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Abstract—In this contribution, we derive for the first time
the closed-form expressions for the Cramér–Rao lower bounds
(CRLBs) of the signal-to-noise ratio (SNR) estimates from BPSK-,
MSK- and square-QAM modulated signals over turbo-coded
transmissions. These CRLBs, relatively easy to derive from BPSK,
MSK and QPSK transmissions, become extremely challenging
with higher-order square-QAM-modulated signals. In the latter,
by exploiting the structure of the Gray mapping, we are able to
factorize the likelihood function thereby linearizing all the deriva-
tion steps for the Fisher information matrix (FIM) elements. We
also propose another approach that allows the evaluation of the
considered bounds using extensive Monte Carlo computer simula-
tions. The analytical CRLBs coincide exactly with their empirical
counterparts validating thereby our new analytical expressions.
Numerical results suggest that the CLRBs for code-aided (CA)
SNR estimates range between the CRLBs for non-data-aided
(NDA) SNR estimates and those for data-aided (DA) ones, thereby
highlighting the expected potential in SNR estimation improve-
ment from the coding gain. Indeed, the CA CRLBs improve by
decreasing the overall coding rate due to enhanced decoding
capabilities. However they do increase with the modulation order
for a given code rate. Finally, the derived bounds are also valid for
LDPC coded systems and they can be evaluated when the latter
are decoded using the turbo principal.

Index Terms—BPSK, code-aided (CA), Cramér-Rao lower
bound (CRLB), data-aided (DA), extrinsic information, gray map-
ping, lDPC codes, MSK, non-data-aided (NDA), signal-to-noise
ratio (SNR), soft decoding, square QAM, turbo codes.

I. INTRODUCTION

M ODERN wireless communication systems rely on the a
priori knowledge of the propagation conditions in order

to enhance their capacity. In particular, the SNR is considered
as a key parameter whose a priori knowledge (estimation) can
be exploited at both the receiver and the transmitter (through
feedback) in order to reach the desired enhanced/optimal per-
formance by using various adaptive schemes. For instance, the
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SNR level is a key measure of the channel quality [1] and it is
hence required in multiple applications such as equalization [2],
[3], adaptivemodulation, link adaptation, and power control [4],
[5], just to name a few.
Roughly speaking, SNR estimators can be broadly divided

into two major categories: i) data-aided (DA) techniques in
which the estimation process relies on a perfectly known
transmitted sequence, and ii) non-data-aided (NDA) techniques
where the estimation process is applied blindly using the re-
ceived samples only. Most interestingly, the NDA approaches
share the advantage of not impinging on the whole throughput
of the system (high spectral efficiency). However, they usually
exhibit very poor estimation performance in the low-SNR
region, especially in the presence of short data records. In
such harsh conditions, code-aided (CA) estimation can be
envisaged to substantially enhance performance while being
spectrally efficient. In this context, turbo codes [6]–[8] have
gained considerable attention over the last two decades thanks
to their impressive ability to operate in the near-Shannon limit
even at very low SNR levels. Therefore, they have been already
adopted in many recent and upcoming wireless communication
standards such as 4G long-term evolution (LTE), LTE-advanced
(LTE-A) and beyond (LTE-B) [9].
Very recently, it has been shown in [14]–[17] that the SNR

estimation performance can be substantially enhanced by ex-
ploiting some priors1 that are delivered during the decoding
process of the transmitted bits. More specifically, it was shown
that CA estimation performs — over a wide range of practical
SNRs — nearly the same as in the ideal DA case where all the
bits are perfectly known a priori. In turbo-coded systems, for
instance, CA estimation schemes may rely on the soft informa-
tion obtained from the soft-input soft-output (SISO) decoder.
The optimal SISO algorithm [in the sense of minimum bit error
rate (BER)] follows a maximum a posteriori (MAP) approach,
also known as the BCJR algorithm [18], [19]. Yet, the successful
implementation of the MAP decoder itself requires the a priori
knowledge (i.e., estimation) of the SNR [19]. Therefore, the ef-
fect of the SNRmismatch on the performance of turbo-decoding
has been the subject of various studies [19]–[24]. It was found,
in the particular case of BPSK signals, that over-estimating the

