.i.d. zero-mean random variables with a
symmetric probability density function (pdf) pm(θ) and
variance σ 2

m . Note that the standard deviation σm is com-
monly known as the angular spread (AS) while pm(θ) is
called the scattering or angular distribution [26]– [28].
The αl,m l = 1, . . . , L are i.i.d zero-mean random vari-
ables with E

{|αl,m |2} = 1/Lm . All θl,m and αl,m for m =
1, . . . ,M and l = 1, . . . , Lm are assumed to be mutually
independent.

A2) The forward channel gain [f]k from the k-th termi-
nal to the receiver is a zero-mean unit-variance circular
Gaussian random variable [23], [29]– [31].

A3) The m-th source’s signal sm is narrow-band zero-mean
random variable with power pm while noises at termi-
nals and the receiver are zero-mean Gaussian random
variables with variances σ 2

nt
and σ 2

nr
, respectively. All sig-

nals, noises, and the terminals’ forward channel gains are
mutually independent [5], [6], [20].

A4) The k-th terminal is only aware of its own coordinates
(rk, ψk), its forward channel [f]k , K , the wavelength λ
while being oblivious to the locations and the forward
channels of all other terminals in the network [20], [23]
[24].

Resorting to A1 and the fact that Am � R for m =
1, . . . ,M , the backward channel gain from the m-th source to
the k-th terminal can be represented as

[gm]k =
Lm∑
l=1

αl,me− j 2π
λ

rk cos(φm+θl,m−ψk). (1)

Obviously, when the scattering effect is neglected (i.e., σm −→
0) to assume a monochromatic plane-wave propagation chan-
nel, we have θl,m = 0 and, hence, [gm]k could be reduced to[
g(1)m

]
k

= e− j (2π/λ)rk cos(φm−ψk ), the well-known steering vec-

tor element in the array-processing literature [12]–[24].
The communication link between the desired source Sd and

the receiver is established using the following dual-hop scheme.
In the first time slot, all sources send their signals to the wireless
network. Let y denote the received signal vector at the terminals
given by

y = Gs + nt , (2)

where s � [s1s2 . . . sM ]T , G � [g1 . . . gM ], and nt is the termi-
nals’ noise vector. In the second time slot, the k-th terminal
multiplies its received signal with the complex conjugate of its
beamforming weightwk and forwards the resulting signal to the

receiver Rx . The received signal r at the latter is given by

r = s1wH h1 + wH H1̄s1̄ + wH (f � nt )+ nr , (3)

where nr is the noise at Rx , s1̄ � [s2 . . . sM ]T , h1 � f � g1

and H1̄ � [f � g2 . . . f � gM ] with f � [[f]1 . . . [f]K ]T . It fol-
lows from (3) that the desired power Pw,d received from Sd and
the undesired power Pw,u from both the interference and noise
are, respectively, given at the receiver by

Pw,d = p1wH E
{

h1hH
1

}
w, (4)

Pw,u = wH E
{

H1̄P1̄HH
1̄

}
w + σ 2

nt
wH �w + σ 2

nr
, (5)

where P1̄ � diag{p2 . . . pM }, and 	 � diag{|[f]1|2 . . .
|[f]k |2}. Note that the expectations in (4) and (5) are taken
with respect to the rays’ directions θl,ms and their complex
amplitudes αl,ms. Although several approaches can be adopted
to properly design the beamforming weights, we are only
concerned in this paper with the one which minimizes the
undesired power Pw,u while maintaining the desired power
Pw,d equal to p1. In fact, this approach is nothing else but
the well-known minimum variance distortionless response
(MVDR) beamformer [32], [33] with a relaxed distortionless
response constraint. The latter is imposed here on the received
power from the desired source Sd (i.e., Pw,d = p1) instead of
the beamforming response to Sd’s direction (i.e., wH h1 = 1).
Mathematically speaking, we have to solve the following
optimization problem:

min
w

wH E
{

H1̄P1̄HH
1̄

}
w + σ 2

nt
wH	w + σ 2

nr

s.t wH E
{

h1hH
1

}
w = 1, (6)

or, equivalently,

max
w

wH E
{
h1hH

1

}
w

wH
(

E
{

H1̄P1̄HH
1̄

}
+ σ 2

nt
�
)

w

s.t. wH E
{

h1hH
1

}
w = 1. (7)

It is straightforward to show that the optimum solution of (7)
is a scaled version of the principal eigenvector of the matrix(

E
{

H1̄P1̄HH
1̄

}
+ σ 2

nt
�
)−1

E
{
hhH

}
so as to satisfy the con-

straint in (7) [5], [20], [34]. To the best of our knowledge,
this eigenvector cannot be obtained in a closed-form but could
be numerically evaluated. However, besides being computa-
tionally demanding, this task must be performed by a central
processor with global knowledge of all network parameters.
The considered network lacks, unfortunately, such a processor.

III. PROPOSED CB SOLUTION

In this section, we prove under mild conditions that it is
possible to derive an optimal solution of (7) in closed-form.
To this end, we exploit useful approximations of the matrices

E
{
h1hH

1

}
and E

{
H1̄P1̄HH

1̄

}
that have the additional bene-

fit of reducing by the same token the complexity of our CB
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optimization problem. As such, from the assumption A1, we
have

E
{

hmhH
m

}
=
∫

m

pm(θ)a(φm + θ)aH (φm + θ)dθ, (8)

where a(θ) �
[
[a(θ)]1 . . . [a(θ)]K

]T with [a (θ)]k =
[f]ke− j (2π/λ)rk cos(θ−ψk ) and 
m is the support of the pdf
pm(θ) over which the integral is calculated.2 When the AS σm

is relatively small,3 small angular deviations of θl,ms occur
and, hence, the Taylor series expansion of a(φm + θ) at φm

yields

a(φm + θ) � a(φm)+ a′(φm)θ + a′′(φm)
θ2

2
, (9)

where a′(θ) and a′′(θ) are, respectively, the first and the second
derivatives of a(θ). After substituting (9) in (8) and integrating
in the latter, we have

E
{

hmhH
m

}
� 1

2

(
a (φm + σm) a (φm + σm)

H

+a (φm − σm) a (φm − σm)
H
)
. (10)

It is noteworthy that the result in (10) also holds with strict
equality in the case of bichromatic (i.e., two-ray) channels (i.e.,
Lm = 2) with rays located at angles σm and −σm where the
channel gain from the m-th source to the k-th terminal is[

g(2)m

]
k

= α1,me− j 2π
λ

rk cos(φm+σm−ψk )

+ α2,me− j 2π
λ

rk cos(φm−σm−ψk ). (11)

Consequently, when the AS is typically small to moderate, the
polychromatic channel gm could be substituted with the bichor-
matic channel g(2)m . In what follows, we will show that this
bichromatic approach provides a closed-form optimal solution
of (7) implementable in a distributed fashion.

It holds from (10) that

E
{

h1hH
1

}
= 1

2
�, (12)

and

E
{

H1̄P1̄HH
1̄

}
≈ ���H , (13)

where � = a(σ1)a(σ1)
H + a(−σ1)a(−σ1)

H , � =[
a(φ̃3), a(φ̃4), . . . , a(φ̃2M )

]
with φ̃m = φm/2 − σm/2 if m

is even and φ̃m = φ(m−1)/2+1 + σ(m−1)/2+1 if m is odd,
and � = (1/2)

[
p2, p2, . . . , pM , pM

]
. Therefore, when

σm, m = 1, . . . ,M are relatively small, (7) could be rewritten
as

max
w

wH �w

wH
(
���H + σ 2

nt
	
)

w
s.t. wH �w = 2, (14)

2In the Gaussian and Uniform distribution cases, 
m = [− inf,+ inf] and

m = [−√

3σθm ,+
√

3σθm ], respectively.
3This condition is assumed for the sole sake of mathematical rigor, with-

out imposing any limitation on AS values in absolute terms. Simulations in
Section VII will later suggest that practical AS values as high as 17 degrees
still keep the following developments valid.

or, equivalently as,

max
γ

γ H �̃γ

γ H γ
s.t. γ H �̃γ = 2, (15)

where γ = �
1
2 w, � = ���H + σ 2

nt
	, and �̃ = �− 1

2 ��− 1
2 .

