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Abstract—In this paper, we consider the problem of joint phase
and carrier frequency offset (CFO) estimation for turbo-coded
systems. We derive for the first time the closed-form expres-
sions for the exact Cramér-Rao lower bounds (CRLBs) of these
estimators over turbo-coded square-QAM-modulated single- or
multi-carrier transmissions. In the latter case, the derived bounds
remain valid in the general case of adaptive modulation and coding
(AMC) where the coding rate and modulation order vary from one
subcarrier to another depending on the corresponding channel
quality information (CQI). In particular, we introduce a new
recursive process that enables the construction of arbitrary Gray-
coded square-QAM constellations. Some hidden properties of such
constellations will be revealed, owing to this recursive process, and
carefully handled to decompose the system’s likelihood function
(LF) into the sum of two analogous terms. This decomposition
makes it possible to carry out analytically all the statistical expec-
tations involved in the Fisher information matrix (FIM). The new
analytical CRLB expressions corroborate the previous attempts to
evaluate the underlying bounds empirically. In the low-to-medium
signal-to-noise ratio (SNR) region, the CRLB for code-aided (CA)
estimation lies between the bounds for completely blind [non-data-
aided (NDA)] and completely data-aided (DA) estimation schemes,
thereby highlighting the effect of the coding gain. Most inter-
estingly, in contrast to the NDA case, the CA CRLBs start to
decay rapidly and reach the DA bounds at relatively small SNR
thresholds. It will also be shown that contrary to the CRLB of
the phase shift, the CRLB of the CFO improves in a multi-carrier
system as compared to its counterpart in a single-carrier system.
The derived bounds are also valid for LDPC-coded systems and
they can be evaluated in the same way when the latter are decoded
using the turbo principal.

Index Terms—Carrier phase, carrier frequency offset (CFO),
Cramér-Rao lower bound (CRLB), turbo codes, code-aided, ex-
trinsic information, Gray mapping, square quadrature amplitude
modulation (QAM) modulations, LDPC, square quadrature am-
plitude modulation (QAM), multi-carrier, adaptive modulation
and coding (AMC).
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I. INTRODUCTION

CURRENT and next-generation wireless communication
systems are called upon to provide high quality of ser-

vice, while satisfying the ever-increasing demand in high data
rates. To meet these requirements, the use of powerful error-
correcting codes in conjunction with high spectral efficiency
modulations such as high-order quadrature amplitude modu-
lations (QAMs) is advocated. These modulations are, indeed,
a key feature of current and future wireless communication
standards such as 4G long-term evolution (LTE), LTE-advanced
(LTE-A) and beyond (LTE-B) [1]. On the other hand, turbo
codes [2], [3] have gained considerable attention over the last
two decades [4]. Owing to their impressive ability to operate
in the near-Shannon limit (even at very low SNRs), they have
also been adopted for 4G mobile communication systems such
as Mobile WiMAX (IEEE 802.16e) [5] and 3GPP-LTE [6], [7].

Yet, turbo codes are known to be very sensitive to syn-
chronization errors. That is, even small mismatches between
the transmitter’s and receiver’s local oscillators (CFO) and/or
small phase shifts (introduced by the wireless channel) can
lead to severe performance degradations. One of the obvious
solutions to this problem consists in using turbo codes in
conjunction with a coherent detection scheme. In plain En-
glish, the carrier phase shift and the CFO are estimated and
compensated for before proceeding to data decoding. As such,
the synchronization parameters are estimated directly from the
received samples at the output of the matched filter. In this case,
two estimation schemes can be envisaged i) NDA estimation
with no a priori knowledge about the transmitted symbols or
ii) DA estimation using perfectly known pilot symbols (training
sequence). In both cases, however, accurate synchronization is
quite challenging for turbo-coded systems since they are pri-
marily intended to operate at low signal-to-noise ratios (SNRs).
Indeed, in such adverse SNR conditions, practical1 NDA and
DA techniques may result in high estimation errors; affecting
thereby the overall system performance.

To circumvent this problem and to properly synchronize
turbo-coded systems at low SNR, two different and more

1In principle, the performance of NDA or DA techniques can be improved
indefinitely by increasing the observation window size or inserting more
pilot symbols, respectively. However, the observation window size in NDA
estimation is limited by many practical constraints such as the delay tolerated
by the system and/or its ability to operate properly beyond the coherence time.
Furthermore, using long preambles in DA estimation impinges directly on the
whole throughput of the system and decreases its effective transmission rate.
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elaborate approaches were adopted in the open literature. In
both approaches, the estimation task is assisted by the decoder.
Therefore, we will refer to it in this paper as code-aware or
code-assisted (CA) estimation, as opposed to non-code-aided
(NCA) estimation (i.e., NDA scenario). The first approach con-
sists in modifying the structure of the classical soft-input-soft-
output (SISO) decoder and embedding in it the estimation task.
As one example in [8], the forward and backward recursions
have been modified to perform the decoding and estimation
tasks jointly (see also [9]). In the second approach, however,
the structure of the SISO decoder is not altered and it is usually
referred to as turbo synchronization. Rather, the estimation pro-
cess relies directly on the use of the soft information (either the
a posteriori probabilities or the extrinsic information) provided
by the turbo receiver at each decoding iteration (see [8], [10]–
[21] and references therein). For instance, using the a posteriori
probabilities and the extrinsic information, the carrier phase and
the CFO are estimated jointly with turbo decoding in [10] and
[11], respectively. A more recent work dealing with doubly-
selective channels and CFO CA estimation from turbo-coded
QAM-modulated signals in OFDM systems was introduced
in [12].

To evaluate the achievable performance limit in the estima-
tion of the synchronization parameters, an absolute benchmark
must be evaluated. The Cramér-Rao lower bound (CRLB), a
well known fundamental bound [22], meets this requirement
since it sets the minimum achievable variance for any unbiased
estimator. Most interestingly and unlike other loose bounds, the
stochastic CRLB (unknown and random transmitted symbols)
is known to be achieved asymptotically by the stochastic maxi-
mum likelihood (ML) estimator. Yet, even under uncoded trans-
missions, the complex structure of the LF makes it extremely
hard, if not impossible, to derive analytical expressions for this
bound, especially for high-order modulations. Therefore, it is
often evaluated empirically (in both NCA and CA estimations).
Indeed, the stochastic CRLBs for the carrier phase and CFO
NDA estimation were first evaluated empirically for the un-
coded PSK- and symmetric-QAM-modulated signals in [23].
It was only recently, though, that their closed-form expressions
have been established for BPSK/QPSK transmissions in [25]
and for general square-QAM-modulated signals in [26], but
still in the traditional NCA scenario.2 In coded transmissions,
however, the LF becomes even more complicated and devel-
oping such bounds in closed form is trivially more difficult.
Thus, exhaustive Monte-Carlo simulations have been recently
used by Noels et al. in [33], [36] to evaluate empirically the
CRLBs for CA estimates of the carrier phase and CFO param-
eters from turbo-coded linearly-modulated signals. However,
although much needed, their closed-form expressions have not
been yet reported in the open literature. Motivated by these
facts, we derive for the very first time the analytical expres-
sions for the considered CRLBs in CA estimation from any

2Note here that closed-form CRLBs for NDA estimation of other channel
parameters in higher-order square-QAM transmissions have been derived an-
alytically only recently as well. For instance, the reader is referred to [27],
[28] for SNR estimation, [29] for DOA estimation, and [30], [31] for timing
recovery, respectively.

turbo-coded square-QAM-modulated signal for both single- or
multi-carrier transmissions and show that they corroborate the
aforementioned attempts to evaluate these bounds empirically
in the single-carrier case only [33], [36]. The derived bounds are
also valid for LDPC-coded systems and they can be evaluated
when the latter are decoded using the turbo principal since in
this case the MAP SISO decoder outputs the extrinsic informa-
tion which is the only needed quantity to evaluate the newly
derived CRLBs.

The rest of this paper is structured as follows. In Section II,
we present the system model. In Section III, we introduce the
recursive process that allows the construction of any square-
QAM Gray-coded constellation and relate the symbols’ a priori
probabilities (APPs) to the bits’ log-likelihood ratios (LLRs). In
Section IV, we factorize the probability density function (pdf)
of each received sample into two analogous terms. In Section V,
we derive the different FIM elements and the analytical ex-
pressions for the considered CRLBs. In Section VI, we extend
these expressions to multi-carrier transmissions over multi-path
channels. In Section VII, we discuss the simulation results of
the new bounds and, finally, draw out some concluding remarks
in Section VIII.

In the sequel, some of the common notations will be used.
In fact, vectors and matrices are represented in lower- and
upper-case bold fonts, respectively. Moreover, {.}T and {.}H

denote the transpose and the Hermitian (transpose conjugate)
operators, respectively. The operators ℜ{.} and ℑ{.} return, re-
spectively, the real and imaginary parts of any complex number.
The operators {.}∗ and |.| return its conjugate and its amplitude,
respectively, and j is the pure complex number that verifies
j2 = −1. We will also denote the probability mass function
(PMF) for discrete random variables by Pr[.] and the pdf for
continuous random variables by p[.]. The statistical expectation
with respect to any random variable is denoted as E{.}.

II. SYSTEM MODEL

Consider a flat-fading3single-carrier turbo-coded system
where a binary sequence of information bits is fed into a turbo
encoder of rate R. The encoder consists of two identical recur-
sive and systematic convolutional codes (RSCs) with generator
polynomials [g1,g2]. The two RSCs are concatenated in parallel
via an interleaver of size L. The coded bits are then fed into
a puncturer which selects an appropriate combination of the
parity bits, from both encoders, to achieve the desired code
rate R. The obtained code bits (systematic and parity bits) are
then interleaved, with an outer interleaver, and mapped onto a
given Gray-coded constellation. The obtained symbols are then
transmitted over the wireless channel and the corresponding
received signal is sampled at the output of the matched filter.
In this paper, we make the following basic assumptions:

1) Perfect time synchronization.

3It should be mentioned, however, that OFDM systems transform a (mul-
tipath) frequency-selective channel in the time domain into a frequency-flat
(i.e., narrowband) channel over each subcarrier as modeled by (2) [34], [35].
For these reasons and for the sake of clarity, the detailed derivations will be
conducted for a single-carrier flat-fading channel and extensions to multicarrier
channels will be discussed in Section VI.



BELLILI et al.: CFO AND PHASE ESTIMATION FROM TURBO-CODED SQUARE-QAM-MODULATED TRANSMISSIONS 2515

2) The shaping pulse, p(t), verifies the first Nyquist crite-
rion, i.e., the convolution:

g(x) =
∫ +∞

−∞
p(x)p(t + x)dx, (1)

satisfies the condition g(nT ) = 0 ∀n �= 0 where T is the
symbol period.

3) The frequency offset is very small compared to the signal
bandwith.