1In code-aided estimation schemes, the transmitted symbols are also com-
pletely unknown. Yet, much information about these symbols can be acquired
during the iterative decoding of the transmitted bits. This information is then
exploited in the estimation process as a priori knowledge.
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SNR by several dBs can be tolerated while insuring acceptable
BER performance. In contrast, under-estimation by more than
2 dB leads to significant decoding errors.
In order to satisfy the increasing demand for very high-data

rate communications, higher-order modulations are also a key
feature of current and future standards (LTE, LTE-A and LTE-B)
[25]. In presence of higher-order-modulated signals, the effect
of SNR mismatch was also investigated in [23] and found to
be remarkably different and more influential on performance.
Indeed, the estimated SNR plays a different role in the calcu-
lation of the bit metric for each modulation scheme, thereby
leading to different decoding performance. The performance of
turbo-coded systems transmitting higher-order-modulated sig-
nals is typically more sensitive to SNR over-estimation [23].
From the algorithmic point of view, many NDA SNR esti-

mators suitable for QAM signals have been recently introduced
in [10]–[13]. Many SNR estimators suited for turbo-coded sys-
tems have been also introduced in the open literature [14]–[17].
The performance of such estimators is usually assessed in terms
of error variance; yet it still requires to be gaged against an abso-
lute benchmark. The Cramér-Rao lower bound (CRLB), a well
known fundamental bound [26] in estimation theory, meets this
requirement since it sets the minimum achievable variance for
all the unbiased estimators. Unlike other loose bounds, the sto-
chastic 2 CRLB is known to be achieved, asymptotically, by the
stochastic maximum likelihood estimator. Yet, even in the case
of uncoded transmissions, the complex structure of the likeli-
hood function makes it extremely hard, if not impossible, to
derive analytical expressions for such bounds, especially for
higher-order modulations. Therefore, they are usually evaluated
empirically, for both non-coded and coded systems.
More than a decade ago, the first SNR CRLBs in closed-form

expressions were derived in the DA scenario [27] for different
modulations types and orders. In the same work, they were like-
wise obtained in the NDA case only for BPSK and QPSKmodu-
lations. This was followed by the investigations in [28], [29] by
finding a way out of the long-lasting impasse standing between
the very first set of analytical results in [27] and their general-
ization to arbitrary higher-order square-QAM modulations due
to the increasingly inextricable form of the likelihood function.
Obviously, the latter is expected to become even more com-
plicated in CA transmissions, thereby revealing unambiguously
the extreme challenge and value of this work’s clearly-stated ob-
jective when properly positioned in the current state of the art.
A compelling illustration of the literature limitation persisting
so far is that CA SNR estimators have been very often com-
pared in performance to the DA CRLBs (as recently done in
[17] and [20]). The latter might offer an accurate benchmark for
BPSK signals, but become excessively optimistic3 in the pres-
ence of higher-order-modulated signals, especially at low SNR
values (see Section V for more details). So far, the CRLBs for

2The stochastic designation is usually adopted to refer to the case of un-
known and random transmitted symbols. This is in contrast with the determin-
istic CRLB where the symbols are unknown but deterministic.
3The DA CRLBs are indeed the same for all linearly-modulated signals [27],

i.e., they would misleadingly suggest the same bound regardless of the modu-
lation type or order if taken as a benchmark when it is in fact different in CA
transmissions.