It is straightforward to show that the optimum solution of (15)
is the principal eigenvector of the matrix �̃ scaled to satisfy the

constraint in (15). Since �− 1
2 is a full-rank matrix, �̃ has the

same rank as � that is inferior or equal to two. Therefore, �̃ has
at most two eigenvectors. In the sequel, we will prove that both

�− 1
2 (a(σ1)+ a(−σ1)) and �− 1

2 (a(σ1)− a(−σ1)) are eigen-
vectors of �̃. First, let us use the matrix inversion lemma to
break �−1 into several terms and, hence, obtain

�̃�− 1
2 (a(σ1)+ a(−σ1)) = K

σ 2
nt

×
(
�− 1

2 a(σ1)
(

1 + χ − χ(σ1)
H D−1 (χ(σ1)+ χ(−σ1))

)
+�− 1

2 a(−σ1)
(

1 + χ∗ − χ(−σ1)
H D−1 (χ(σ1)+ χ(−σ1))

))
,

(16)

and

�̃�− 1
2 (a(σ1)− a(−σ1)) = K

σ 2
nt

×
(
�− 1

2 a(σ1)
(

1 − χ − χ(σ1)
H D−1 (χ(σ1)− χ(−σ1))

)
−�− 1

2 a(−σ1)
(

1 − χ∗ − χ(−σ1)
H D−1 (χ(σ1)− χ(−σ1))

))
,

(17)

where χ = (
aH (σ1)	

−1a(−σ1)
)
/K , χ(θ) =(

�H	−1a(θ)
)
/K , and D = (

σ 2
nt

�−1 + �H	−1�
)
/K .

Now, we introduce the important theorem below.
Theorem 1: When K goes to infinity,4 we have

a(x)H	−1a(y)
p1−→ 2

J1(γ (x − y))

γ (x − y)
, (18)

where γ (φ) � 4π(R/λ) sin(φ/2).

Proof: It follows from the definition of a(θ) that
(a(x)H	−1a(y))/K = (1/K )

∑K
k=1 e jγ (x−y)zk where zk, k =

1, . . . , K are i.i.d compound random variables with the pdf
fzk (z) = 2

π

√
1 − z2 for −1 ≤ z ≤ 1. Using the strong law of

large numbers and the fact that (2/π)
∫ 1
−1 e jγ (φ)z

√
1 − z2dz =

2J1 (γ (φ)) /γ (φ), we obtain (18).
It can be then inferred from this theorem that for large K

χ
p1−→ 2

J1(γ (2σ1))

γ (2σ1)
, (19)

χ(θ)
p1−→ 2z(θ), (20)

D
p1−→ 2Q, (21)

where Q is a (2M − 2)× (2M − 2) matrix with [Q]mn =
J1(γ (φ̃m+2 − φ̃n+2))/γ (φ̃m+2 − φ̃n+2) if m �= n and [Q]mn =

4We will actually see in Section VII that practical values of K in the range
of 20 already keep the following developments valid.
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1/2 otherwise, and z(θ) is a (2M − 2)× 1 vector with
[z(θ)]m = J1(γ (θ − φ̃m+2))/γ (θ − φ̃m+2) if θ �= φ̃m+2 and
[z(θ)]m = 1/2 otherwise. When σm, m = 1, . . . ,M are rela-
tively small, we have z(σ1) � z(−σ1) and, hence, it holds from
(16)–(21) that, for large K , the eigenvalues associated with

�− 1
2 (a(σ1)+ a(−σ1)) and �− 1

2 (a(σ1)− a(−σ1)) are

ρ1(σ1) � K

σ 2
nt

(
1 + 2

J1(γ (2σ1))

γ (2σ1)
− 4z(σ1)

T Q−1z(σ1)

)
,

(22)
and

ρ2(σ1) � K

σ 2
nt

(
1 − 2

J1(γ (2σ1))

γ (2σ1)

)
, (23)

respectively. What remains to be done to find the principal
eigenvector of �̃ is then comparing the eigenvalues ρ1 and ρ2.
As such, we introduce the theorem below.

Theorem 2: When K goes to infinity4, we have

2z(0)T Q−1z(0) ∈ [0, 1]. (24)

Proof: It follows from A2 and the results in (18)–(21) that

2z(0)T Q−1z(0) = lim
K→∞

1

K
‖Pa(0)‖2, (25)

where P = �(�H �)−1�H is the orthogonal projection matrix
onto the subspace spanned by the columns of �. Pa(0) is
then the projection of a(0) into the latter subspace and, hence,
0 ≤ 2z(0)T Q−1z(0) ≤ ‖a(0)‖ = 1. While the left-hand side
(LHS) inequality holds with equality if a(0) is orthogonal to
the column span of �, the right-hand side (RHS) inequality
holds with equality if a(0) is in the column span of �. The latter
event is, however, highly unlikely when K is large and, hence,
2z(0)T Q−1z(0) is strictly inferior to 1.

Using Theorem 2, one can readily show that
limσ1→0 (ρ1 − ρ2) (σ1) > 0. Therefore, there exists a
real κ such that if σ1 is small enough we have σ1 < κ

then ρ1(σ1) > ρ2(σ1). Consequently, for relatively small

σm, m = 1, . . . ,M and large K , �− 1
2 (a(σ1)+ a(−σ1))

is the principal eigenvector of �̃. Finally, scaling
�−1 (a(σ1)+ a(−σ1)) to satisfy the constraint in (14)
and using (19)–(21) after breaking �−1 into several terms, we
show for relatively small σm, m = 1, . . . ,M and large K that
the optimal solution of (14) is given by

wBD = 	−1
(
a (σ1)+ a (−σ1)− �Q−1ν(σ1)

)
K
(

1 + 2 J1(γ (2σ1))
γ (2σ1)

− ν(σ1)T Q−1ν(σ1)
) , (26)

where ν(σ1) = z(σ1)+ z(−σ1). Note that we denote this CB
solution by wBD since it relies on the bichromatic approxima-
tion in (10) and, further, lends itself to a distributed implemen-
tation, as we will shortly see below. It can be observed from
(26) that the k-th terminal’s weight [wBD]k depends, according
to A4, on the information locally available at this node as well
as σm, m = 1, . . . ,M and φm, m = 1, . . . ,M , which could
be estimated at the sources and broadcasted to the network.
Therefore, each terminal is able to autonomously compute its
weight without requiring any information exchange with the

other terminals in the network. This is in fact a very desired
feature for any CB solution since it enables its distributed
implementation and, hence, avoids any additional overhead
due to such an exchange. Furthermore, from (26), wBD is
independent of pm(θ),m = 1, . . . ,M . This is also an outstand-
ing feature which allows the proposed bichromatic distributed
CB (B-DCB)’s implementation in any scattered environment
regardless of its scattering distribution.

In the sequel, we compare in performance the proposed
B-DCB with the two main conventional types of CB solu-
tions disclosed so far in the literature, namely MCB and OCB
(cf. Section I). But, let us first briefly explain in the next section
these two CB benchmark types.

IV. MCB- AND OCB-TYPE CB SOLUTIONS

So far, two main CB solution types exist for the optimiza-
tion problem in (6). The first, MCB, simplifies the optimization
by ignoring the presence of scattering and assuming instead
monochromatic environments (i.e., σm = 0, m = 1, . . . ,M).
In such a case, indeed, E

{
hhH} is reduced to a(0)aH (0). Since

the principal eigenvector of Xa(0)aH (0) is simply Xa(0) for
any given matrix X, the MCB solution is given by

wM =
(

A1̄P1̄AH
1̄

+ σ 2
nt
	
)−1

a(0)

aH (0)
(

A1̄P1̄AH
1̄

+ σ 2
nt
	
)−1

a(0)
, (27)

where A1̄ � [a (φ2) . . . a (φM )]. A straightforward inspection
of (27) reveals that the k-th terminal’s weight [wM]k depends on
all terminals’ locations and forward channels. In contrast with
the proposed B-DCB, the MCB is then a non-distributed solu-
tion whose implementation requires an information exchange
among terminals, thereby resulting in an inevitable additional
overhead cost.