Owing to these three assumptions, the base-band received
samples in the presence of phase and frequency distortions are
modeled4 as follows [37]:

y(k) =Sx(k)e j(2πkν+φ) +w(k),

k =k0,k0 +1, · · · ,k0 +K −1, (2)

where K is the total number of recorded data and k0 refers
to the time instant of the first observed sample. The chan-
nel coefficient, S, is assumed to be slowly-time varying and,
therefore, constant over the observation window. In this paper,
it is treated as an unknown but deterministic parameter. Of
course, it might be random in practice. And if its statistical
properties are known beforehand, they can be used to improve
the estimation performance (i.e., lower CRLB). However, even
in the easiest case of Rayleigh fading, the upcoming derivations
become extremely cumbersome and the considered CRLBs
cannot be derived in closed form. For these reasons, the a priori
knowledge about the statistics of the channel can be disregarded
during the estimation process by assuming it unknown but
deterministic.

At each sampling index k, x(k) is an unknown transmitted
symbol and y(k) is the corresponding received sample. The
transmitted symbols {x(k)}k are drawn from any M-ary Gray-
coded square-QAM constellation whose alphabet is denoted as
Cp = {c0,c1, · · · ,cM−1}. By square QAM we mean M = 22p

(i.e., QPSK, 16-QAM, 64-QAM, etc. . .). The noise compo-
nents, {w(k)}k, are modeled by zero-mean circular complex
Gaussian random variables with independent real and imagi-
nary parts (each of variance σ2). For more convenience, the
unknown phase and frequency offsets (respectively, φ and ν)
are stacked into a single parameter vector α = [φν]T . They
are to be estimated from all the received samples gathered in
the observation vector y= [y(k0),y(k0+1), · · · ,y(k0+K−1)]T .
Without loss of generality (w.l.o.g), we will also assume that the
energy of the transmitted symbols is normalized to one5 (i.e.,
E{|x(k)|2}= 1) so that the average SNR of the system is given
by ρ = E{S2|x(k)|2}/2σ2 = S2/2σ2.

Now, suppose that we are able to produce an unbiased
estimate, α̂,of the parameter vector α, from the received vec-
tor y. Then, the CRLB is a practical lower bound [22] that

4The detailed derivation of the discrete model (2) from the analog received
signal can be found in [37, Chap. 2].

5If the transmit energy, P, is not unitary, it can be easily incorporated as
an unknown scaling factor into the channel coefficient which becomes

√
PS

instead of S in (2).

verifies6 the inequality E{[α̂−α][α̂−α)]T} � CRLB(α). It is
given by:

CRLB(α) = I−1(α), (3)

where I(α) is the Fisher information matrix (FIM) whose
entries are expressed:

[I(α)]i,l =−E

{
∂2L(y;α)
∂αi∂αl

}
i, l = 1,2. (4)

In (4), {αi}i=1,2 are the elements of the unknown parameter

vector α and L(y;α) Δ
= ln(p[y;α]) is the log-likelihood function

(LLF) of the system (p[y;α] is the pdf of y parameterized by α).
As seen from (4), the first step in deriving the tackled bounds is
to find an explicit expression for the LLF or equivalently the pdf
p[y;α]. To that end, the APPs, Pr[x(k) = cm], of the transmitted
symbols involved in (2) must be found.

At this stage, it is worth mentioning in NDA estimation,
where no a priori information is available, that the transmitted
symbols are usually assumed to be equally likely, i.e., Pr[x(k) =
cm] = 1/M for k = k0,k0 + 1, . . . ,k0 + K − 1. In code-aided
estimation, however, the actual APPs of the symbols must be
used to enhance the estimation performance. Indeed, in the
next section, we will express them in terms of the LLRs of the
conveyed bits. In practice, the information about the LLRs is
acquired from the output of the soft-input soft-output (SISO)
decoder at the convergence of the BCJR algorithm [32].

III. DERIVATION OF THE SYMBOLS’ APPS

Throughout this paper, we assume that the constellation is
Gray coded. Each point of the alphabet, {cm}M

m=1, is mapped
onto a unique sequence of log2(M) bits denoted here as
b̄m

1 b̄m
2 · · · b̄m

l · · · b̄m
log2(M). For the sake of clarity, this mapping will

be denoted as follows:7

cm ←→ b̄m
1 b̄m

2 · · · b̄m
l · · · b̄m

log2(M). (5)

The same notation is used to refer to the kth bit sequence,
bk

1bk
2 · · ·bk

l · · ·bk
log2(M), that is conveyed during the transmission

of the kth symbol x(k), i.e., x(k) ←→ bk
1bk

2 · · ·bk
l · · ·bk

log2(M).
Then, due to the large-size interleaver, the coded bits can
reasonably be assumed as statistically independent. This is a
standard assumption in CA estimation practices (see [33]–[42]
and references therein). Therefore, the a priori probability of
each transmitted symbol, x(k), factorizes into the elementary
probabilities of its conveyed bits:

Pr[x(k)=cm]=Pr
[
bk

1= b̄m
1 ,b

k
2= b̄m

2 ,· · ·,bk
log2(M) = b̄m

log2(M)

]
=

log2(M)

∏
l=1

Pr
[
bk

l = b̄m
l

]
. (6)

6Note that A � B for any two square matrices A and B means that A−B is
positive semi-definite.

7To avoid any confusion between the bit sequence assigned to a given
constellation symbol, cm, and the (data) bit sequence that is conveyed
whenever x(k) = cm, we use the overbar in (5) in contrast to x(k) ←→
bk

1bk
2 · · ·bk

l · · ·bk
log2(M). See (6) for more details.
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Fig. 1. Recursive construction of Gray-coded square-QAM constellations illustrated here from 4-QAM to 16-QAM.

We also define the LLR of the lth coded bit, bk
l , conveyed by

the transmission of the symbol, x(k), as follows:

Ll(k)
Δ
= ln

(
Pr
[
bk

l = 1
]

Pr
[
bk

l = 0
]
)
. (7)

Using (7) and the fact that Pr[bk
l = 0]+Pr[bk

l = 1] = 1, it can
be easily shown that:

Pr[bk
l = 1] =

eLl(k)

1+eLl(k)
and Pr

[
bk

l =0
]
=

1

1+eLl(k)
. (8)

For every cm in Cp, if x(k) = cm, then the two identities in
(8) can be merged together to yield a generic expression for the
elementary probabilities involved in (6) as follows:

Pr
[
bk

l = b̄m
l

]
=

1
2cosh(Ll(k)/2)

e(b̄
m
l −1)

Ll (k)
2 , (9)

in which b̄m
l is either 0 or 1 depending on which of the symbols

cm is transmitted, at time instant k, and of course on the Gray
mapping that is associated to the constellation in (5). Therefore,
injecting (9) in (6) and recalling that log2(M) = 2p for square-
QAM constellations, the symbols’ APPs develop into:

Pr [x(k)=cm]=

(
2p

∏
l=1

1
2cosh(Ll(k)/2)

)
︸ ︷︷ ︸

βk

2p

∏
l=1

e(b̄m
l −1)

Ll (k)
2 . (10)

Next, we describe a simple process that allows—as will be
shown later—the construction of arbitrary Gray-coded square-
QAM constellations. Owing to this recursive process, some
hidden properties of such constellations will be revealed and
carefully handled to rewrite the APPs in (10) in a more insight-
ful form that allows the LF factorization in the next section.

In fact, using any basic Gray-coded QPSK and starting from
any given Gray-coded 22(p−1)-QAM, it is possible to build
another Gray-coded 22p-QAM as follows:

• step 1: build the top-right quadrant of the desired 22p-
QAM from all the points8 of the available 22(p−1)-QAM.
As such, all the points of the new quadrant are still missing
two out of the 2p bits they must represent. This is simply
because they were cloned from the given 22(p−1)-QAM
whose points actually represent 2p− 2 bits only. For the
sake of clarity and again w.l.o.g, we will assume that these
two missing bits always occupy the two least significant
positions in each point of the new quadrant.

• step 2: build the remaining empty quadrants (bottom-
right, top-left and bottom-left) of the desired 22p-QAM by
symmetries with respect to the x-axis, the y-axis, and the
center point, respectively. In light of “step 1”, all the points
of the desired constellation are inherently missing two
bits each.

• step 3: copy the two bits of each quadrant in the basic
Gray-coded QPSK constellation to all the points that
belong to the same quadrant in the incomplete 22p-QAM
constellation obtained in “step 2”.

One example that clearly depicts these three steps is shown
in Fig. 1 (illustrated here in initial transition from 4-QAM to
16-QAM). The two missing bits in “step 1” and “step 2” are
denoted as “××” in Fig. 1(a) and 1(b). They are added in
“step 3” and highlighted in four different colors; one for each
quadrant. We show in Appendix A that this recursive process
yields indeed Gray-coded constellations.

Furthermore, by closely inspecting Fig. 1, it can be seen that
to obtain all the possible Gray-coded 16-QAM constellations,
one can simply: i) start from any other initial Gray-coded
QPSK, ii) use other basic QPSK constellations, and iii) let the

8The same points’ layout in the original 22(p−1)-QAM constellation is used,
i.e., the constellation is placed as is in the new quadrant.
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two missing bits in “step 1” occupy any two positions, i.e.,
neither being necessarily consecutive nor being the two LSBs.
To obtain all the possible 64-QAM Gray-coded constellations,
one can simply start from each of the obtained 16-QAMs
and consider ii) and iii) stated above. In this way, the new
recursive process enables the easy construction of any square-
QAM Gray-coded constellation. For the sake of clarity and
conciseness, however, and again w.l.o.g, we will from now on
consider the QPSK constellation depicted in Fig. 1(c) as the
basic one and will actually use it in both the initial and all sub-
sequent construction iterations required for a given modulation
order. For the same reasons, we will also assume that the two
missing bits in “step 1” are always the two LSBs.

Now, recalling that Cp denotes the whole alphabet of the
obtained 22p-QAM Gray-coded constellation, we further de-
note its top-right quadrant by C̃p. As such, each point cm ∈ Cp

belongs to a set of four symmetrical points {c̃m, c̃∗m,−c̃m,−c̃∗m}
for some c̃m in C̃p. Moreover, due to symmetries of “step 2,”
these four symmetrical points share the same 2p − 2 most
significant bits (MSBs), b̄m

1 b̄m
2 b̄m

3 . . . b̄m
2p−3b̄m

2p−2.
Consequently, if we consider these 2(p−1) MSBs alone and

we define the quantity:

µk,p(cm)
Δ
=

2p−2

∏
l=1

e(2b̄m
l −1)

Ll (k)
2 , ∀cm ∈ Cp, (11)

it follows from (10) that:

Pr [x(k) = cm] = βkµk,p(cm)e

(
2b̄m

2p−1−1
) L2p−1

2 e

(
2b̄m

2p−1
) L2p

2

(12)

with:

µk,p(c̃m) = µk,p(−c̃m) = µk,p(c̃
∗
m) = µk,p(−c̃∗m). (13)

It is worth mentioning here that—as seen from the right-hand
side of (11)—µk,p(cm) is not defined for p = 1, i.e., for QPSK
constellations. We extend its definition for the latter simply by
taking µk,1(cm) = 1 ∀cm ∈ C1. It will be seen later that this
choice is consistent with all the derivations. Now, the two bits
b̄m

2p−1b̄m
2p involved in the two remaining exponentials in (12)

are exactly the same for all the symbols that belong to the
same quadrant in the obtained 22p-QAM constellation (recall
that they are added in “step 3”). Typically, by considering the
basic QPSK depicted in Fig. 1(c), they are given by:

b̄m
2p−1b̄m

2p =

{
11 ∀ c̃m ∈ C̃p

00 ∀ − c̃m ∈ −C̃p.
(14)

b̄m
2p−1b̄m

2p =

{
01 ∀ c̃∗m ∈ C̃ ∗

p

10 ∀ − c̃∗m ∈ −C̃ ∗
p .