code-aware (CA) SNR estimation have been derived analyti-
cally only in the very basic case of BPSK-modulated signals
[14]. It is also worth mentioning that some closed-form expres-
sions for coded large QAM phase CRLBs have recently been
reported in [30], [31] which show clearly the advantage of CA
estimation over NDA estimation.
Motivated by all the aforementioned facts, we derive in this

paper, for the first time, the analytical expressions for the CA
CRLBs of SNR estimates from coded BPSK-, MSK- and arbi-
trary square-QAM-modulated signals. For the sole purpose of
their validation, we also derive their empirical counterparts. The
latter could have stood as valuable contributions by themselves
in this topic’s typical literature (cf. successive milestone exten-
sions of the NDA CRLBs for the QAM signals from BPSK/
QPSK [32]–[36], all derived empirically though in [37]–[42]
within about a decade period between [27] and [28], [29]) if they
were not made obsolete by this work’s contributions even before
inception. Numerical results will show, indeed, that the new an-
alytical CRLBs coincide with their empirical values. They will
also reveal that the CA scheme lies between the NDA and DA
schemes in terms of CRLB performance limit, acting therefore
as its upper and lower ends, respectively. The CA’s performance
bound moves up or down to either ends with the coding rate rel-
atively increasing or decreasing, respectively. Furthermore, all
three CRLBs tend to coincide at higher SNR values or lower
modulation orders.
The rest of this paper is organized as follows. In Section II,

we introduce the system model. In Section III, we derive the ex-
plicit expression for the log-likelihood function (LLF) for dif-
ferent transmissions. In Section IV, we derive new analytical
expressions for the corresponding CRLBs and we propose, as
well, another approach that allows the evaluation of the consid-
ered bounds empirically. In Section V, we present and discuss
the simulation results of the newly derived bounds. Finally, we
draw out some concluding remarks in Section VI.
In the following, vectors and matrices will be represented in

lower- and upper-case bold fonts, respectively. Moreover,
and will denote the transpose and the Hermitian (trans-
pose conjugate) operators, respectively. The operators and

will return, respectively, the real and imaginary parts of
any complex number whereas and will return its con-
jugate and its amplitude, respectively. We will denote by the
pure complex number that verifies . We will also de-
note the probability mass function (PMF) for discrete random
variables by and the probability density function (pdf) for
continuous random variables by .

II. SYSTEM MODEL

Consider a turbo-coded system where a binary sequence of
information bits (grouped into consecutive blocks containing
bits each) is fed into a turbo encoder, of rate . The encoder
consists of two identical recursive and systematic convolutional
codes (RSCs) with generator polynomials . The two
RSCs are concatenated in parallel via an interleaver of size .
The coded bits are then fed into a puncturer which selects an
appropriate combination of the parity bits, from both encoders,
in order to achieve the desired overall rate . Each block of
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coded bits (systematic and parity bits) is scrambledwith an outer
interleaver, and then mapped onto any Gray-coded constella-
tion4. Finally, the obtained symbols are transmitted over the
wireless channel. The received signal is sampled at the output of
the matched filter. Then by assuming imperfect phase and fre-
quency synchronization, the observed samples are modeled as
follows:

(1)

where, at time index , is the coded symbol that
is transmitted over the wireless channel and is its cor-
responding received sample. The channel is assumed to be
slowly time-varying, over the entire observation window of
size , and hence of constant but unknown gain, , and phase
shift . The parameter stands for the normalized carrier
frequency offset (CFO) stemming from Doppler effects and/or
synchronization errors between the transmitter’s and receiver’s
local oscillators. The noise components, , are modeled
by a zero-mean complex circular Gaussian random variable,
with independent real and imaginary parts, each of variance
(i.e., of total noise power ). Without loss of

generality, we further assume that the energy of the transmitted
symbols is normalized5 to one, i.e., Using the
observations, , the true SNR, , that we wish to

estimate is defined as:

(2)

From (2), it is seen that there are two unknown parameters which
are involved in the derivation of the SNR CRLBs, namely and
. Therefore, it is mathematically more convenient to gather

them into a single parameter vector . Depending
on the SNR scale (i.e., the SNR in the decibels [dB] or linear
scale), we define the following transformations:

(in [dB] scale)
(in linear scale)

(3)

For mathematical convenience, as well, we gather all the
recorded data samples in a single vector:

(4)

The LLF of the system will be denoted as
where is the pdf of the received vector parameter-
ized by the unknown parameter vector . As shown in [26], the
CRLB for the parameter transformation in (3) is given by:

(5)

4As mentioned previously, we shall later restrict ourselves to BPSK, MSK
and square-QAM constellations only.
5If the transmit energy, , is not unitary, it can be easily incorporated as an

unknown scaling factor into the channel coefficient by estimating
instead of in (1).

where the derivative, , is given by:

(in [dB] scale)

(in linear scale)
(6)

and is the Fisher information matrix (FIM) defined as:

(7)

In (7), are the elements of the unknown parameter
vector . Usually, the analytical derivation of the stochastic
CRLB involves tedious algebraic manipulations. These consist
in three major steps: 1) derivation of the log-likelihood function
(LLF), 2) derivation of the FIM elements, and then 3) deriva-
tion of the CRLB expression using (5). In the sequel, these three
steps will be accomplished in the given order.

III. DERIVATION OF THE LLF

To begin with, we assume that the symbols are drawn from
any -ary constellation. This is because, as will be seen shortly,
the first derivation steps are valid for linearly-modulated sig-
nals in general. However, later on, we will restrict ourselves to
BPSK, MSK and square-QAM constellations for reasons that
will become apparent by then.We assume the constellation to be
Gray-coded and denote its alphabet by .
Moreover, we will — from now on — adopt the two following
notations:

(8)

to designate the mapping between the constellation point
[respectively, the transmitted symbol ] and its asso-

ciated Gray-coded bits [respectively, the block of conveyed
bits]. Due to the large-size interleaver, the coded bits can be as-
sumed as statistically independent. This assumption is indeed
pervasive in code-aided estimation [15], [43], [44], [46]. Con-
sequently, the transmitted symbols (which are soft representa-
tions for different blocks of such independent bits) can also be
considered as independent thereby yielding:

(9)

where is the pdf of the individual received sample,
, which is given by:

(10)

in which we use the notation . Now, in the
case of higher-order modulations where each constellation point
represents more that one bit (i.e., ), and again, due
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to the independence of the coded bits, the probability of each
transmitted symbol, , is factorized into the probabilities of
the elementary bits it conveys:

(11)

We also define the so-called log-likelihood ratio (LLR) of each
transmitted bit, , as follows:

(12)

Then, using (12) and the fact that ,
the a priori probabilities of the transmitted coded bits can be
expressed as:

(13)

A. LLF for BPSK and MSK Signals

In BPSK transmissions, the constellation alphabet is simply
given by . In MSK transmissions, how-
ever, the transmitted symbols are constructed recursively as

where is the sequence of coded bits and
is the original value drawn from the set .

The pdf of the received vector parameterized by is ex-
pressed as follows:

(14)

where is given by for BPSK and for
MSK. In addition, in BPSK andMSK transmissions, each trans-
mitted symbol conveys only one bit and, therefore, they both
have the same probabilities from the statistical point of view.
That is to say: ,

for BPSK and ,
for MSK. These a priori

probabilities are obtained from the LLRs of the transmitted bits
—denotedhere as bydropping the subscript —as follows:

(15)
Using these results in (14) and after some algebraic manipu-
lations, it can be shown that the LLF of interest6,

, is expressed as follows:

(16)

6After dropping the two constant terms and
which do not depend on the unknown

parameters and .

B. LLF for QPSK Signals

Here, each transmitted symbol carries two bits. Hence, the
constellation alphabet consists of four different symbols, i.e.,

. Consequently, the pdf of the received
sample, , is obtained from (10) as:

(17)
Without loss of generality, we will make the two following as-
sumptions:
• A1) The constellation is Gray-coded according to the fol-
lowing mapping: , , and

.
• A2) , , and .