The second conventional CB solution is the optimal CSI-
based CB (OCB) which aims to optimize the objective function
in (6) without violating its constraint by acting on the instanta-
neous desired and undesired powers. One can readily show that
its beamforming vector wO is given by

wO =
(

H1̄P1̄HH
1̄

+ σ 2
nt
	
)−1

h1

hH
1

(
H1̄P1̄HH

1̄
+ σ 2

nt
	
)−1

h1

. (28)

From (28), the OCB is implementable in the considered net-
work if and only if each terminal is aware of all terminal’s
backward and forward channels. Consequently, like MCB,
OCB is a non-distributed solution since it also requires an infor-
mation exchange among terminals. Note from (26)–(28) that
MCB and OCB have another drawback in contrast to the pro-
posed B-DCB in that they both require accurate knowledge of
σ 2

nt
at each terminal.

V. PERFORMANCE ANALYSIS UNDER IDEAL CONDITIONS

In this section, we analyze and compare in performance the
proposed B-DCB with MCB and OCB under ideal conditions
(i.e., without accounting for implementation errors and the
overhead cost).
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A. CB Performance Metrics

Let ξw denote the achieved signal-to-interference-plus-noise
ratio (SINR) using w and given by

ξw =
∣∣wH h1s1

∣∣2∣∣wH H1̄s1̄ + wH (f � nt )+ nr
∣∣2 . (29)

From (29), ξw is an excessively complex function of the ran-
dom variables nr , [nt ]k , rk , ψk and [f]k for k = 1, . . . , K and
αl,m and θl,m l = 1, . . . , Lm for m = 1, . . .M and, hence, a
random quantity of its own. Therefore, it is more practical to
compare the CB solutions in terms of achieved average-signal-
to-average-interference-plus-noise ratio (ASAINR) defined for
any w as

ξ̃w =
p1E

{∣∣wH h1
∣∣2}

E
{

wH H1̄P1̄HH
1̄

w + σ 2
nt

wH	w
}

+ σ 2
nr

. (30)

Despite being a more adequate performance metric, please note
that the ASINR ξ̄w = E {ξw} cannot be adopted hereafter since,
to the best of our knowledge, it appears to be untractable
in closed-form. Yet in what follows, we will show that the
achieved ASAINR and ASINR using any w ∈ {wBD,wM,wO}
coincide asymptotically when K grows large.5 This nice feature
is an additional incentive for the adoption of the ASAINR gain
ϒ(w) = ξ̃w/ξ̃wBD as the link-level figure of merit to compare
the proposed B-DCB with any benchmark w.

1) ASAINR Gain of B-DCB vs. MCB: The theorem below
establishes the B-DCB’s ASAINR expression.

Theorem 3: For any given pm(θ) and σm, m = 1, . . . ,M ,
ξ̃wBD can be expressed as (31), shown at the bottom of page,
where

� (φm) =∫

m

pm(θ)

(
J1 (γ (φm + θ + σ1))

γ (φm + θ + σ1)
+ J1 (γ (φm + θ − σ1))

γ (φm + θ − σ1)

−z (φm + θ)T Q−1ν(σ1)
)2

dθ, m = 1, . . . ,M. (32)

Proof: See Appendix A.
Note that the integrals in (32) can be computed numerically

with any desired accuracy by using the most popular math-
ematical software packages such as Matlab or Mathematica,
after selecting the proper scattering distributions pm(θ), m =
1, . . . ,M . Moreover, when there is no scattering (i.e., σm =
0, m = 1, . . . ,M), we have z(φn) = Qe2n−2 and, therefore,

5We will later verify by simulations in Section VII that the ASAINR and
ASINR almost coincide when K is just in the range of 20.

ξ̃wBD =
p1

(
1 + (2 (K − 1)� (0)) /

(
1 + 2 J1(γ (2σ1))

γ (2σ1)
− ν(σ1)

T Q−1ν(σ1)
))

∑M
m=2 pm

(
1 + (2 (K − 1)� (φm)) /

(
1 + 2 J1(γ (2σ1))

γ (2σ1)
− ν(σ1)T Q−1ν(σ1)

))
+ σ 2

nt
+ σ 2

nr K
2

(
1 + 2 J1(γ (2σ1))

γ (2σ1)
− ν(σ1)T Q−1ν(σ1)

) .
(31)

z(φn)
T Q−1ν(σ1) = J1 (γ (φn + σ1))

γ (φn + σ1)
+ J1 (γ (φn − σ1))

γ (φn − σ1)
.

(33)

Substituting (33) in (32), we obtain in such a case �(φm) = 0
for m = 1, . . . ,M and, hence, (31) boils down to

ξ̃wBD =
p1

(
1 + 2z(0)T Q−1z(0)

(
1
K − 1

))
∑M

m=2
pm
K + σ 2

nt
K + σ 2

nr

(
1 − 2z(0)T Q−1z(0)

) . (34)

As can be observed from (34), ξ̃wBD is an increasing function
of K that asymptotically approaches ξ̃max = p1/σ 2

nr
. Note that

ξ̃max is the maximum ASAINR ever achievable only when the
desired power is kept constant to p1 and the undesired one is
reduced to its minimum level ever, i.e., σ 2

nr
, that is only by

entirely nulling all the interferers. Simulations in Section VII
will show that ξ̃wBD � ξ̃max when σm m = 1, . . . ,M are rel-
atively small to moderate in lightly- to moderately-scattered
environments, respectively. This further proves the efficiency
of the proposed B-DCB.

Now, let us turn our attention to the ASAINR achieved by
MCB ξ̃wM. To the best of our knowledge, ξ̃wM is intractable
in closed-form hampering thereby its rigorous analytical study.
Nevertheless, some interesting results could be obtained when
K is large enough. As such, we introduce the theorem below.

Theorem 4: For any given pm(θ) and σm, m = 1, . . . ,M ,
when K is large enough we have

ξ̃wM � p1�M(0)∑M
m=2 pm�M(φm)+ σ 2

nr
4

(
1 − 2νT

M(0)Q
−1
M νM(0)

)2
,

(35)

where

�M(φm) =∫

m

pm(θ)

(
J1(γ (φm + θ))

γ (φm + θ)
− νT

M (φm + θ)Q−1
M νM(0

)2

dθ,

(36)

QM is a (M − 1)× (M − 1) matrix with [QM]mn =
J1(γ (φm+1 − φn+1))/γ (φm+1 − φn+1), and νM(θ)

is a (M − 1)× 1 vector with [νM(θ)]m = J1(γ (θ −
φm+1))/γ (θ − φm+1).