(15)

Of course, these intermediate results change according to the
specific choice of the basic QPSK constellation involved in
“step 3.” Consequently, one might wonder how the final results
could still stand valid for all possible Gray-mapping schemes
of the underlying 22p-QAM constellation. Actually, in this
paper, C̃p is willingly defined as the top-right quadrant simply
because the two bits “11” are placed in the top-right quadrant of
the considered basic QPSK constellation. Therefore, the same

upcoming derivations can be conducted by defining C̃p to be
the quadrant that reflects the bits “11” in any other choice of
the basic QPSK constellation. By using (14) and (15) in (12)
and recalling (13), it follows that:

Pr [x(k) = c̃m] =βk µk,p(c̃m)e
L2p−1(k)

2 e
L2p(k)

2 , (16)

Pr [x(k) = c̃∗m] =βk µk,p(c̃m)e
−

L2p−1(k)
2 e

L2p(k)
2 , (17)

Pr [x(k) =−c̃m] =βk µk,p(c̃m)e
−

L2p−1(k)
2 e−

L2p(k)
2 , (18)

Pr [x(k) =−c̃∗m] =βk µk,p(c̃m)e
L2p−1(k)

2 e−
L2p(k)

2 . (19)

By scanning the top-right quadrant, C̃p, these four equations
(defined for every c̃m and its three symmetrical points in the
other quadrants) form the complete set of APPs for each symbol
x(k). By doing so, every four symmetrical points (c̃m, c̃∗m,−c̃m,
and −c̃∗m) exhibit a common multiplicative factor βk µk,p(c̃m).
This interesting property will prove very useful in factorizing
the elementary pdfs, p[y(k),α], in the next section.

Note here that all the manipulations used to obtain the
expressions for the APPs in (16)–(19) are intrinsic to the Gray-
coded constellation only and do not need any assumption about
the specific encoder at the transmitter. Therefore, (16)–(19) and
the CA CRLBs derived in this paper are actually valid for coded
transmissions in general. In the evaluation of the CA CRLBs,
however, as will be seen later, one needs accurate estimates for
the bits’ LLRs. Such estimates are obtained from the output
of the SISO decoder in turbo-coded or LDPC-coded systems
jointly used with turbo processing [38], [39].

IV. FACTORIZATION OF p[y(k);α]

Recall from (4) that an explicit expression for the global

LLF of the system, L(y;α) Δ
= ln(p[y;α]), must be found before

being able to derive the analytical CRLBs. Actually, since the
coded bits are assumed to be statistically independent (due to
the large-size interleaver), the transmitted symbols (which are
simply some soft representations for different blocks of these
bits) are also independent thereby leading to:

p[y;α] =
k0+K−1

∏
k=k0

p [y(k);α] . (20)

Consequently, the global LLF breaks down to the sum of
the elementary LLFs (pertaining to each received sample), i.e.,
L(y;α) = ∑k0+K−1

k=k0
ln(p[y(k);α]). In this section, we will show

for any square-QAM constellation that the pdf of each received
sample, p[y(k);α], is further factorized into the product of
two analogous terms linearizing thereby the elementary LLFs.
Then, owing to the apparent symmetries between the two anal-
ogous terms, it is possible to derive the analytical expressions
for the considered bounds in Section V.
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To start with, it can be seen from (2) that the pdf of each re-
ceived sample, y(k), parameterized by the unknown parameter
vector, α, is given by:

p [y(k);α] = ∑
cm∈Cp

Pr[x(k)=cm] p [y(k);α|x(k)=cm]

=
1

2πσ2 ∑
cm∈Cp

Pr [x(k)=cm]exp

{∣∣y(k)−Sφ,νcm
∣∣2

2σ2

}
,

(21)

in which we use the shorthand notation Sφ,ν
Δ
= Se j(2πkν+φ).

Then, denoting the inphase (I) and quadrature (Q) compo-

nents of the received sample, respectively, as I(k)
Δ
= ℜ{y(k)}

and Q(k)
Δ
=ℑ{y(k)}, it can be shown that in presence of general

M-ary QAM-modulated signals, the pdf in (21) is rewritten as
follows:

p [y(k);α] =
1

2πσ2 exp

{
− I(k)2 +Q(k)2

2σ2

}
Dα(k), (22)

in which the term Dα(k) is defined as:

Dα(k)
Δ
= ∑

cm∈Cp

P [x(k) = cm]

×exp

{
−S2|cm|2

2σ2

}
exp

{
ℜ
{

cmy(k)∗Sφ,ν
}

σ2

}
, (23)

In the sequel, we will further manipulate Dα(k) by exploiting
other hidden properties of the Gray-coding mechanism which
are demystified through our recursive construction process in-
troduced in Section III (see Fig. 1). Actually, by focusing on
square-QAM constellations (i.e., M = 22p for any p ≥ 1), it
can be seen that their alphabet is expressed in the I/Q plane
as Cp = {±(2i−1)dp± j(2n−1)dp}i,n=1,2,...,2p−1 , where 2dp is
the intersymbol distance. Further, since the constellation energy
is normalized to one, we have 1

22p ∑22p

m=1 |cm|2 = 1 from which
the expression of dp is obtained as follows:

dp =
2p−1√

2p ∑2p−1

m=1(2m−1)2
. (24)

Then, by noticing that Cp = C̃p ∪ (−C̃p)∪ C̃ ∗
p ∪ (−C̃ ∗

p ), we
show in Appendix B that (23) can be equivalently rewritten as
a sum over C̃p as follows:

Dα(k) =4βk ∑
c̃m∈C̃p

µk,p(c̃m)e
−ρ|c̃m|2

× cosh

(
Sℜ{c̃m}u(k)

σ2 +
L2p(k)

2

)
× cosh

(
Sℑ{c̃m}v(k)

σ2 − L2p−1(k)

2

)
. (25)

in which u(k)
Δ
= ℜ{y∗(k)e j(2πkν+φ)} and v(k)

Δ
=

ℑ{y∗(k)e j(2πkν+φ)} are given by:

u(k) = I(k)cos(2πkν+φ)+Q(k)sin(2πkν+φ), (26)

v(k) = I(k)sin(2πkν+φ)−Q(k)cos(2πkν+φ). (27)

Using the fact that C̃p = {(2i−1)dp + j(2n−1)dp}2p−1

i,n=1, one
can replace the single sum over c̃m ∈ C̃p in (25) by a double
sum over the two counters i and n after replacing c̃m by
(2i− 1)dp + j(2n− 1)dp [of course, ℜ{c̃m} = (2i− 1)dp and
ℑ{c̃m} = (2n − 1)dp]. Therefore, if we are able to factorize
µk,p(c̃m) as the product of two terms, one depending on i only
and the other on n only, then Dα(k) will be factorized as well
by splitting the two sums (over i and n). To do so, notice from
(11) that the two LSBs, b̄m

2p−1 and b̄m
2p, are not involved in the

expression of µk,p(c̃m) and hence they will be represented by
“××” in (5), i.e.:

c̃m ←→
m

b̄m
1 b̄m

2 · · · b̄m
l · · · b̄m

2p−5b̄2p−4︸ ︷︷ ︸
b̄m

p

b̄m
2p−3b̄m

2p−2 ××. (28)

In addition, as highlighted in (28) and for ease of notation,

we will refer to the first 2p − 4 MSBs by b̄
m
p , i.e., b̄

m
p

Δ
=

b̄m
1 b̄m

2 · · · b̄m
l · · · b̄m

2p−5b̄m
2p−4. For more mathematical convenience

that will become apparent shortly, we will rather use9 the
superscript (i,n) instead of m in (28) since c̃m = (2i− 1)dp +
j(2n−1)dp, i.e.:

c̃m ←→ b̄
(i,n)
p b̄(i,n)2p−3b̄(i,n)2p−2 ××. (29)

Owing to this new notation, we re-illustrate in Fig. 2 the
symbols of the top-right quadrant, C̃p, of the obtained 22p-

QAM constellation accordingly. In this figure, the bits b̄(i,n)2p−2

and b̄(i,n)2p−3 are being assigned their true values and highlighted

in red color. Now, each point c̃m in C̃p with coordinates ([2i−
1]dp, [2n − 1]dp) in the Cartesian coordinate system (CCS)
of the underlying 22p-QAM (defined by x- and y-axes in
Fig. 2) is obtained from (coincides exactly with) a point cm′

in the previous 22(p−1)-QAM. This is because the latter is
placed as is in C̃p (in “step 1”). Furthermore, cm′ has its own
coordinates,([2i′ − 1]dp, [2n′ − 1]dp), in the CCS associated to
the 22(p−1)-QAM constellation (defined by the x′- and y′-axes
in Fig. 2). By closely inspecting the two CSSs in Fig. 2, it can
be shown that cm′ can be expressed in terms of either (i′,n′) or
(i,n) as follows:

cm′ =(2i′ −1)dp + j(2n′ −1)dp

=(2i−1−2p−1)dp + j(2n−1−2p−1)dp. (30)

This relationship will shortly serve an extremely useful
lemma that finds an explicit expression for the two remaining

bits in (29), b̄(i,n)2p−2 and b̄(i,n)2p−3, in terms of the coordinates of each

symbol c̃m in C̃p. Note that the first 2p−2 MSBs of each symbol
c̃m ∈ C̃p are exactly the whole bit sequence of the corresponding
symbol cm′ in the the original 22(p−1)-QAM constellation. This

means that we readily have cm′ ←→ b̄
(i,n)
p b̄(i,n)2p−3b̄(i,n)2p−2. Equiv-

alently, denoting the top-right quadrant of the 22(p−1)-QAM
constellation by C̃p−1, the symbol cm′ itself belongs to its own

9Normally, we should use (im,nm) but, for ease of notation, we drop the index
m and simply use (i,n).
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Fig. 2. General recursive construction of Gray-coded square-QAM constellations from 22(p−1)-QAM to 22p-QAM.

set of four symmetrical points, i.e., cm′ ∈ {c̃m′ ,−c̃m′ , c̃∗m′ ,−c̃∗m′}
for some c̃m′ ∈ C̃p−1, and are marked by four blue-colored
arrows in Fig. 2. Recall also that the 22(p−1)-QAM constellation
itself is obtained from another lower-order Gray-coded 22(p−2)-
QAM, by applying the same recursive process. Then, owing
to the three symmetries of “step 2”, it follows that c̃m′ , −c̃m′ ,
c̃∗m′ , and −c̃∗m′ [which represent 2(p − 1) bits each] have the
same 2(p−1)−2 = 2p−4 MSBs. These common MSBs form

exactly the bit sequence encapsulated by b̄
(m)
p (that corresponds

to cm) and which is represented by the blue-colored b̄
(i,n)
p in

Fig. 2. By definition, they are also the only bits involved in the
expression of µk,p−1(c̃m′):

µk,p−1(c̃m′) =
2(p−1)−2

∏
l=1

e(2b̄m
l −1)

Ll (k)
2 , ∀ c̃m′ ∈ C̃p−1. (31)

Now, injecting (31) in (11), we obtain the following recursive
property:

µk,p(c̃m) = µk,p−1(c̃m′)exp
{
(2b̄(i,n)2p−3 −1)L2p−3(k)/2

}
×exp

{
(2b̄(i,n)2p−2 −1)L2p−2(k)/2

}
. (32)

Clearly, one needs to further express the bits b̄(i,n)2p−3 and b̄(i,n)2p−2

(for each c̃m in C̃p) explicitly as function of i and n if µk,p(c̃m) is
to be split in terms of these two counters. If x� denotes the floor
function that returns the largest integer smaller than or equal to
x, the following lemma finds this useful decomposition.