Therefore, by defining for
, then plugging (13) in (11) and using assumption A1), we

obtain:

(18)

(19)

(20)

(21)

Now, by plugging (18) to (21) back into (17) and using assump-
tion A2), we show after some relatively tedious algebraic ma-
nipulations that:

(22)

Thus, the pdf of the received vector, , is factorized as follows:

(23)

where

(24)

By taking the logarithm of (23) and dropping the constant terms
involving and (which do not depend on and ),
the LLF for QPSK signals develops as follows:

(25)
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C. LLF for Square-QAM Signals

To simplify the notations, we will use the two definitions
and to refer to the inphase

and quadrature components of the received samples, respec-
tively. Then, in the presence of arbitrary -ary QAM-modu-
lated signals, it can be shown that the pdf in (10) can be rewritten
as follows:

(26)

in which

(27)

Hence, the LLF of the system which follows from the logarithm
of (9) as , develops into:

(28)

At this stage, it is still very tedious to derive analytical expres-
sions for the considered CRLBs without further manipulating
the term defined in (27). Actually, considering the spe-
cial case of square-QAM-modulated signals (i.e., 16–, 64–, and
256–QAM, etc.), and by exploring the structure of the Gray
mapping mechanism, we are able to factorize into the
product of two analogous terms. In fact, when for
any integer (i.e., square-QAM constellations), we have

, where
is the intersymbol distance in the plane. Note here that from
now on the constellation alphabet will be indexed by the in-
teger that defines the modulation order (i.e., ). The
square-QAM constellation energy is supposed to be normalized
to one:

(29)

from which the expression of is obtained as follows:

(30)

Now, by denoting the
subset of the alphabet that consists of the points which lie in
the top-right quadrant of the constellation, one can write

. Therefore (27) can be expressed as
follows:

(31)

Another important detail that must be addressed, in order to fur-
ther simplify the term , is the Gray mapping scheme of
the constellation. Indeed, we will show through a simple Gray
coding mechanism how this structure can be used to factorize

, linearizing thereby the LLF expression in (28). The pro-
cedure applies in the same way to all possible Gray mapping
schemes, yet the obtained final CRLB expressions will still hold
the same. First, combining the two results in (13) and assuming
that the symbol is transmitted during the time instant
(i.e., ), we obtain the following generic formula for
the a priori probability of each conveyed bit:

(32)

where can be 0 or 1. Therefore, recalling that
(for square-QAM constellations) and injecting (32) in (11), the
symbol probabilities are given by:

(33)
Next, we describe a simple process for the recursive con-
struction of any Gray-coded square-QAM constellation. Some
hidden properties of such constellations will be revealed —
from this recursive process — and carefully exploited in
order to factorize the term in (31). In fact, starting
from any basic QPSK constellation and a given -QAM
Gray-coded constellation, it is possible to build a -QAM
Gray-coded one as follows:
• step 1: build the top right quadrant of the desired

-QAM constellation from all the points7 of the avail-
able -QAM constellation.

• step 2: build the three remaining quadrants of the new
-QAM constellation by symmetries on: i) the -axis

to obtain the bottom-right quadrant, ii) the -axis to ob-
tain the top-left quadrant; and iii) the center point to ob-
tain the bottom-left quadrant. Yet, the points of the orig-

7The same points’ layout in the original -QAM constellation is used,
i.e., the constellation is placed as is in the new quadrant.
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Fig. 1. Recursive construction of Gray-coded square-QAM constellations il-
lustrated here from 4-QAM to 16-QAM.

inal -QAM constellation represent each
bits only. Therefore, two bits are still missing in each point
of the new -QAM constellation that must represent
bits.

• step 3: copy the two missing bits from each quadrant of
a basic Gray-coded QPSK constellation to all the points
that belong to the same quadrant of the new constellation.
Without loss of generality, we will use as a basic QPSK
constellation the one defined by assumptions A1) and A2)
in Section III-B [just after (17)].