Proof: See Appendix B.
It follows from (31) and (35) that if there is no scatter-

ing (i.e., σm = 0, m = 1, . . . ,M), we have ϒ (wM) � 1, when
K is large enough. This means that, in such a case, MCB is
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also able to achieve the maximum achievable ASAINR ξ̃max.
This is expected since the monochromatic assumption made to
derive wM becomes valid when σm = 0, m = 1, . . . ,M . Note
that even though B-DCB and MCB achieve the same ASAINR
in the absence of scattering, the former still keeps a precious
practical implementation advantage over the latter by its dis-
tributed nature. Owing to this key feature, we will later prove in
Section VI-B that B-DCB turns out to be much more efficient
than MCB in terms of achieved throughput even when there
is no scattering. Additionally, if all sources are sufficiently far
apart to satisfy

γ
(
φ̃m − φ̃n

)
� 3

4
m, n = 1, . . . , 2M, m �= n, (37)

then we have

J1

(
γ
(
φ̃m − φ̃n

))
γ
(
φ̃m − φ̃n

) =
√

2

π

cos
(
γ
(
φ̃m − φ̃n

)
− 3π

4

)
γ
(
φ̃m − φ̃n

) , (38)

and, hence, [ν(σ1)]m � 0, m = 1, . . . , 2M and [νM(0)]m �
1, m = 1, . . . ,M . Therefore, it holds that ν(σ1)

T Q−1ν(σ1) �
1 and νT

M(0)Q
−1
M νM(0) � 1. Besides, if σm, m = 2, . . . ,M

are relatively small, i.e., in lightly- to moderately-scattered
environments, one could easily show that both �(φm) � 0
and�M(φm) � 0, m = 1, . . . ,M . Consequently, the ASAINR
gain of MCB against B-DCB boils down to ϒ (wM) �
�M(0) (1 + 2J1 (γ (2σ1)) /γ (2σ1))

2/�(0) for any σ1 and
large K . In particular, when σ1 is also small, the Taylor series
expansion of J1 (γ (θ ± σ1))/γ (θ ± σ1) at θ yields

J1 (γ (θ ± σ1))

γ (θ ± σ1)
= J1 (γ (θ))

γ (θ)
± σ1

(
J1 (γ (x))

γ (x)

)′ ∣∣∣∣
x=θ

,

(39)

and, hence, �(0) � 4�M(0). Accordingly, it holds for large K
that

ϒ (wM) � 1

4

(
1 +0 F1

(
; 2;−4π2

(
R

λ

)2

σ 2
1

))2

, (40)

where 0 F1

(
; 2;−4π2

( R
λ

)2
x2
)

is the hypergeometric func-

tion strictly decreasing at x near 0. When σms are relatively
small in lightly- to moderately-scattered environments, the
ASAINR gain of wBD against wM derived without account-
ing for scattering increases with σ1. This proves the impor-
tance of accounting for scattering when designing the pro-
posed B-DCB. Furthermore, when σ1 is relatively large in
highly-scattered environments, we easily prove using the
approximation J1(γ (x)/γ (x) � 0 for large x that �(0) �
(1/

√
3σ1)

∫ (√3−1)σ1
−σ1

(J1(γ (θ))/γ (θ))
2 dθ if p1(θ) is Uniform.

In such a case, it holds then that �(0) > �M(0) and, hence,
ϒ (wM) > 1 for any large σ1. Consequently, the proposed B-
DCB always outperforms its MCB counterpart when σ1 is
relatively large in highly-scattered environments. We will later
show in Section VII that this key result still holds when all
σm, m = 1, . . . ,M are relatively large as well, thereby proving
even further B-DCB’s efficiency.

2) ASAINR Gain of B-DCB vs. OCB: The theorem below
establishes the OCB’s ASAINR.

Theorem 5: For any given pm(θ) and σm, m = 1, . . . ,M ,
we have

ξ̃wO = p1

σ 2
nt
K + σ 2

nr

, (41)

when L1 is large enough.6

Proof: See Appendix C.
It follows from (41) that ξ̃wO � ξ̃max for large K regard-

less of pm(θ) and σm, m = 1, . . . ,M . Therefore, OCB is able
to achieve as expected the maximum achievable ASAINR
in lightly-, moderately-, and even highly-scattered environ-
ments. As discussed above, since the proposed B-DCB also
achieves ξ̃max when σm, m = 1, . . . ,M are small in lightly-
to moderately-scattered environments, then ϒ (wO) � 1 holds
when K is large enough. However, for large σ1 in highly-
scattered environments, if (37) is satisfied, we have for large
K

ϒ (wO) � 1

� (0)
≥ 1. (42)

The inequality in the RHS of (42) is due to the fact that
J1(x)/(x) ≤ 1/2 for any real x . As can be observed from (42),
OCB outperforms B-DCB when σ1 is large in highly-scattered
environments. Furthermore, the ASAINR gain of OCB against
B-DCB increases with σ1, since � (0) is a decreasing func-
tion of the latter. Actually, we will later show numerically in
Section VII that these observations hold as well when σm, m =
1, . . . ,M are large in highly-scattered environments. Although
OCB stands out to be the most efficient CB solution under
ideal conditions, we will prove in the next section that it
severely deteriorates in performance under real-world condi-
tions to become less efficient than the proposed B-DCB even
in highly-scattered environments.

B. Equivalence Between ASAINR and ASINR

Since the ASINR is a more revealing metric than the
ASAINR, we aim to investigate in this section the relation-
ship between ξ̃w and ξ̄w for w ∈ {wBD,wM,wO} for the sake
of increasing even more the high value of the results obtained
so far.

As far as wBD is concerned, resorting to Theorem 1 and (19)–
(21), we show for large K that

∣∣∣wH
BDhm

∣∣∣2 p1−→
∣∣∣∣∣∣
2
∑Lm

l=1 αl,m
(
ν(σ1)

T Q−1z(φm + θl,m)−(
1 + 2 J1(γ (2σ1))

γ (2σ1)
− ν(σ1)T Q−1ν(σ1)

)
J1
(
γ
(
φm + θl,m + σ1

))
γ
(
φm + θl,m + σ1

) + J1
(
γ
(
φm + θl,m − σ1

))
γ
(
φm + θl,m − σ1

)
)∣∣∣∣∣

2

,

(43)

for m = 1, . . . ,M . Since limK→∞ wH
BD	wBD = 0, it follows

from (43) that for large K ξwBD converges with probability one

6Please note that Lm , m = 1, . . . ,M is in essence an artifact due to channel
modeling by a limited number of rays. Lm tends actually to infinity in practice.
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to a ratio whose numerator and denominator are statistically
independent. To derive ξ̄wBD, one must then apply the expec-
tation operator to the RHS of (43) which yields to the following
expression:

4�(φm)(
1 + 2 J1(γ (2σ1))

γ (2σ1)
− ν(σ1)T Q−1ν(σ1)

) . (44)

Using (31) and (44), we show that

ξ̄wBD

p1−→ ξ̃wBD , (45)

when K is large enough. From (45), ξ̄wBD and ξ̃wBD have the
same asymptotic behaviors thereby making the ASAINR an
equally meaningful performance measure. Furthermore, fol-
lowing similar steps as above, one could show for large K that

both ξ̄wM

p1−→ ξ̃wM and ξ̄wO

p1−→ ξ̃wO. As such, all the results of
the analytical comparisons between the three CB solutions pre-
viously established in terms of ASAINR equally hold in terms
of ASINR.

VI. PERFORMANCE ANALYSIS UNDER REAL-WORLD

CONDITIONS

Accounting for the implementation errors and overhead
incurred by each CB solution, we compare herein the pro-
posed B-DCB with its MCB and OCB benchmarks in terms of
ASAINR and throughput in Sections VI-A and VI-B, respec-
tively.