Lemma 1: ∀ i,n = 1,2, · · · ,2p−1, the two bits b̄(i,n)2p−3 and

b̄(i,n)2p−2 are expressed as:

b̄(i,n)2p−2 =

⌊
i−1
2p−2

⌋
and b̄(i,n)2p−3 =

⌊
n−1
2p−2

⌋
. (33)

Proof: See Appendix C.

Notice from (33) that b̄(i,n)2p−2 and b̄(i,n)2p−3 depend each on only
one counter (either i or n). Therefore, we will from now on drop
the vanishing counter in each of these two bits and they will be

denoted simply by b̄(i)2p−2 and b̄(n)2p−3. Actually, a more general
and much useful result can be stated here:

Assertion: All the odd-position bits, {b̄(i,n)2l−1}
p
l=1, are function

of n only and all the even-position bits, {b̄(i,n)2l }p
l=1, are function

of i only. This is a direct consequence of the following lemma:
Lemma 2: The obtained 22p-QAM Gray-coded constellation

has the following property:

• The odd-position bits, b̄(i,n)2l−1, do not change by scanning
each horizontal line of constellation points.

• The even-position bits, b̄(i,n)2l , do not change by scanning
each vertical line of constellation points.

Proof: This property is trivially verified for the initial
QPSK depicted in Fig. 1(c). Now, assume that it is true at
order p − 1 (i.e., the previous 22(p−1)-QAM). Then, at order
p, this property is automatically verified for the first 2p − 2
bits of all the obtained symbols. This is because the latter are
obtained by placing the 22(p−1)-QAM as is in the top-right
quadrant, C̃p, and the other quadrants are obtained via the three
symmetries of “step 2”. Moreover, since the basic QPSK from
which the remaining two bits are copied verifies the underlying
property, the latter becomes true for all the bits of the obtained
constellation points.

In a nutshell, the fact that odd-position bits, b̄(i,n)2l−1, do not
change for each horizontal line means that they do not change
by varying the symbols’ abscissa, (2i− 1)dp, or equivalently

by changing the counter i. Therefore, {b̄(i,n)2l−1}
p
l=1 are function

of n only. The same reasons reveal that the even-position bits,

{b̄(i,n)2l }p
l=1, are function of i only. This completes the proof of

the assertion stated just before Lemma 2. As a consequence, we
will from now on drop the vanishing counter from each group

of bits and denote the latter, respectively, as b̄(n)2l−1 and b̄(i)2l for
l = 1,2, . . . , p.
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By revisiting (32) and considering the recursive construction
of C̃p−1 (framed in blue color in Fig. 2) from the 22(p−2)-
QAM constellation and following the same reasoning from (28)
through (32), one can express µk,p−1(c̃m′) itself in the same
recursive form of (32). We capitalize on this observation to
show in Appendix D, by mathematical induction, the following
theorem:

Theorem 1: For any p ≥ 2, µk,p(c̃m) can be factorized into
two independent terms each of which depends solely on one of
the two counters i and n as follows:

µk,p(c̃m) = θk,2p(i)θk,2p−1(n), (34)

where θk,2p(i) and θk,2p−1(n) are expressed as:

θk,2p(i)
Δ
=

p−1

∏
l=1

e

(
2b̄

(i)
2l −1

)
L2l (k)

2 (35)

θk,2p−1(n)
Δ
=

p−1

∏
l=1

e

(
2b̄

(n)
2l−1−1

)
L2l−1(k)

2 , (36)

and they can be computed recursively, from lower-order con-
stellations, for any p ≥ 2 as follows:

θk,2p(i) =θk,2p−2

(
|2i−1−2p−1|+1

2

)

× exp

{(
2

⌊
i−1
2p−2

⌋
−1

)
L2p−2(k)

2

}
, (37)

θk,2p−1(n) =θk,2p−3

(
|2n−1−2p−1|+1

2

)

× exp

{(
2

⌊
n−1
2p−2

⌋
−1

)
L2p−3(k)

2

}
. (38)

Proof: See Appendix D.
Note that initialization in (37) and (38) is simply given by

θk,2(1) = θk,1(1) = 1. This is because we extend the definition
of µk,p(.) for p = 1 (i.e., QPSK constellations) to be µk,1(cm) =
1∀cm ∈ C1 (cf. Section III). Hence, denoting the single symbol
in C̃1 as c̃, one can write µk,1(c̃) = θk,2(1)θk,1(1) as in (34) with
θk,2(1) = θk,1(1) = 1.

Now, plugging (34) in (25) and using the fact that
C̃p = {(2i − 1)dp + j(2n − 1)dp}i,n=1,2,···,2p−1 and |c̃m|2 =

d2
p([2i − 1]2 + [2n − 1]2), the term Dα(k) is rewritten as

follows:

Dα(k)

= 4βk

2p−1

∑
i=1

2p−1

∑
n=1

[
θk,2p(i)e

−ρd2
p(2i−1)2

× cosh

(
S(2i−1)dpu(k)

σ2 +
L2p(k)

2

)

×θk,2p−1(n)e
−ρd2

p(2n−1)2

×cosh

(
S(2n−1)dpv(k)

σ2 − L2p−1(k)

2

)]
. (39)

Finally, after splitting the two sums in (39), Dα(k) is factor-
ized as follows:

Dα(k) = 4βkF2p,α (u(k))×F2p−1,α (v(k)) , (40)

where the function Fq,α(.) is given by:

Fq,α(x) =
2p−1

∑
i=1

θk,q(i)e
−ρd2

p(2i−1)2

×cosh

(
(2i−1)dpSx

σ2 +
(−1)qLq(k)

2

)
, (41)

in which q is a generic counter that is used, from now on, to
refer to 2p or 2p− 1 depending on the context. This factoriza-
tion is actually the cornerstone result behind enabling for the
very first time the derivation of the analytical expressions for
the considered stochastic CRLBs in the next section.

V. DERIVATION OF THE CLOSED-FORM

EXPRESSIONS FOR THE CRLBS

Our starting point is the expression for the FIM elements de-
fined in (4) and we are now ready to find the explicit expression

for the golab LLF of the system, L(y;α) Δ
= ln(p[y;α]). In fact,

by injecting (22) in (20), it follows that:

L(y;α) =−K ln(2πσ2)−
k0+K−1

∑
k=k0

I(k)2 +Q(k)2

2σ2

+
k0+K−1

∑
k=k0

ln(Dα(k)) . (42)

After using (40) in (42) and discarding the constant terms
(that do not depend on φ and ν), it follows that the useful10 LLF
is decomposed as the sum of two analogous terms:

L(y;α) =
k0+K−1

∑
k=k0

[ln(F2p,α (u(k)))+ ln(F2p−1,α (v(k)))] . (43)

In the following, we will further show that the two random
variables u(k) and v(k) are independent and almost identically
distributed (i.e., their pdfs have the same structure, but they are
parameterized differently). This is another interesting property
that allows us to consider the term involving u(k) only during
all the derivation steps (partial derivatives and expectations).
The results pertaining to the term involving v(k) can then be
deduced by easy identification (as will be seen later). In fact,
injecting (40) in (22) and using the fact that I(k)2 +Q(k)2 =
u(k)2 + v(k)2, it can be shown that p[y(k);α] itself is factorized
as follows:

p [y(k);α] = p [u(k);α] p [v(k);α] , (44)

10We will keep using the same notation, L(y;α), for both the actual and
useful LLFs.
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where the pdfs of u(k) and v(k) are given by:

p [u(k);α] =
2βk,2p√

2πσ2
exp

{
−u(k)2

2σ2

}
F2p,α (u(k)) , (45)

p [v(k);α] =
2βk,2p−1√

2πσ2
exp

{
−v(k)2

2σ2

}
F2p−1,α (v(k)) , (46)

with

βk,2p =
1
2p

p

∏
l=1

1
cosh(L2l(k)/2)

(47)

βk,2p−1 =
1
2p

p

∏
l=1

1
cosh(L2l−1(k)/2)

. (48)

Moreover, we have p[y(k)∗e j(2πkν+φ);α] = p[u(k),v(k);α]
since u(k) and v(k) are indeed the real and imaginary parts
of y(k)∗e j(2πkν+φ). Furthermore, since the synchronization pa-
rameters φ and ν are assumed to be deterministic, we readily
have p[y(k)∗e j(2πkν+φ);α] = p[y(k)∗;α] = p[y(k);α]. This leads
to p[u(k),v(k);α] = p[y(k);α] which is combined with (44) to
yield:

p [u(k),v(k);α] = p [u(k);α] p [v(k);α] , (49)

meaning that u(k) and v(k) are indeed two independent random
variables (RVs) which are almost identically distributed accord-
ing to (45) and (46). In the following, starting from (43), we will
only detail the derivation of the first diagonal entry of the FIM
for lack of space. The other entries can be found by following
equivalent derivation steps. In fact, due to the derivative and
expectation operators linearity, we readily have:

E

{
∂2 ln(p[y;α])

∂φ2

}
=

k0+K−1

∑
k=k0

E

{
∂2 ln(F2p,α (u(k)))

∂φ2

}

+
k0+K−1

∑
k=k0

E

{
∂2 ln(F2p−1,α (v(k)))

∂φ2

}
. (50)

Again, due to the apparent symmetries between the pdfs of
u(k) and v(k) in (45) and (46), we will detail the derivation
of the term involving u(k) only, which is denoted hereafter

as γk,2p
Δ
= E{∂2 ln(F2p,α(u(k)))/∂φ2}. Then, its equivalent term

γk,2p−1
Δ
= E{∂2 ln(F2p−1,α(v(k)))/∂φ2} can be easily deduced,

at the very end, by simple identification.
To do so, we denote the first and second derivatives of

F2p,α(x) with respect to the working variable x by F ′
2p,α(x)

and F ′′
2p,α(x), respectively (their expressions are provided in

Appendix F). Moreover, from (26) and (27), we readily have:

u′(k)
Δ
=∂u(k)/∂φ=−v(k) and v′(k)

Δ
=∂v(k)/∂φ=u(k), (51)

from which we obtain u′′(k) = −u(k). Using this result, we
show after some algebraic manipulations that:

∂2 ln(F2p,α (u(k)))

∂φ2 =−u(k)
F ′

2p,α (u(k))

F2p,α (u(k))

+ v(k)2

⎡
⎣F ′′

2p,α (u(k))

F2p,α (u(k))
−
(

F ′
2p,α (u(k))

F2p,α (u(k))

)2
⎤
⎦ . (52)

Then, since u(k) and v(k) are independent RVs, it follows
that:

γk,2p =−E

{
u(k)

F ′
2p,α(u(k))

F2p,α (u(k))

}

+ E
{

v(k)2}⎡⎣E

{
F ′′

2p,α(u(k))

F2p,α(u(k))

}
−E

⎧⎨
⎩
(

F ′
2p,α(u(k))

F2p,α(u(k))

)2
⎫⎬
⎭
⎤
⎦ .