As one example given in Fig. 1, we illustrate the recursive con-
struction of a Gray-coded 16-QAM constellation from a 4-QAM
Gray-coded one. Just as depicted in this figure and again without
loss of generality, we will use in the sequel the following as-
sumption: A3) the two bits added in “step 3” occupy the two
least significant positions in each symbol of the new -QAM
constellation.
To see how the three steps (“step 1” to “step 3”) allow the

construction of any Gray-coded square-QAM constellation, two
relevant remarks are in order: i) the basic Gray-coded QPSK
constellation can be rotated by modifying the mapping of as-
sumption A1), and ii) assumption A3) can also be modified by
placing the twomissing bits of “step 3” at any two positions, i.e.,
neither being necessarily consecutive nor being the two least
significant bits (LSBs) [as considered in assumption A3) for the
sole sake of clarity].
Due to symmetries in “step 2”, each four symbols , ,
and have the same most significant bits

(MSBs), , for any symbol (
) lying in the top-right quadrant ( ) of the new

-QAM constellation. Thus, if we consider these
MSBs alone and define:

(34)

we can then immediately see that:

(35)
As seen from the right-hand side of (34), it is worth mentioning
here that is not defined for , i.e., for QPSK
constellations. We extend its definition for the latter simply by
taking . It will be seen later that

this choice is consistent with all the derivations. Then, by fo-
cusing on the two remaining LSBs ( and ) and recalling
the Gray mapping of the basic QPSK constellation [depicted in
Fig. 1, cf. assumptions A1) and A2)], it follows that:

.

(36)

Of course, these intermediate results change according to
the specific choice of the basic QPSK constellation involved
in “step 3”. Consequently, one might wonder how the final
results could still stand valid for all possible Gray mapping
schemes of the underlying -QAM constellation. Actually,
in this paper, is defined to be the top-right quadrant of this
constellation simply because, according to assumption A1), the
two bits “11” are placed in the top-right quadrant of the basic
QPSK constellation. Therefore, exactly the same derivation
steps can be conducted by defining to be the quadrant that
corresponds to the bits “11” in any other basic QPSK constel-
lation and then decomposing the whole alphabet similarly, i.e.,

.
Now, upon using (35) and (36) in (33), it follows that for any

, we have:

(37)

(38)

(39)

(40)

Therefore, plugging these probabilities back into (31) and using
the identity , it can be shown that:

(41)

Furthermore, using the relationship
along with the two identities

and , (41) is
rewritten as follows:

(42)
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Recalling that ,

the sum over in (42) can be written as a double
sum over the counters and after replacing by

. Therefore, in order to factorize
, the term

must be factorized into two terms, one depending only on
and the other only on . Here, we are actually dealing with
the first MSBs, . Hence, since
the two remaining LSBs and (which are the same8

for all ) are not involved in , they will be
represented by “ ” in (8), i.e.,

(43)

Furthermore, as highlighted in (43), it will shortly prove very
useful to represent the first MSBs by the shorthand nota-
tion , i.e., . For more con-
venience, we will rather use the superscript instead of
in (43) since . That is:

(44)

Using this notation, all the points of the top-right quadrant
of the obtained -QAM constellation are graphically repre-
sented in Fig. 2 (on the top of the next page) where the bits

and are being assigned their true values (in red
color). Each symbol in which has current coordinates

in the Cartesian coordinate system
(CCS) of the considered -QAM constellation ( axis and

axis in Fig. 2) already has some other old coordinates,
, in the CCS associated to the original

-QAM constellation ( – axis and – axis in Fig. 2),
associated with a symbol
in . By inspecting both CCSs in Fig. 2, it can be shown
that can be expressed in terms of either or as
follows:

(45)

Moreover, since the first MSBs of each symbol
are obtained — during “step 1” — from the whole bit sequence
of the symbol (associated to it in the original -QAM
constellation), we readily have the following result:

(46)

On the other hand, we recall the same decomposition
for the original -QAM

constellation where denotes its top-right quadrant. Then,
for some , we have .
In turn, the symbols themselves are obtained from a pre-
vious Gray-coded -QAM constellation by applying the
same recursive procedure. Therefore, due to the symmetries of
“step 2”, it follows that , , , and have the same

8The values of these two LSBs are defined according to the top-right quadrant
of the basic Gray-coded QPSK constellation used in “step 3” during the recur-
sive construction procedure. For instance, in the example depicted in Fig. 1,
they will be “ ”.