A. ASAINR CB Comparisons

1) ASAINR Gain of B-DCB vs. MCB: From (26), the B-
DCB’s implementation requires that the m-th source estimates,
quantizes and sends φ̃2m and φ̃2m−1, thereby resulting in
both angle estimation and quantization errors. In such a case,
[a(φ̃m)]k should be substituted by

[
â
(
φ̃m

)]
k

=
[
a
(
φ̃m

)]
k

e
− j
([

eal

(
φ̃m

)]
k
+
[
eaq

(
φ̃m

)]
k

)
, (46)

where
[
eal(φ̃m)

]
k

and
[
eaq(φ̃m)

]
k

are the angle’s localiza-

tion and quantization errors, respectively. Assuming that these
errors are relatively small and resorting to the Taylor’s series
expansion, one can readily prove that[

â
(
φ̃m

)]
k

�
[
a
(
φ̃m

)]
k
+
[
ea

(
φ̃m

)]
k
, (47)

where
[
ea(φ̃m)

]
k

= − j
[
a(φ̃m)

]
k

([
eal(φ̃m)

]
k
+
[
eaq(φ̃m)

]
k

)
with variance σ 2

ea
= σ 2

al + σ 2
aq. Using a (Ba + 1)-bit uniform

quantization, one can easily show that σ 2
aq = 2−2Bs π

2

12 [35]. On

the other hand, to define σ 2
al, we exploit the CRLB developed

in [36] and, hence, σ 2
al = 4 sin2( πK )σ

2
nt

N Kπ2 where N is the number of
samples used to estimate the angle. Using (47), Theorem 1, and

the fact that
[
eal(φ̃m)

]
k
s and

[
eaq(φ̃m)

]
k
s are zero-mean i.i.d

random variables, we obtain for large K that

χ̂
p1−→ 1 + 2

J1(γ (2σ1))

γ (2σ1)
+ 2σ 2

ea
, (48)

χ̂(±σ1)
p1−→ 2z(±σ1), (49)

D̂
p1−→ 2Q̂, (50)

where χ̂ =
((

â(σ1)+ â(−σ1)
)H
	−1â(σ1)

)
/K , Q̂ = Q +

σ 2
ea
2 I2M−2, χ̂(θ) =

(
�̂

H
	−1â(θ)

)
/K , and D̂ = (�−1 +

�̂
H
	−1�̂)/K with �̂=

[
â(φ̃3), â(φ̃4), . . . , â(φ̃2M−1), â(φ̃2M )

]
.

It follows then from (48)–(50) that the proposed B-DCB is
given under real-word conditions by

ŵBD =
	−1

(
â (σ1)+ â (−σ1)− �̂Ê−1ν(σ1)

)
K
(

1 + 2 J1(γ (2σ1))
γ (2σ1)

+ 2σ 2
ea

− ν(σ1)T Ê−1ν(σ1)
) .

(51)

Using the fact that Q̂−1 � Q−1 − (σ 2
ea
/2)Q−2 for small σ 2

ea
and

following the derivation steps similar to those in Appendix A,
we prove that the achieved ASIANR using ŵBD is given as (52),
shown at the bottom of the page. As can be observed from
(52) and (31), ξ̃ŵBD is reduced to ξ̃wBD, when σ 2

ea
= 0. This

is expected since, in such a case, wBD = ŵBD. Furthermore,
from (52), if the condition in (37) is satisfied, we have for small
σm, m = 2 . . .M that

ξ̃ŵBD =
p1
(

1 + 2(K − 1)�(0)/
(

1 + 2 J1(γ (2σ1))
γ (2σ1)

+ 2σ 2
ea

))
∑M

m=2 pm + σ 2
nt

+ Kσ 2
nr

2

(
1 + 2 J1(γ (2σ1))

γ (2σ1)
+ 2σ 2

ea

) .
(53)

It follows from (53) that the ASAINR achieved by the pro-
posed B-DCB under real-world conditions decreases with σ 2

ea
,

as expected.

ξ̃ŵBD =
p1

(
1 +

(
2σ 2

eaν(σ1)
T Q̂−1ν(σ1)+2(K−1)

(
�(0)+σ 2

e �̂(0)
))

1+2
J1(γ (2σ1))
γ (2σ1)

+2σ 2
ea−ν(σ1)

T Q̂−1ν(σ1)

)

∑M
m=2 pm

(
1 + 2σ 2

eaν(σ1)
T Q̂−1ν(σ1)+2(K−1)

(
�(φm )+σ 2

e �̂(φm )
)

1+2
J1(γ (2σ1))
γ (2σ1)

+2σ 2
ea−ν(σ1)

T Q̂−1ν(σ1)

)
+σ 2

nt
+ Kσ 2

nr
2

(
1 + 2 J1(γ (2σ1))

γ (2σ1)
+ 2σ 2

ea
− ν(σ1)T Q̂−1ν(σ1)

) ,

where �̂ (φm) =
∫

m

pm(θ)z (φm + θ)T Q−2ν(σ1)

(
J1 (γ (φm + θ + σ1))

γ (φm + θ + σ1)
+ J1 (γ (φm + θ − σ1))

γ (φm + θ − σ1)
− z (φm + θ)T Q−1ν(σ1)

)
dθ.

(52)
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As far as MCB’s implementation is concerned, (27) implies
that the m-th source must only estimate, quantize, and send
its direction φm . This process unfortunately results in both
angle’s estimation and quantization errors and, hence, the MCB
solution becomes

ŵM =
(

Â1̄P1̄ÂH
1̄

+	
)−1

â(0)

âH (0)
(

Â1̄P1̄ÂH
1̄

+	
)−1

â(0)
, (54)

where Â1̄ �
[
â (φ2) . . . â (φM )

]
. Using (53) and following the

same approach as in Appendix B to derive ξ̃ŵM , we show if the
condition in (37) is satisfied that

ϒ̂
(
ŵM

) �
�M(0)

(
1 + 2 J1(γ (2σ1))

γ (2σ1)
+ 2σ 2

ea

)2

�(0)
(
1 + σ 2

ea

)2 , (55)

holds for large K and small σm, m = 2, . . . ,M . In (55),
ϒ̂ (w) = ξ̃w/ξ̃ŵBD and, hence, ϒ̂

(
ŵM

) � 1 holds when there is
no scattering. This is expected since both B-DCB and MCB’s
implementations require M quantized angle estimates and,
therefore, equally suffer from their estimation and quantization
errors. Besides, since 1 + 2J1(γ (2σ1))/γ (2σ1) ≤ 2, ϒ̂

(
ŵM

)
is an increasing function of σ 2

ea
. This implies that ϒ̂

(
ŵM

)
>

ϒ (wM) for any σ 2
ea

�= 0. Therefore, the ASAINR gain of B-
DCB against MCB decreases under real-world conditions. This
is expected since the B-DCB’s implementation requires more
angular information than MCB and, hence, is more affected
by their estimation and quantization errors. Furthermore, from
(55), the ASAINR gain of B-DCB gainst MCB may turn
into losses under exceptional circumstances hard to justify in
practice (e.g., low quantization level or very small Ba which
results in large quantization errors and, consequently, in a large
σ 2

ea
).
2) ASAINR Gain of B-DCB vs. OCB: From (28), the OCB’s

implementation requires that the m-th source estimates and
quantizes the channels [gm]k, k = 1 . . . K before sending them
back to all K terminals, thereby resulting in both estimation
and quantization errors. Let us denote the resulting channel
between the m-th source and the k-th terminal by [ĝm]k =
[gm]k + [ec,m]k where ec,m = eci,m + ecq,m and eci,m and ecq,m
are the channel identification and quantization errors, respec-
tively. Let σ 2

ec
= σ 2

ci + σ 2
cq be the variance of [ec,m]k where

σ 2
ci and σ 2

cq are those of [eci,m]k and [ecq,m]k , respectively.