(53)

These are expectations of random variable transformations
involving either u(k) or v(k) separately. Since the pdfs of
these two RVs were already established in (45) and (46), these
expectations can be expressed in closed form. For instance, by
integrating over the pdf of v(k), it follows that:

E
{

v(k)2}=
∫ ∞

−∞
v(k)2 p [v(k);α]dv(k)

=
2βk,2p−1√

2πσ2

∫ ∞

−∞
v(k)2F2p−1,α (v(k))e

−v(k)2

2σ2 dv(k). (54)

After expanding the expression of F2p−1(x) in (41) using
the identity cosh(x + y) = sinh(x)sinh(y) + cosh(x)cosh(y),
inverting the sum and integral signs, and then resorting to some
algebraic manipulations, it can be shown that:

E
{

v(k)2}
= 2βk,2p−1 cosh

(
L2p−1(k)

2

)

×
2p−1

∑
n=1

θk,2p−1(n)
[
σ2 +S2d2

p(2n−1)2]

= σ2

[
ρωk,2p−1 +2βk,2p−1 cosh

(
L2p−1(k)

2

)

×
2p−1

∑
n=1

θk,2p−1(n)

]
, (55)

in which ωk,2p−1 and ωk,2p that will appear shortly are common
coefficients to all FIM elements given by:

ωk,r
Δ
= 4d2

pβk,r cosh(Lr(k)/2)
2p−1

∑
i=1

(2i−1)2θk,r(i), (56)

where r is either 2p or 2p−1. We further simplify (55) by using
the following lemma:

Lemma 3: Recalling the expression of βk,2p−1 in (47), we
have:

2βk,2p−1 cosh(L2p−1(k)/2)∑2p−1

n=1 θk,2p−1(n) = 1. (57)

Proof: See Appendix E.
In fact, by plugging (57) in (55), it follows that:

E
{

v(k)2}= σ2[1+ρωk,2p−1]. (58)
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The closed-form expressions for the other expectations in-
volved in (53) are derived in Appendix F, by integrating over
the pdf of u(k). The final results are as follows:

E

{
u(k)

F2p,α (u(k))

F2p,α (u(k))

}
=ρωk,2p, (59)

E

{
F ′′

2p,α (u(k))

F2p,α (u(k))

}
=

ωk,2p

σ2 ρ, (60)

E

⎧⎨
⎩
(

F ′
2p,α (u(k))

F2p,α (u(k))

)2
⎫⎬
⎭=

4d2
pβk,2p

σ2 ρΨk,2p(ρ), (61)

where in the last equality Ψk,2p(.) is given by:

Ψk,2p(ρ) =
1√
2π

∫ +∞

−∞

λ2
k,2p(t,ρ)

δk,2p(t,ρ)
e−

t2
2 dt (62)

with

λk,2p(t,ρ) =
2p−1

∑
i=1

(2i−1)θk,2p(i)e
−(2i−1)2d2

pρ

× sinh
(√

2ρ(2i−1)dpt +L2p(k)/2
)
,

δk,2p(t,ρ) =
2p−1

∑
i=1

θk,2p(i)e
−(2i−1)2d2

pρ

× cosh
(√

2ρ(2i−1)dpt +L2p(k)/2
)
. (63)

Therefore, by injecting the four expectations evaluated in
(58) to (61) back into (53), the first term in (50) earlier denoted

as γk,2p
Δ
= E

{
∂2 ln(F2p,α(u(k)))/∂φ2

}
is obtained as follows:

γk,2p(ρ)=ωk,2p−1ρ
[
ωk,2pρ−4d2

pβk,2pΨ2p(ρ)
(

1
ωk,2p−1

+ρ
)]

.

(64)

As mentioned previously, the expression of the second term,

γk,2p−1
Δ
=E

{
∂2 ln(F2p−1,α(v(k)))/∂φ2

}
, involved in (50) can be

easily deduced from the expression of γk,2p(ρ) in (64). This is
due to the apparent symmetries in the pdfs of the two RVs u(k)
and v(k), as seen from (45) and (46), leading to:

γk,2p−1(ρ)

=ωk,2pρ
[

ωk,2p−1ρ−4d2
pβk,2p−1Ψ2p−1(ρ)

(
1

ωk,2p
+ρ

)]
.

(65)

Lastly, the first diagonal element of the FIM follows imme-
diately from (50) as follows:

−E

{
∂2 ln(p[y;α])

∂φ2

}
=−

k0+K−1

∑
k=k0

[
γ2p,k(ρ)+ γ2p−1,k(ρ)

]
.

(66)

Deriving the other elements using equivalent manipulations11

and defining Ωp,k(ρ)
Δ
= −γ2p,k(ρ)− γ2p−1,k(ρ), we obtain an

analytical expression for the FIM in CA estimation as follows:

I(α)=
k0+K−1

∑
k=k0

Ωp,k(ρ)
(

1 2πk
2πk (2π)2k2

)
=

k0+K−1

∑
k=k0

Ik(α), (67)

where Ik(α) is the FIM pertaining to the kth received sample.
Note that the term 2πk in the off-diagonal elements of I(α)
stems from the partial derivative of u(k) and v(k) with respect
to ν which are obtained, respectively, from (26) and (27) as
∂u(k)/∂ν =−2πkv(k) and ∂v(k)/∂ν = 2πku(k). Obviously, the
term (2πk)2 in the first diagonal element of the FIM stems
from the second partial derivatives of these two quantities with
respect to ν. Note also that the per-sample FIM, Ik(α), is not in-
vertible due to the linear dependence of its two columns within
a factor 2πk. This means that the carrier phase and the CFO
cannot be jointly estimated using a single received sample. This
is hardly surprising, since y(k) depends on ν and φ through the
transformation [02π[×R+ −→ C : (φ,ν) −→ e j(2πνk+φ) which
does not entail a one-to-one (or injective) mapping. In plain
English, two different couples (φ1,ν1) and (φ2,ν2) can yield
the same received sample, y(k), and no estimator is ever able
to seperate them based solely on y(k). Take, however, any two
different samples [say y(k1) and y(k2) with k1 �= k2] and it can
be verified that Ik1(α)+ Ik2(α) is always invertible.

Now, the obtained general FIM expression (67), in CA esti-
mation, encloses the two traditional (extreme) scenarios of com-
pletely NDA and completely DA estimations as special cases.
Indeed, in the former case, no a priori information about the
bits is available at the receiver end and, therefore, Pr[bk

l = 1] =
Pr[bk

l = 0] = 1/2 thereby yielding LNDA
l (k) = 0 for all l and k.

In the latter case, however, the bits are a priori perfectly known
and, therefore, at the receiver side we have either {Pr[bk

l = 1] =
1 hence Pr[bk

l = 0] = 0} or {Pr[bk
l = 0] = 1 hence Pr[bk

l =
1] = 0} and consequently the LLRs verify LDA

l (k) = ±∞. By
injecting these two typical values, LNDA

l (k) and LDA
l (k), in all

the quantities that are involved in the entries of Ik(α) and by
recurring to some easy simplifications, one obtains exactly the
same expressions for the FIMs developed earlier in [26] and
[43] in the traditional NDA and DA cases, respectively.

The CRLBs for the phase shift and the CFO are, respectively,
the first and second diagonal elements of the FIM inverse
I−1(α). As such, their closed-form expressions in CA estima-
tion are established as follows: We stress here the fact that the
FIM associated with the synchronization parameters depends
on the first time index k0 as seen from (67). Such dependencies
on the observation window have previously been reported in
the literature even in the NDA case [24]–[26]. In CA estimation
as well, we obtain different loose (or excessively optimistic)
bounds as k0 varies. Our interest is focused on the tightest
bound which is obtained when the square of the off-diagonal
elements is negligible compared to the product of the diagonal
ones:

0 ≤ [I(α)]21,2 � [I(α)]1,1 [I(α)]2,2 . (70)

11Details were omitted due to lack of space.



BELLILI et al.: CFO AND PHASE ESTIMATION FROM TURBO-CODED SQUARE-QAM-MODULATED TRANSMISSIONS 2523

We verify by simulations that the off-diagonal entries are
close to zero when the set of sampling indices is centred around
zero, i.e., k0 = −K−1

2 . In this case, the CRLBs’ expressions in
(68) and (69), shown at the botom of the page, reduce to:

CRLBCA(ν) =
1

(2π)2

(
∑

K−1
2

k=− K−1
2

Ωp,k(ρ)k2
)−1

(71)

CRLBCA(φ) =
(

∑
K−1

2

k= K−1
2

Ωp,k(ρ)
)−1

. (72)

Finally, it is worth mentioning that the CRLB expressions
established in (68), (69) and (71) apply for LDPC codes in con-
junction with Turbo processing as well. In fact, all the algebraic
manipulations we used to establish such expressions involve the
actual APPs of the coded bits (which are expressed in terms
of their LLRs). Only during the evaluation of the CRLBs do
we need the estimates for such LLRs. In Turbo codes, the
LLRs are accurately approximated by the extrinsic information
delivered by the decoder. When used in conjunction with turbo
processing, LDPC-coded systems as well provide the extrinsic
information at the output of the MAP SISO decoder. Such
extrinsic information is again a good approximation for the bit
LLRs and can, therefore, be used to evaluate the underlying CA
CRLBs for LDPC systems [38], [39].

VI. EXTENSION TO MULTICARRIER SYSTEMS

All the above derivations are valid for a single-carrier
flat-fading channel, i.e., in the absence of multipath fading.
Yet in the presence of multipath fading, it is well known
that OFDM—a key feature of current- and next-generation
systems—transforms the frequency-selective channel in the
time domain into a set of parallel flat-fading channels over each
subcarrier in the frequency domain [34], [35]. In fact, consider
a multicarrier system consisting of Q tones. At the receiver side,
after removing the cyclic prefix and performing the FFT, the K
received samples over each {qth}Q

q=1 subcarrier are given by:

yq(k) =Sqx(k)e j(2πkν+φq) +wq(k),

k =k0,k0 +1, . . . ,k0 +K −1, (73)

where Sq and φq are, respectively, the real channel coefficient
and the phase shift corresponding to the qth subcarrier (i.e.,
Sqe jφq is the flat-fading complex channel frequency response
over that subcarrier). In (73), the components {wq(k)} model
the combined effects of the background thermal noise and the

inter-carrier interference (ICI) that arises from the presence
of the CFO. Now, we have Q + 1 unknown synchronization
parameters to be estimated which are the Q phase distortions,
{φq}Q

q=1, and the CFO, ν, which is the same for all the sub-
carriers. These parameters are gathered in a single vector α =
[φ1,φ2, . . . ,φQ,ν]. Moreover, the frequency-domain received
samples over each subcarrier in (73) are gathered in a single
vector yq = [yq(k0),yq(k0 + 1), . . . ,yq(k0 + K − 1)]T and the
received samples over all the subcarriers are stacked in a single
observation matrix, Y , whose qth row is given by yT

q . Due to
the independence of the noise components and the transmitted
symbols across subcarriers, the pdf of Y parameterized by α is
simply given by:

p[Y ;α] =
Q

∏
q=1

p[yq;αq], (74)

where αq = [φq,ν]. Consequently, the global LLF of the system
is obtained as:

L(Y ;α) =
Q

∑
q=1

L(yq;αq). (75)

This means that the global LLF is simply the sum of the el-
ementary LLFs, {L(yq;αq)}Q

q=1, that we already established in
(43) and that are obtained by considering the samples received
over each subcarrier alone (i.e., in a traditional single-carrier
system, hypothetically). Therefore, owing to the linearity of the
second partial derivative and statistical expectation operators, it
can be easily seen from (75) that the entries of the (Q+ 1)×
(Q + 1)global FIM can be directly deduced from the entries
of the elementary (i.e., single-carrier) FIM already derived in
Section V. In fact, by defining ρq = S2

q/2σ2 to be the signal-
to-noise-plus-iterference ratio (SINR) on the qth subcarrier, we
obtain for for q,q′ = 1,2, . . . ,Q:

[I(α)]φq,φq
= −E

{
∂2 ln(p[Y ;α])

∂φ2
q

}
=

k0+K−1

∑
k=k0

Ωp,k(ρq),

(76)

[I(α)]ν,ν = −E

{
∂2 ln(p[Y ;α])

∂ν∂ν

}

=(2π)2
Q

∑
q=1

k0+K−1

∑
k=k0

Ωp,k(ρq)k
2, (77)

CRLBCA(ν) =
1

(2π)2

∑k0+K−1
k=k0

Ωp,k(ρ)(
∑k0+K−1

k=k0
Ωp,k(ρ)

)(
∑k0+K−1

k=k0
Ωp,k(ρ)k2

)
−
(

∑k0+K−1
k=k0

Ωp,k(ρ)k
)2 , (68)

CRLBCA(φ) =
∑k0+K−1

k=k0
Ωp,k(ρ)k2(

∑k0+K−1
k=k0

Ωp,k(ρ)
)(

∑k0+K−1
k=k0

Ωp,k(ρ)k2
)
−
(

∑k0+K−1
k=k0

Ωp,k(ρ)k
)2 (69)
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[I(α)]ν,φq
= −E

{
∂2 ln(p[Y ;α])

∂ν∂φq

}

=2π
Q

∑
q=1

k0+K−1

∑
k=k0

Ωp,k(ρq)k, (78)

[I(α)]φq,φq′
= −E

{
∂2 ln(p[Y ;α])

∂φq∂φq′

}
= 0.(for q �= q′) (79)

As different loose bounds are obtained for different values of
k0, we seek the tightest bound obtained when k0 = −K−1

2 (for
the same reasons already explained in Section V). Indeed, for
this typical value, the off-diagonal elements in (78) are almost
equal to zero. And since the remaining off-diagonal elements
in (79) are already identically zero, the global FIM becomes
diagonal. Therefore, the CRLB associated to each of the Q+1
synchronization parameters is simply obtained by inverting the
corresponding diagonal entry, i.e.,:12

CRLBMC
CA (ν) =

1
(2π)2

⎛
⎝ Q

∑
q=1

K−1
2

∑
k=− K−1

2

Ωp,k(ρq)k
2

⎞
⎠−1

, (80)

CRLBMC
CA (φq)=

⎛
⎝ K−1

2

∑
k=− K−1

2

Ωp,k(ρq)

⎞
⎠−1

for q=1,2, . . . ,Q.

(81)

Note from (81) that the CRLB of the phase shift on each
qth subcarrier, in a multi-carrier system, is equivalent to its
counterpart in a single-carrier system that was already estab-
lished in the right-hand side of (71). This is hardly surprising
since the phase shift associated to each subcarrier is involved
in the samples received over that subcarrier only as seen from
(73). Being common to all subcarriers, the CFO is, however,
involved in the received samples over all the subcarriers and
thus its CRLB in a multi-carrier system (80) is not equivalent
to but actually lower than its counterpart in a single-carrier
system (71). To see this, assume that all the subcarriers have the
same modulation order (p), coding rate (R), and exhibit almost
the same SNR level (ρ), i.e., (pq,Rq,ρq) = (p,R,ρ) for all

q = 1,2, . . . ,Q. Then, all the CFO CRLBs, {CRLB(q)
CA(ν)}

Q
q=1,

that would be obtained by considering the K received samples
over each subcarrier alone [established in the left-hand side of
(71)] are the same and are given for q = 1,2, . . . ,Q by:[

CRLB(q)
CA(ν)

]−1
=(2π)2 ∑

K−1
2

k=− K−1
2

Ωpq,k(ρq)k
2

=(2π)2 ∑
K−1

2

k=− K−1
2

Ωp,k(ρ)k2

Δ
= [CRLBCA(ν)]−1 . (82)

12Note here that the established CA CRLBs remain valid in multiple-input
multiple-output (MIMO) communications under frequency-flat channels or
MIMO-ODM communications under frequency-selective channels both with
orthogonal spatial precoding. As a matter of fact, OFDM itself can be regarded
here as an orthogonal precoding scheme.

Consequently, injecting (82) in (80), it follows that the CFO
CRLB in a multi-carrier system is obtained as:

CRLBMC
CA (ν)=

(
Q

∑
q=1

1

CRLB(q)
CA(ν)

)−1

=
CRLBCA(ν)

Q
. (83)

Besides, it is aslo worth mentioning that the two CRLB
expressions in multi-carrier systems obtained in (80) and (81)
remain valid in the more general AMC case wher the modula-
tion order, p, and coding rate, R, may vary from one subcarrier
to another depending on the corresponding CQI. In this case, as
well, we have:

Q

∑
q=1

K−1
2

∑
k=− K−1

2

Ωp,k(ρq)k
2≥ min

q=1,2,...,Q

⎧⎨
⎩

K−1
2

∑
k=− K−1

2

Ωp,k(ρq)k
2

⎫⎬
⎭. (84)

Thus, it follows from (80) that:

CRLBMC
CA (ν)≤ min

q=1,2,...,Q

⎧⎪⎨
⎪⎩
⎛
⎝(2π)2

K−1
2

∑
k=− K−1

2

Ωp,k(ρq)k
2

⎞
⎠−1

⎫⎪⎬
⎪⎭

= min
q=1,2,...,Q

{
CRLB(q)

CA(ν)
}
≤CRLB(q)

CA(ν)∀q,

meaning that, in the AMC scheme as well, the CFO CRLB in
a multi-carrier system is lower than its counterpart in a single-
carrier system.

VII. SIMULATION RESULTS

In this section, we provide graphical representations for the
analytical CRLBs in (71) for the joint estimation of the syn-
chronization parameters, with different modulation orders and
different coding rates. The encoder is composed of two iden-
tical RSCs concatenated in parallel, of generator polynomials
(1, 0, 1, 1) and (1, 1, 0,1), with systematic rate R0 = 1

2 each.
The output of the turbo encoder is punctured to achieve the
desired code rate R. For the tailing bits, the size of the RSC
encoders memory is fixed to 4. To evaluate the obtained CA
estimation CRLBs, the extrinsic information delivered by the
SISO decoder is used to evaluate the a priori bit LLRs, Ll(k).
Note that having the a priori LLRs at hand, it is possible
to evaluate all the quantities involved in the expressions of
the considered bounds. Indeed, as pointed out in [11], [40],
[41] (and references therein) and owing to the turbo principle,
the extrinsic information obtained at steady state accurately
approximates the bit’s a priori LLRs, Ll(k) for all l and k, that
are involved in the new CA CRLBs expressions.

For every bit, bk
l , the corresponding Ll(k) that is used in

our simulations are obtained as the difference, i.e., Ll(k) =
ϒl(k)−Λl(k) where ϒl(k) is the a posteriori LLR of bk

l that
is delivered by the decoder at steady state and whose sign is
usually used for detecting that same bit. Λl(k), however, is the
soft likelihood value that is fed as input to the decoder before
starting the iterative turbo exchange process. Note that in higher
order QAMs, these Λl(k) are delivered by the soft demapper



BELLILI et al.: CFO AND PHASE ESTIMATION FROM TURBO-CODED SQUARE-QAM-MODULATED TRANSMISSIONS 2525

Fig. 3. NDA, DA, and CA (analytical and empirical) estimation CRLBs for: (a) the phase shift, and (b) the CFO (16-QAM; K = 207).

that is placed just before the turbo decoder. In all simulations,
we used the Ll(k) obtained at the 10th turbo iteration. More-
over, since the values of all the obtained Ll(k) depend on the
underlying noise realization, the new analytical CA CRLBs are
also averaged over a small number of noise realization, at every
SNR point, to smoothen the curve. Typically, in our paper, they
were smoothed over 20 realizations.

Moreover, notice that the obtained CA CRLB expressions do
not depend on the true values of the unknown phase shift and
CFO. Hence, they do hold the same for all the possible values
of these synhronization parameters. Thus, in our simulations,
we evaluate the CA CRLBs for φ = 0 and ν = 0 which provide
the most reliable values for the LLRs. Yet, even in presence
of non-zero values for φ and ν, it is the derotated samples,
y(k)e− j(φ+2πkν, that should be fed to the decoder and not y(k).
This is because, unlike practical estimators where thes param-
eters are actually unknown, the CRLB is a fundamental bound
that is evaluated at the true values of the unknown parameters,
i.e., as if we know φ and ν which can then be used for data
derotation. This brings the whole situation back to the case
where φ = 0 and ν = 0 and thus to the most reliable LLRs (that
we used in our simulations).

In Fig. 3, we verify that the new closed-form CRLBs coincide
with their empirical counterparts obtained in [33], [36] but from
exhaustive Monte-Carlo simulations (20 000 runs in our re-
sults). Hence, the new analytical expressions corroborate these
previous attempts to evaluate the considered bounds empirically
and allow their immediate evaluation for any square-QAM
turbo-coded signal.

As expected, we also see from the same figure that the
CA CRLBs are smaller than the NDA CRLBs which were
earlier introduced in [23], [26]. This highlights the performance
improvements that can be achieved by a coded system over an
uncoded one. For example, at SNR = 4 dB, the CA CRLBs
are about up to is 10 times smaller than the NDA CRLBs.
This figure underlines the huge potential performance gain that

could be achieved at such low SNR level. Additionally and most
prominently, the CA CRLBs decrease rapidly and reach the DA
CRLBs which are the ideal bounds that would be obtained if all
the transmitted symbols were perfectly known to the receiver,
and which are simply given by [43]:

CRLBDA(ν) =
6

(2π)2K(K2 −1)ρ
, (85)

CRLBDA(φ) =
1

2Kρ
. (86)

In Fig. 4, we plot the CA CRLBs for different modulation
orders. It is clear that the CRLBs increase with the modulation
order at a given SNR value. This is a typical behavior that was
observed for NDA CRLBs, as well, and actually for any param-
eter estimation problem involving linearly-modulated signals.
Indeed, when the modulation order increases, the intersymbol
distance decreases for normalized-energy constellations. As
such, at the same SNR level, noise components have a relatively
worse impact on symbol detection and parameter estimation
in general. Furthermore, even in probability theory, when the
ambient sample space of the nuisance parameters (here the con-
stellation alphabet) gets larger, more uncertainty is introduced
about each transmitted symbol thereby rendering estimation
more difficult. Another interesting observation which can be
drawn from Fig. 4 is that the CRLB for the frequency is much
smaller than that for the phase. This is simply because the
received signal depends much more on ν than on φ through the
time index k in the argument of e j(2πνk+φ). In other words,
the received samples carry more information on the frequency
than on the phase.