Assuming a (Bc + 1)-bit uniform quantization,7 we have σ 2
cq =

2−2Bc g2
Max
12 where gMax is the peak amplitude of all channels’

realizations
[
gm
]

k for k = 1, . . . , K [35]. Based on [37], we

have σ 2
ci = 3

2

(
πσ 2

nt
f̄D
) 2

3 where f̄D is the normalized Doppler

frequency. Substituting hm by ĥm = f � ĝm in (28), we obtain
the OCB’s beamforming vector ŵO. Using the fact that [ec,m]ks
are i.i.d random variables independent from the channels [gm]ks

7For both the sake of simplicity and tractability, we resort here to the
Uniform quantization of channel estimates which is far from optimal in contrast
for instance to the Grassmannian quantization scheme in [25].

and following the same derivations steps as in Appendix C, we
prove that

ξ̃ŵO � p1(
1 + σ 2

ec

)
σ 2

nr

, (56)

when K and Lm, m = 2, . . . ,M are large enough. It can be
inferred from (52) and (56) that the ASAINR gain ϒ̂

(
ŵO
)

achieved by OCB against the proposed B-DCB decreases when
f̄D increases (i.e., σ 2

ec
increases). Therefore, from (52) and (56),

if σ 2
ea

is sufficiently small, ϒ̂
(
ŵO
)
< 1 holds in lightly- to

moderately-scattered environments. In such environments, the
proposed B-DCB is then able to outperform OCB. Simulations
in Section VII will later show that this gain translates into a
larger operational region in terms of AS values over which B-
DCB is favored against OCB. Furthermore, when f̄D is large
enough to satisfy

f̄D >

(
2
3

((
σ 2

nr
ξ̃ŵBD

)−1 − 1

)
− σ 2

cq

) 3
2

πσ 2
nt

, (57)

then we have from (52) and (56) that ϒ̂
(
ŵO
)
< 1 holds for any

pm(θ) and σm,m = 1, . . . ,M . Consequently, under real-world
conditions and even in highly-scattered environments, the pro-
posed B-DCB is able to outperform OCB whose performance
severely deteriorates at high Doppler. This further proves once
again the efficiency of the proposed CB solution.

For the sake of simplicity in the above comparisons, we have
restricted the implementation errors incurred by each CB solu-
tion to the extrinsic parameters from the network perspective
(i.e., φm , φ̃m , and gm). Indeed, we have assumed that the intrin-
sic parameters such as [f]k and (rk, ψk) are perfectly known
at the k-th terminal. This simplification actually favors both
MCB and OCB at the expense of the proposed B-DCB which is
oblivious to the intrinsic parameters due to its distributed nature
and, hence, the least affected by their estimation and quantiza-
tion errors. In fact, from the discussions made in Sections III
and IV, [wBD]k is corrupted by the estimation errors of [f]k

and (rk, ψk), like [wM]k and [wO]k , which are, however, addi-
tionally corrupted by estimation and quantization errors of all
[f]′k and (r ′

k, ψ
′
k), k′ = 1, . . . , K , k′ �= k. If such errors were

accounted for, the ASAINR advantage of the proposed B-DCB
over both MCB and OCB would have been far greater.

B. Link-Level Throughput CB Comparisons

The ASAINR comparisons above, despite their valuable
insights, face a major weakness in that they do not factor
in the different overhead costs incurred by each CB solu-
tion. Hence, comparisons in terms of the link-level throughput
become crucial. Assuming without loss of generality BPSK-
modulated transmissions using a Gaussian codebook, the link-
level throughput achieved by w is given by [38]

Tw = 0.5
(

RT − Roh
w

)
E
{
log2 (1 + ξw)

}
, (58)

where RT and Roh
w are the transmission bit rate and the over-

head bit rate allocated to w’s implementation. Obviously, Tw
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is intractable in closed-form, thereby hampering its analytical
study. However, exploiting the fact that log2(X) is a concave
function, the Jensen’s inequality, and the results in Section V-B,
we show that Tw is upper bounded by

T̃w = 0.5
(

RT − Roh
w

)
log2

(
1 + ξ̃w

)
, (59)

when K is large enough. In what follows, we propose, for
the sake of analytical tractability, to use (59) as an alternative
to (58) when comparing the proposed B-DCB with its bench-
marks. The throughput gain achieved by any given beamformer
w over the proposed B-DCB solution is therefore given by

G̃ (w) = T̃w − T̃wBD

T̃wBD

. (60)

We will shortly see below, both by analysis and simulations,
that this performance metric, despite the simplifying assump-
tions above, is still able to provide a comparative framework
that is extremely insightful qualitatively.

1) Throughput Gain of B-DCB vs. OCB: As discussed
in Section IV, the proposed B-DCB implementation requires
that the m-th source broadcasts φ̃2m and φ̃2m−1. Each angle’s
broadcast requires one time slot of Ba bits transmitted at a
localization refreshment rate fLR = 1/TLR where TLR is the
refreshment period. Since the latter is typically very large,
we assume that fLR � 0 and, hence, we have Roh

wBD
� 0. The

throughput achieved by the proposed B-DCB is then given by

T̃ŵBD � 0.5RT log2

(
1 + ξ̃ŵBD

)
. (61)

On the other hand, the OCB’s implementation requires that the
m-th source broadcasts all [gm]k, k = 1 . . . K for all K termi-
nals. This process requires K time slots of Bc bits transmitted
at an identification refreshment rate fIR = 1/TIR where TIR
denotes the refreshment period. It is noteworthy that TIR should
satisfy TIR ≥ Tc where Tc = 0.423/ fD is the coherence time
and fD is the maximum Doppler frequency. For simplicity, we
assume fIR = 2 fD. The overhead rate of such process is then
2K M Bc fD. Furthermore, from (28), the OCB’s implementa-
tion requires also that the k-th terminal broadcasts [f]k in the
network. This is in contrast to the proposed B-DCB whose
implementation avoids such information exchange among ter-
minals, thanks to its distributed nature. Assuming that Bc bits
are allocated to [f]k and refreshed every TIR, the OCB’s imple-
mentation overhead rate is then Roh

ŵO
= 2K (M + 1)Bc fD and,

hence, its achieved throughput is

T̃ŵO = 0.5RT
(
1 − 2K (MI + 2)Bc f̄D

)
log2

(
1 + ξ̃ŵO

)
. (62)

As can be observed from (62), the throughput achieved by
OCB decreases with the number of terminals K as well as
the number of interfering sources MI . Furthermore, since ξ̃ŵO

decreases when f̄D increases, it follows then from the above
result that T̃ŵO also decreases if f̄D increases. Interestingly,

from (62), Bc has two contradictory effects on T̃ŵO. Indeed, if

Bc increases, the OCB overhead rate increases and, hence, T̃ŵO

decreases. However, from (56), increasing Bc (i.e., decreas-
ing σ 2

ec
) improves ξ̃ŵO and, therefore, the achieved throughput

T̃ŵO. The result in (62) could then be exploited to find the

optimum number of quantization bits Bopt
c that maximizes the

OCB’s throughput. Moreover, since B-DCB’s throughput is, in
contrast to OCB, independent of K , MI , and f̄D, from (62)
and (61), then G̃

(
ŵO
)

decreases if one of these parameters
increases. Furthermore, if (57) is satisfied, we easily show that
G̃
(
ŵO
)
< 0. Simulations in Section VII will later show that this

result translates into a wider operational region in terms of AS
values over which B-DCB is favored against OCB, reaching
actually as much as 50 degrees thereby covering about the entire
span of AS values.

2) Throughput Gain of B-DCB vs. MCB: From (27), in
order to properly implement MCB, the m-th source must only
broadcast its direction φm to the network and, additionally, ter-
minals must exchange their positions as well as their forward
channels. This is in contrast to the proposed B-DCB whose
implementation avoids such an exchange due to its distributed
nature. Assuming that each position should be refreshed every
TLR, which is typically large, it can be readily shown that
MCB’s implementation overhead rate is Roh

wM
= 2K fD and,

therefore,

T̃ŵM � 0.5RT
(
1 − 2K f̄D

)
log2

(
1 + ξ̃ŵM

)
. (63)

As can be observed from (63), in contrast to the proposed
B-DCB, the throughput achieved by MCB decreases when
K and/or f̄D increase/s. Since ξ̃ŵM ≤ ξ̃ŵBD for any pm and
σm,m = 1, . . . ,M for practical values of Ba, then G̃

(
ŵM

) ≤ 0
holds. From (61) and (63), this gain decreases with K and
fD. Consequently, under real-world conditions, the proposed
B-DCB always outperforms MCB in terms of throughput. This
also holds true in scattering-free environments (i.e., σm = 0
for m = 1, . . . ,M) where MCB and B-DCB achieves the same
ASAINR, as proved in Section V-A1.