In Fig. 5, we show the effect of the coding rate on the
synchronization performance. In fact, we plot the CA CRLBs
for the carrier phase estimation using two different coding rates
R1 = 0.3285 ≈ 1

3 and R2 = 0.4892 ≈ 1
2 . Even though both CA

CRLBs coincide at moderate SNRs, they exhibit a significant
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Fig. 4. CA estimation CRLBs (analytical) for: (a) the phase shift, and (b) the CFO (4-, 16-, and 64-QAM; K = 207).

Fig. 5. CA estimation CRLBs (analytical) for: (a) the phase shift, and (b) the CFO (R1 = 1/2, R2 = 1/3; 16-QAM; K = 207).

gap at lower SNR levels. In fact, with smaller coding rates, more
redundancy is provided by the turbo encoder. Consequently, the
decoder is more likely able to correctly detect the transmitted
bits enhancing thereby the estimation performance.

VIII. CONCLUSION

In this paper, we derived for the first time analytical ex-
pressions for the CRLBs of joint CFO and carrier phase
estimation from turbo-coded square-QAM-modulated single-
or multi-carrier transmissions. In the latter case, the newly
derived bounds remain valid in the more general AMC case
where the coding rate and modulation order vary from one
subcarrier to another depending on the corresponding CQI. Our
new analytical bounds coincide with their empirical counter-

parts earlier computed in [33], [36] in the single-carrier case
only. They are also remarkably smaller than the NDA CRLBs
thereby suggesting enhanced synchronization capabilities if the
soft information provided by the turbo decoder is exploited
during the estimation process. Moreover, the CA CRLBs decay
rapidly with the SNR and reach the DA CRLB at relatively low
thresholds where all the transmitted symbols are assumed to be
perfectly known. The effect of the coding rate is also more ap-
parent in the low SNR regime where more redundancy implies
more accurate decoding and therefore better synchronization. It
was also shown that contrarily to the CRLB of the phase shift,
the CRLB of the CFO improves in a multi-carrier system as
compared to its counterpart in a single-carrier system. Finally,
the new CA CRLBs are also valid for LDPC-coded systems
when the latter are used in conjunction with turbo processing.
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APPENDIX A

It is easy to show that the new recursive process yields Gray-
coded constellations. In fact, pick up any two closest points,
cm1 and cm2 , from the obtained 22p-QAM constellation (i.e.,
verifying |cm1 − cm2 | = 2dp with 2dp being the intersymbol
distance). If cm1 and cm2 belong to the same quadrant, then
in light of “step 3” they share the same two least significant
bits (LSBs), i.e., b̄m1

2p = b̄m2
2p and b̄m1

2p−1 = b̄m2
2p−1. Moreover, the

truncated sequences built from the remaining bits (denoted as

b̄
m1
p

Δ
= b̄m1

1 b̄m1
2 · · · b̄m1

2p−2 and b̄
m2
p

Δ
= b̄m2

1 b̄m2
2 · · · b̄m2

2p−2) correspond

to two closest points in the previous Gray-coded 22(p−1)-QAM
constellation (see “step 1”, “step 2” and footnote 5). Thus, b̄

m1
p

and b̄
m2
p differ by one bit only and thus this property holds true

for the whole bit sequences b̄
m1
p b̄m1

2p−2b̄m1
2p−1 and b̄

m2
p b̄m2

2p−2b̄m2
2p−1

(corresponding to cm1 and cm2 ). Now, if cm1 and cm2 do not
belong to the same quadrant, then the fact that |cm1 −cm2 |= 2dp

(closest points) implies that they are symmetrical with respect
to either the x-axis or the y-axis (belonging to two adjacent
quadrants). Thus, according to "step 2", they share the same
first 2p− 2 bits, i.e., b̄

m1
p = b̄

m2
p . Since their two missing LSBs

are copied from two adjacent quadrants of the basic Gray-coded
QPSK, they will differ by one bit only. In conclusion, any two
closest points of the obtained 22p-QAM constellation differ by
only one bit and it is hence Gray-coded.

APPENDIX B
PROOF OF (25)

First, recall that Cp = C̃p ∪ (−C̃p)∪ C̃ ∗
p ∪ (−C̃ ∗

p ) and notice
that each four symmetrical points (c̃m, c̃∗m,−c̃m, and −c̃∗m) have
the same modulus. Therefore, one can rewrite (23) in an equiv-
alent form by summing over C̃p instead of Cp as follows:

Dα(k)= ∑
c̃m∈C̃p

e−ρ|c̃m|2

×
(

Pr [x(k) = c̃m]exp

{
ℜ
{

c̃my∗(k)Sφ,ν
}

σ2

}

+ Pr[x(k)=−c̃m]exp

{
ℜ
{
−c̃my∗(k)Sφ,ν

}
σ2

}

+ Pr[x(k) = c̃∗m]exp

{
ℜ
{

c̃∗my∗(k)Sφ,ν
}

σ2

}

+ Pr[x(k)=−c̃∗m]exp

{
ℜ
{
−c̃∗my∗(k)Sφ,ν

}
σ2

})
. (87)

Now, after replacing the APPs involved in (87) by their
explicit expressions already established in (16) to (19) and
using the identity ex + e−x = 2cosh(x), it can be shown that:

Dα(k) = 2βk ∑
c̃m∈C̃p

µk,p(c̃m)e
−ρ|c̃m|2

×
[

cosh

(
ℜ
{

c̃my∗(k)Sφ,ν
}

σ2 +
L2p−1(k)

2
+

L2p(k)

2

)

+ cosh

(
ℜ
{

c̃∗my∗(k)Sφ,ν
}

σ2

+
L2p−1(k)

2
− L2p(k)

2

)]
. (88)

Furthermore, by using the relationship cosh(x)+ cosh(y) =
2cosh

( x+y
2

)
cosh

( x−y
2

)
along with the two identities c̃m+ c̃∗m =

2ℜ{c̃m} and c̃m − c̃∗m = 2 jℑ{c̃m}, it can be shown that (88) is
rewritten as follows:

Dα(k) =4βk ∑
c̃m∈C̃p

µk,p(c̃m)e
−ρ|c̃m|2

×
[

cosh

(
Sℜ{c̃m}u(k)

σ2 +
L2p(k)

2

)

×cosh

(
Sℑ{c̃m}v(k)

σ2 − L2p−1(k)

2

)]
. (89)

in which u(k) and v(k) are defined as:

u(k)
Δ
=ℜ

{
y∗(k)e j(φ+2πkν)

}
, (90)

v(k)
Δ
=ℑ

{
y∗(k)e j(φ+2πkν)

}
. (91)

APPENDIX C
PROOF OF LEMMA 1

For better illustration, the two bits b̄(i,n)2p−2 and b̄(i,n)2p−3 are
highlighted in red color in Fig. 2. Recall that, for each symbol
cm ∈ C̃p, these two bits are inherited from the corresponding
symbol cm′ (in the previous 22(p−1)-QAM). Actually, they are
added in “step 3” during the recursive construction of the lower-
order 22(p−1)-QAM since they are indeed the two LSBs for each
cm′ . Thus, their values depend on the quadrant in which the
symbol cm′ lies (with respect to the x′- and y′-axes in Fig. 2)
and on the specific choice of the basic QPSK. In our case, the
basic QPSK constellation is shown in Fig. 1(c) and hence it
follows that:

b̄(i,n)2p−2 =

{
1 iff ℜ{cm′ }> 0
0 iff ℜ{cm′ }< 0

(92)

b̄(i,n)2p−3 =

{
1 iff ℑ{cm′ }> 0
0 iff ℑ{cm′ }< 0

(93)

For better understanding of the results in (92) and (93), we
refer the reader to Fig. 2. In this Appendix, we will show why

b̄(i,n)2p−2 =  i−1
2p−2 � only and b̄(i,n)2p−3 =  n−1

2p−2 � can be shown in the
same way. To begin with, it follows from (30) that:

ℜ{cm′ }> 0 ⇐⇒(2i−1−2p−1 > 0) (94)

ℜ{cm′ }< 0 ⇐⇒(2i−1−2p−1 < 0). (95)

We will show subsequently that we also have:

(2i−1−2p−1 > 0)⇐⇒
⌊

i−1
2p−2

⌋
= 1, (96)

(2i−1−2p−1 < 0)⇐⇒
⌊

i−1
2p−2

⌋
= 0 (97)
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But before delving into details, notice that from (94) to (97)
we have ℜ{cm′ } > 0 ⇐⇒  i−1

2p−2 � = 1 and ℜ{cm′ } < 0 ⇐⇒
 i−1

2p−2 � = 0 which simply yields, in light of (92), the fact that

b̄(i,n)2p−2 =  i−1
2p−2 �. Now, due to space limitations, we will show

the equivalence in the left-hand side of (96) only. Similar
manipulations can be used to show the equivalence that appears
in the right-hand side of the same equation.

• (
?

=⇒): On one hand, we have 2i− 1− 2p−1 > 0 =⇒ i >
2p−2 + 1/2 > 2p−2. However, since we are comparing
integers, this implies that i ≥ 2p−2 + 1 =⇒ i− 1 ≥ 2p−2

and, therefore, we have (a): i−1
2p−2 ≥ 1. On the other hand,

we have i ≤ 2p−1 =⇒ i < 2p−1+1 and, therefore, we have
(b): i−1

2p−2 < 2p−1/2p−2 = 2. Thus, using (a) and (b), we

obtain 1 ≤ i−1
2p−2 < 2 =⇒  i−1

2p−2)
�= 1.

• (
?⇐=): We have  i−1

2p−2 � = 1 =⇒ (i− 1)/2p−2 ≥ 1, which
implies i ≥ 2p−2 + 1 =⇒ i > 2p−2 + 1/2 and, therefore,
2i−1−2p−1 > 0, which completes the proof of (96).