VII. SIMULATION RESULTS

Computer simulations are provided to support the theoreti-
cal results. All empirical average quantities are calculated over
106 random realizations of rk , ψk , [f]k for k = 1, . . . , K and
αl,m , θl,m for l = 1, . . . , Lm . In all simulations, all sources have
the same power p = 1 and σ 2

nr
= σ 2

nt
= 1. The number of rays

is Lm = 6, σm = σ and the scattering distribution pm(θ) is
Uniform for m = 1, . . . ,M , except in Fig. 2(b) where we con-
sider a Gaussian distribution. Unless otherwise stated, K = 20
and MI = 3 with [φ2, φ3, φ4] = [10, 15, 20] degrees.

Fig. 2 plots, under ideal conditions, the ASAINRs ξ̃wBD ,
ξ̃wM, and ξ̃wO and the ASINRs ξ̄wBD, ξ̄wM , and ξ̄wO versus σ .
The scattering distributions pm(θ),m = 1, . . . ,M are assumed
to be Uniform in Fig. 2(a) and Gaussian in Fig. 2(b). From
these figures, we confirm that the analytical ξ̃wBD and ξ̃wO

match perfectly their empirical counterparts while (35) closely
approaches the empirical ξ̃wBD for K = 20. Both figures show
that, under ideal conditions, OCB is able to reach the maxi-
mum achievable ASAINR ξ̃max, regardless of σ . This is due
to the optimality of such a CB solution. Figs. 2(a) and 2(b)
also show that the ASAINR ξ̃wBD achieved by the proposed
B-DCB approaches ξ̃max in lightly to moderately-scattered



ZAIDI AND AFFES: DISTRIBUTED COLLABORATIVE BEAMFORMING DESIGN FOR MAXIMIZED THROUGHPUT 4915

Fig. 2. The analytical and the empirical ASAINRs achieved, under ideal con-
ditions, by MCB, OCB, and the proposed B-DCB as well as their empirical
ASINRs versus σ for K = 20 when the scattering distributions are (a): Uniform
and (b): Gaussian.

environments where σ is in the range of 17 degrees. When the
scattering distributions are Uniform, this means that the angle
deviations θl,ms vary from approximately −30 to 30 degrees
(i.e., an angular interval of almost 60 degrees). Consequently, in
lightly to moderately-scattered environments, the proposed B-
DCB is also optimal. However, the ASAINR ξ̃wBD achieved by
B-DCB severely deteriorates in highly-scattered environments
where σ > 20 degrees. Furthermore, we see from Figs. 2(a)
and 2(b) that the ASAINR performed by MCB, which is
designed without accounting for scattering, slightly decreases
in lightly-scattered environments where σ is around 5 degrees,
and becomes soon unsatisfactory in moderately- to highly-
scattered environments. In such settings, the proposed B-DCB

Fig. 3. The analytical and the empirical ASAINR gains achieved, under real-
world conditions, by MCB and OCB against the proposed B-DCB vs. (a): Ba
and (b): f̄D for K = 20 and different values of σ .

is able to achieve until 6 dB of ASAINR gain against MCB.
All these observations corroborate the analytical results of
Section V-A1. Moreover, from these figures, the curves of ξ̃wO,
ξ̃wBD , and ξ̃wM are almost indistinguishable from ξ̄wO, ξ̄wBD,
and ξ̄wM, respectively, when K = 20. Indeed, as claimed in
Section V-B, the achieved ASAINRs and ASINRs become
equivalent when K is large.

Fig. 3 displays the analytical and the empirical ASAINR
gains achieved by ŵM and ŵO against ŵBD for different values
of σ . Fig. 3(a) plots ϒ̂(ŵM) versus Ba for σ ∈ {0, 5, 10, 15}
degrees while Fig. 3(b) plots ϒ̂(ŵO) versus f̄D for σ ∈
{0, 17, 20, 25} degrees when Ba = Bc = 8 bits. From both
figures, the analytical results of Section VI-A closely approach
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Fig. 4. The throughput gain G̃(ŵO) achieved by OCB versus σ for different
values of f̄D, MI , and Bc.

the empirical ϒ̂(ŵM) and ϒ̂(ŵO), respectively, for K = 20. It
can be observed from Fig. 3(a) that ϒ̂(ŵM) � 1 holds regard-
less Ba when σ = 0 (i.e., there is no scattering). However,
when σ �= 0, ϒ̂(ŵM) increases if the quantization level Ba
decreases and even slightly exceeds 1 when Ba becomes very
small (i.e., Ba ≤ 3). Therefore, under real-world conditions, the
proposed B-DCB always outperforms MCB except at unrealis-
tic low quantization levels which are hard to justify in practice.
This corroborates the discussions made in Section VI-A1. As
discussed in Section VI-A2, from Fig. 3(b), the ASAINR
gain ϒ̂(ŵO) achieved by OCB against the proposed B-DCB
decreases with f̄D. This figure confirms and illustrates the exis-
tence of a threshold value of f̄D beyond which the ASAINR
gain achieved by OCB turns into losses. As expected, this
threshold whose expression is given by (57) increases with
σ , since ξ̃ŵBD decreases with the latter. For instance, we find
that ϒ̂(ŵO) ≤ 1 when σ = 20 degrees if f̄D ≥ 0.025 or when
σ = 25 degrees if f̄D ≥ 0.087.

Fig. 4 plots G̃
(
ŵO
)

versus σ for different values of f̄D, MI ,

and Bc. It also plots G̃IDL
(
ŵO
)
, the throughput gain achieved

by OCB against the proposed B-DCB under ideal conditions
(i.e, without accounting for any overhead cost or any quanti-
zation or estimation error). From Figs. 4(a)-4(b), the OCB’s
throughput gain decreases, as discussed in Section VI-B1, not
only with f̄D but also with the number of interfering sources
MI . From these figures, when σ is relatively small in lightly-
to moderately-scattered environments, the proposed B-DCB
always outperforms OCB in terms of achieved throughput.
Actually, in such environments, their performances are almost
equal only under idealistic conditions that ignore the practical
effects of both overhead and estimation and quantization errors.

Fig. 5. The throughput gain G̃(ŵO) achieved by OCB versus σ for different
values of f̄D and K .

Furthermore, we see from these figures that there exists an opti-
mum quantization level Bopt

c which maximizes the throughput
(i.e., level that best minimizes combined losses due to errors
and overhead) found to be equal to 3 and 1 at

(
f̄D,MI

)
set to

(0.0001, 3) and (0.0002, 5), respectively. At these levels, OCB
suffers from throughput losses against the proposed B-DCB
of about 6% and 22%, respectively, when σ is relatively small
in lightly- to moderately-scattered environments. As can be
observed from Fig. 4, these results translate into a larger
operational region in terms of AS values over which the pro-
posed B-DCB is favored against OCB. This operational region
increases from about 15 degrees under ideal conditions to about
17 and 22 degrees, respectively in the two examples discussed
above.
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Fig. 5 displays G̃(ŵO) for different values of f̄D and K . In
this figure, curves are plotted after performing a numerical eval-
uation of the optimum quantization level Bopt

c for each pair
of values of f̄D and K . For instance, we find that Bopt

c = 2
bits when f̄D = 0.0005 and K = 20 while Bopt

c = 1 bit when
f̄D = 10−3 and K = 200. From this figure, the OCB’s through-
put gain against the proposed B-DCB decreases when f̄D and/or
K increase/s. This gain may turn into losses for sufficiently
large K and/or high f̄D, even when σ is large. As can be
observed from Fig. 5, this result translates into a larger oper-
ational region of up to 50 degrees for large K and/or high
f̄D that amounts to angle deviations from almost −90 to 90
degrees (i.e., the entire angular span). Besides, G̃(ŵO) which is
nominally an increasing function of σ under ideal conditions,
becomes constant at −100% when K = 20 and f̄D = 0.005 or
when K = 100 and f̄D = 0.001, and even a decreasing func-
tion of σ , when K and/or f̄D are/is large. All these observations
corroborate all the elements of our discussion in Section VI-B1.