APPENDIX D
PROOF OF THEOREM 1

This theorem will be shown by mathematical induction for
all p ≥ 2. In fact, for p = 2 (i.e., 16-QAM) it is seen from (11)
that µk,2(c̃m) involves the two first MSBs only:

µk,2(c̃m) =e(2b̄
(n)
1 −1)

L1(k)
2 e(2b̄

(i)
2 −1)

L2(k)
2

=θk,4(i)θk,3(n), ∀ c̃m ∈ C̃2, (98)

where θk,4(i) and θk,3(n) are given by θk,3(n) = e(2b̄
(n)
1 −1)

L1(k)
2

and θk,4(i) = e(2b̄
(i)
2 −1)

L2(k)
2 . These are indeed special cases (for

p = 2) of (35). Thus, the theorem is trivially verified at order
p = 2. Now, assume that (34) is true at order p− 1,∀ p > 3
(i.e., the 22(p−1)-QAM). At order p (i.e., the 22p-QAM), we
have from (32):

µk,p(c̃m) = µk,p−1(c̃m′)exp

{
(2b̄(i)2p−3 −1)

L2p−3(k)

2

}
×exp

{
(2b̄(n)2p−2 −1)

L2p−2(k)

2

}
, (99)

where µk,p−1(c̃m′) is defined over the 22(p−1)-QAM constel-
lation for which the property is assumed to hold true thereby
implying:

µk,p−1(c̃m′) = θk,2(p−1)(i
′)θk,2(p−1)−1(n

′), (100)

in which i′ and n′ define the coordinates of c̃m′ in the 22(p−1)

constellation according to c̃m′ = (2i′ − 1)dp + j(2n′ − 1)dp.
The expressions of of θk,2(p−1)(i

′) ans θk,2(p−1)−1(n
′) are given

from (35) by:

θk,2(p−1)(i
′) =

p−2

∏
l=1

e

(
2b̄

(i′)
2l −1

)
L2l (k)

2 (101)

θk,2(p−1)−1(n
′) =

p−2

∏
l=1

e(2b̄
(n′)
2l−1−1)

L2l−1(k)
2 . (102)

Injecting (100) in (99) and rearranging the terms, one obtains:

µk,p(c̃m) =

[
θk,2(p−1)(i

′)e

(
2b̄

(i)
2p−2−1

) L2p−2(k)
2

]

×
[

θk,2(p−1)−1(n
′)e

(
2b̄

(n)
2p−3−1

) L2p−3(k)
2

]
. (103)

Recall that c̃m′ lies in the top-right quadrant, C̃p−1, of the
previous 22(p−1)-QAM constellation whose CCS is defined by
the x′- and y′-axes in Fig. 2. Recall also from the analysis
between (29) and (31) that the symbols c̃m′ and c̃m have exactly

the same 2p− 4 MSBs, i.e., b̄(i
′)

2l = b̄(i)2l and b̄(n
′)

2l−1 = b̄(n)2l−1 for
l = 1,2, · · · , p − 2. Using these results in (101) and (102), it
follows that:

θk,2(p−1)(i
′) =

p−2

∏
l=1

e

(
2b̄

(i)
2l −1

)
L2l (k)

2 (104)

θk,2(p−1)−1(n
′) =

p−2

∏
l=1

e

(
2b̄

(n)
2l−1−1

)
L2l−1(k)

2 . (105)

Hence, by making use of (104) and (105) along with (33), it
follows that:

θk,2(p−1)(i
′)e

(
2b̄

(i)
2p−2−1

) L2p−2(k)
2

=

(
p−2

∏
l=1

e

(
2b̄

(i)
2l −1

)
L2l (k)

2

)
e

(
2b̄

(i)
2p−2−1

) L2p−2(k)
2

=
p−1

∏
l=1

e

(
2b̄

(i)
2l −1

)
L2l (k)

2

= θk,2p(i), (106)

where the last equality follows immediately from the definition
in (35). Using the same steps in (106), we show that:

θk,2(p−1)−1(n
′)e

(
2b̄

(n)
2p−3−1

) L2p−3(k)
2 = θk,2p−1(n). (107)

Finally, using (106) and (107) in (103) leads to µk,p(c̃m) =
θk,2p(i)θk,2p−1(n) meaning that the property is also true at order
p and therefore it is always true. This completes the proof
of the first part in Theorem 1. The proof of its second part
(recursive relations) follows immediately from (106) and (107).

In fact, by using θk,2p(i) = θk,2(p−1)(i
′)e(2b̄

(i)
2p−2−1)

L2p−2(k)
2 , (37)

is a direct result of the fact that i′ = |2i−1−2p−1|+1
2 which is

obtained from (30). The recursive relation in (38) is shown
similarly by considering the counter n′ and using (107).

APPENDIX E
PROOF OF LEMMA 3

First, we denote Sp = ∑2p−1

n=1 θk,2p−1(n) and we show by
mathematical induction the following property:

Sp = 2p−1
p−1

∏
l=1

cosh(L2l−1(k)/2) . (P) (108)
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At order p = 2, we have S2 = θk,3(1) + θk,3(2). Moreover,

from (35), we have θk,3(1) = e(2b̄
(1)
1 −1)

L1(k)
2 and θk,3(2) =

e(2b̄
(1)
2 −1)

L1(k)
2 . However, by inspecting the top-right quadrant of

the 16-QAM constellation in Fig. 1(c), it is seen that b̄(1)1 = 0

and b̄(2)1 = 1. Thus, S2 = e−
L1(k)

2 + e+
L1(k)

2 = 2cosh(L1(k)/2)
and consequently property (P) is verified at order p = 2. Now,
assume that (P) is verified at order p−1, i.e.:

Sp−1=
2p−2

∑
n=1

θk,2p−3(n)=2p−2
p−2

∏
l=1

cosh(L2l−1(k)/2) . (109)

Then, owing to the recursive expression of θk,2p−1(n) in (38),
we have at order p:

Sp =
2p−1

∑
n=1

θk,2p−1(n) =
2p−1

∑
n=1

θk,2p−3

(
|2n−1−2p−1|+1

2

)

×exp

{(
2

⌊
n−1
2p−2

⌋
−1

)
L2p−3(k)

2

}
. (110)

Due to the existence of the floor function, we devide the sum
in (110) into two sums from n = 1 to 2p−2 and from n = 2p−2+
1 to 2p−1 as follows:

Sp =
2p−2

∑
n=1

θk,2p−3

(
|2n−1−2p−1|+1

2

)

× e

(⌊
n−1

2p−2

⌋
− 1

2

)
L2p−3(k)

+
2p−1

∑
n=2p−2+1

θk,2p−3

(
|2n−1−2p−1|+1

2

)

× e

(⌊
n−1

2p−2

⌋
− 1

2

)
L2p−3(k). (111)

Now, in the first sum we have 1 ≤ n ≤ 2p−2 implying 0 ≤
n−1
2p−2 ≤ 1− 1/2p−2 and hence  n−1

2p−2 � = 0. In the second sum,

however, we have 2p−2 + 1 ≤ n ≤ 2p−1 implying 1 ≤ n−1
2p−2 ≤

2−1/2p−2 and hence  n−1
2p−2 �= 1. Using these results in (111),

it follows that

Sp =e−
L2p−3(k)

2

2p−2

∑
n=1

×θk,2p−3
((
|2n−1−2p−1|+1

)
/2
)

+ e
L2p−3(k)

2

2p−1

∑
n=2p−2+1

×θk,2p−3
((
|2n−1−2p−1|+1

)
/2
)
. (112)

Further, noticing that (|2n−1−2p−1|+1)/2 is always an in-
teger, the following simple substitution m = (|2n−1−2p−1|+
1)/2 reveals that the two sums in (112) are identical and they
are equal to: Using (113), shown at the bottom of the page,
in (112) and the fact that (P) is true at order p − 1, i.e., the
expression of Sp−1 in (109), we obtain:

Sp =2cosh

(
L2p−3(k)

2

)
Sp−1

=2cosh

(
L2p−3(k)

2

)
2p−2

p−2

∏
l=1

cosh(L2l−1(k)/2)

=2p−1
p−1

∏
l=1

cosh(L2l−1(k)/2) , (114)

which is exactly (108), i.e., property (P) holds as well at order
p and, therefore, (108) is always true. Now, by recalling the
expression of βk,2p−1 in (47), we have:

2βk,2p−1 cosh(L2p−1(k)/2)
2p−1

∑
n=1

θk,2p−1(n)

= 2

⎛
⎝ 1

2p

p

∏
l=1

1

cosh
(

L2l−1(k)
2

)
⎞
⎠

×
(

2p−1
p

∏
l=1

cosh

(
L2l−1(k)

2

))
= 1.

This completes the proof of Lemma 3.

APPENDIX F
DETAILS ABOUT THE DERIVATION

OF THE OTHER EXPECTATIONS

By integrating over the pdf of u(k), we obtain:

E

{
u(k)

F ′
2p,α (u(k))

F2p,α (u(k))

}

=
∫ ∞

−∞
u(k)

F ′
2p,α (u(k))

F2p,α (u(k))
p [u(k);α]du(k)

=
2βk,2p√

2πσ2

∫ ∞

−∞
u(k)F ′

2p,α (u(k))e−u(k)2/2σ2
du(k), (115)

2p−2

∑
n=1

θk,2p−3
((
|2n−1−2p−1|+1

)
/2
)
=

2p−1

∑
n=2p−2+1

θk,2p−3
((
|2n−1−2p−1|+1

)
/2
)
=

2p−2

∑
m=1

θk,2p−3(m) = Sp−1 (113)
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in which the first derivative of the function F2p,α(.) defined in
(41) is given by:

F ′
2p,α(x) =

Sdp

σ2

2p−1

∑
i=1

(2i−1)θk,2p(i)e
−ρd2

p(2i−1)2

×sinh

(
(2i−1)dpSx

σ2 +
L2p(k)

2

)
. (116)

Plugging (116) in (115) and inverting the integral and sum
signs, we obtain after some algebraic manipulations the follow-
ing closed-form expression:

E

{
u(k)

F ′
2p,α (u(k))

F2p,α (u(k))

}

= ρ4d2
pβk,2p cosh

(
L2p(k)

2

) 2p−1

∑
i=1

(2i−1)2θk,2p(i)

= ρωk,2p, (117)

where ωk,2p is defined in (56) for r = 2p. Likewise, we have:

E

{
F ′′

2p,α(u(k))

F2p,α(u(k))

}
=

∫ ∞

−∞

F ′′
2p,α(u(k))

F2p,α (u(k))
p[u(k);α]du(k)

=
2βk,2p√

2πσ2

∫ ∞

−∞
F ′′

2p,α(u(k))e
− u(k)2

2σ2 du(k). (118)

Starting from (116), we establish the second derivative of
F2p,α(.) defined in (41) as follows:

F ′′
2p,α(x) =

S2d2
p

σ4

2p−1

∑
i=1

(2i−1)2θk,2p(i)e
−ρd2

p(2i−1)2

×cosh

(
(2i−1)dpSx

σ2 +
L2p(k)

2

)
. (119)

Then, plugging (119) in (118) and inverting the sum and
integral signs, we express (118) in closed from as follows:

E

{
F ′′

2p,α (u(k))

F2p,α (u(k))

}
=2βk,2p cosh(

L2p(k)

2
)

×
2p−1

∑
i=1

θk,2p(i)
S2d2

p(2i−1)2

σ4

=
ωk,2p

σ2 ρ. (120)

Finally, we also have:

E

⎧⎨
⎩
(

F ′
2p,α (u(k))

F2p,α(u(k))

)2
⎫⎬
⎭=

∫ ∞

−∞

F2
2p,α(u(k))

F2
2p,α(u(k))

p[u(k);α]du(k)

=
2βk,2p√

2πσ2

∫ ∞

−∞

F ′2
2p,α(u(k))

F2p,α (u(k))

× e
− u(k)2

2σ2 du(k),

which is simplified by changing U(n)
σ by t and using ρ = S2

2σ2 to
obtain (61).
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