VIII. CONCLUSIONS

In this paper, a dual-hop communication from a source sur-
rounded by MI interferences to a receiver was considered. In
the first time slot, all sources send their signals to the net-
work while, in the second time slot, the terminals multiply the
received signal by their respective beamforming weights and
forward the resulting signals to the receiver. These weights were
designed so as to minimize the interferences plus noises’ pow-
ers while maintaining the received power from the source to a
constant level. We showed, however, that they are intractable in
closed-form due to the complexity of the polychromatic chan-
nels arising from the presence of scattering. By resorting to a
two-ray channel approximation proved valid at relatively low
AS values, we were able to derive the new optimum weights
and prove that they could be locally computed at each ter-
minal, thereby complying with the distributed feature of the
network of interest. The so-obtained B-DCB was then analyzed
and compared in performance to both MCB, whose design does
not account for scattering, and OCB. Comparisons were made
under both ideal and real-world conditions where we accounted
for implementation errors and the overhead incurred by each
CB solution. They revealed that the proposed B-DCB always
outperforms MCB in practice; and that it approaches OCB in
lightly- to moderately-scattered environments under ideal con-
ditions and outperforms it under real-world conditions even in
highly-scattered environments. In such conditions, indeed, the
B-DCB operational regions in terms of AS values over which it
is favored against OCB could reach until 50 degrees and, hence,
cover about the entire span of AS values.

APPENDIX A
PROOF OF THEOREM 3

From (26), we have

E

{∣∣∣wH
BDhm

∣∣∣2} = E {η1} + E {η2} + E
{
η∗

2

}+ E {η3}
K 2

(
1 + 2 J1(γ (2σ1))

γ (2σ1)
− ν(σ1)T Q−1ν(σ1)

)2
,

(64)

where η1 = ν(σ1)
T Q−1�H	−1hmhH

m	
−1�Q−1ν(σ1),

η2 = (a (σθ )+ a (−σθ ))H 	−1hmhH
m	

−1�Q−1ν(σ1), and
η3 = (a (σθ )+ a (−σθ ))H 	−1hmhH

m	
−1 (a (σθ )+ a (−σθ )).

Let us first focus on E {η3}. From assumption A1, we have

Eαl,m {η1} =
L∑

l=1

1

L

(
ν (σ1)

T Q−1�H	−1a
(
φm + θl,m

))

×
(

a
(
φm + θl,m

)H
	−1�Q−1ν (σ1)

)

=
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l=1

1
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[
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]

p
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T Q−1
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n
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⎞
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(65)

where ζp = [
�H	−1a(φm + θl,m)

]
p

[
a(φm + θl,m)

H	−1�
]

p

and δp,n = [
�H	−1a(φm + θl,m)

]
p

[
a(φm + θl,m)

H	−1�
]

n .
ζp could be equivalently rewritten as

ζp =(
K∑

k=1

[
�H

]
pk

[
a(φm +θl,m)

]
k

[	]kk

)(
K∑

s=1

[
a(φm + θl,m)

H
]

s [�]sp

[	]ss

)

= K +
K∑

k=1

e
− jγ

(
φm+θl,m−φ̃p

)
sin

(
ψk− φm+θl,m+φ̃p

2

)

×
K∑

s=1,s �=k

e
jγ
(
φm+θl,m−φ̃p

)
sin

(
ψk− φm+θl,m+φ̃p

2

)
. (66)

Using the fact that rks and ψks are i.i.d random vari-
ables and (2/π)

∫ 1
−1 e jγ (φ)z

√
1 − z2dz = 2J1 (γ (φ)) /γ (φ),

we show that

Erk ,ψk

{
ζp
}= K +2K (K −1)

[
z
(
φm +θl,m

)]
p

[
zT (φm +θl,m

)]
p
.

(67)

We also show that

Eαl,m ,rk ,ψk

{
δp,n

} = 2K [Q]pq +2K (K − 1)
[
z
(
φm + θl,m

)]
p

×
[
zT (φm + θl,m

)]
n
. (68)

It follows then from (67) and (68) that

Eαl,m ,rk ,ψk {η1} =
L∑

l=1

1

L

(
2Kν(σ1)

T Q−1ν(σ1)

+4K (K − 1)
(

zT (φm + θl,m
)

Q−1ν(σ1)
)2
)
,

(69)

since [Q]pp = 1/2. Furthermore, following the same approach
above, we prove that
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Eαl,m ,rk ,ψk {η2} =
L∑

l=1

1
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and

Eαl,m ,rk ,ψk {η3} =
L∑

l=1

1
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(71)

Note that Eαl,m ,rk ,ψk {η2} = Eαl,m ,rk ,ψk

{
η∗

2

}
since Erk ,ψk {η2} is

real. Finally, applying the expectation with respect to θl,ms over
both sides of (69)–(71) and substituting the resulting equations

in (64), E
{∣∣wH

BDhm
∣∣2} is obtained for m = 1, . . . ,M . On the

other hand, it can be shown that

E
{

wH
BD	wBD

}
= 2

K
(

1 + 2 J1(γ (2σ1))
γ (2σ1)

− ν(σ1)T Q−1ν(σ1)
) .

(72)

Using E
{∣∣wH

BDhm
∣∣2} along with the latter result, we obtain the

expression of ξ̃wBD.

APPENDIX B
PROOF OF THEOREM 4

It follows from (30) that

lim
K→∞ ξ̃wM =
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Using the matrix inversion lemma to break the matrix(
A1̄P1̄AH

1̄
+ σ 2

nt
	
)−1

into several terms yields

wH
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(74)

for m = 1, . . . ,M . Moreover, it follows from

Theorem 1 that a(0)H	−1hm
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l=1 αl,mνM(φm + θm,l) when K → ∞. Using these results
in (74), we obtain for large K∣∣∣wH

Mhm

∣∣∣2 p1−→

4
∣∣∣∑L

l=1 αl,m

(
J1(γ (φm+θl,m))
γ (φm+θl,m)

− νT
M(0)Q

−1
M νM(φm + θl,m)

)∣∣∣2
1 − 2νT

M(0)Q
−1
M νM(0)

.

(75)

On the other hand, following similar steps as above, one could
easily show that limK→∞ wH

M	wM = 0. Furthermore, it can be
inferred from (75) that

Eαl,m

{∣∣∣wH
Mhm

∣∣∣2} =

4
(

J1(γ (φm+θl,m))
γ (φm+θl,m)

− νT
M(0)Q

−1
M νM(φm + θl,m)

)2

1 − 2νT
M(0)Q

−1
M νM(0)

. (76)

Note that we resort to assumption A1 in (76). Applying the
expectation with respect to θl,ms over both sides of (76) yields

E
{∣∣wH

Mhm
∣∣2} = 4�M(φm)/(1 − 2νT

M(0)Q
−1
M νM(0)) and,

therefore, (35) is obtained.

APPENDIX C
PROOF OF THEOREM 5

It is straightforward to show from (28) that wH
O h1 = 1.

However, wH
O hm is given by

wH
O hm =

hH
1 	

−1hm − hH
1 	

−1H1̄

(
H1̄P1̄HH

1̄
+ σ 2

nt
	
)−1

HH
1̄
	−1hm

hH
1 	

−1h1 − hH
1 	

−1H1̄

(
H1̄P1̄HH

1̄
+ σ 2

nt
	
)−1

HH
1̄
	−1h1

,

(77)

for m = 2, . . . ,M . On the other hand, exploiting the strong law
of large numbers and assumption A1, we show for large L1

that
hH

1 	
−1h1

L1

p1−→ K
L1

,
hH

1 	
−1hm

L1

p1−→ 0, and
HH

1̄
	−1h1

L1

p1−→ 0. It

follows from these results that wH
O hm

p1−→ 0 for m = 2, . . . ,M .
Furthermore, using the latter results, we prove for large L1 that

wH
O	wO

p1−→ K and, therefore, (41) is obtained.
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