MSBs (which are represented by ). Consequently,
according to the definition in (34), we have

thereby yielding the following recursive property:

(47)

Actually, one needs to express the bits and explic-
itly as one function of or only and vice-versa, respectively, if

is to be factorized in terms of these two counters sep-
arately. Using to denote the floor function which returns the
largest integer which is smaller than or equal to , the following
lemma finds this useful decomposition:
Lemma 1: , the two bits and

are expressed as:

(48)

Proof: See Appendix A.
Notice from (48) that and depend each on only

one counter (either or ). Actually, a more general and much
useful result can be stated here:
1) Assertion: all the odd-position bits, , are func-

tion of only and all the even-position bits, , are
function of only. This is a direct consequence of the following
lemma:
Lemma 2: the obtained -QAM Gray-coded constellation

has the following property:
• The odd-position bits, , do not change by scanning
each horizontal line of constellation points.

• The even-position bits, , do not change by scanning
each vertical line of constellation points.
Proof: this property is trivially verified for the initial

QPSK constellation depicted in Fig. 1. Now, assume that it is
true at order (i.e., the previous -QAM constella-
tion). Then, at order , this property is automatically verified
for the first bits of all the obtained symbols. This is
because the latter are obtained by placing the -QAM
constellation as is in the top-right quadrant, , and the other
quadrants are obtained via the three symmetries of “step 2”.
Moreover, since the basic QPSK constellation (from which
the remaining two bits are copied) verifies the underlying
property, the latter becomes true for all the bits of the obtained
constellation points.
In a nutshell, the fact that odd-position bits, , do not

change for each horizontal line means that they do not change
by varying the symbols’ abscissa, , or equivalently
by changing the counter . Therefore, are function
of only. The same reasons reveal that the even-position bits,

, are function of only. This completes the proof of
the assertion stated just before Lemma 2. As a consequence, we
will from now on drop the vanishing counter from each group
of bits and denote the latter, respectively, as and for

.
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Now, using the result in Lemma 1 and the recursive property
in (47), we show in Appendix B the following theorem:
Theorem 1: for any , can be factorized into

two independent terms each of which depends solely on one of
the two counters and as follows:

(49)

where and are expressed as:

(50)

(51)

Moreover, and can be computed recur-
sively, from lower-order constellations, for any as
follows:

(52)

(53)

Proof: see Appendix B.
Note here that the initialization for (52) and (53) is simply

given by . This is because we have
extended the definition of for (i.e., QPSK con-
stellations) to be [just after (35)].
Therefore, denoting the single symbol in as , one can write

as in (49) with .
Plugging (49) in (42) and using the fact that

, the term is rewritten as fol-
lows:

(54)

where and are defined as
and .

Finally, splitting the two sums, it can be shown that
factorizes as follows:

(55)

where is given by:

(56)

and where, depending on the context, the counter is used from
now on to refer to or . The factorization of in
(55) will prove very useful in deriving the analytical expressions
of the considered stochastic CRLBs. In fact, by injecting (55)
back into (28), the LLF for any square-QAM constellation (after
discarding all the constant terms) is linearized as follows:

(57)

involving thereby the sum of two analogous terms (the two last
sums). Now, we further show that and [whose realizations
are and , respectively] are two independent random
variables (RVs) which are almost identically distributed (i.e.,
their pdfs have the same structure, but are parameterized dif-
ferently). In fact, injecting (55) in (26) and using the fact that

, it can be shown that
factorizes as follows:

(58)

where

(59)

(60)

with

Moreover, we have
since and are indeed the real and imaginary parts
of . Then, since is assumed to be
deterministic, we have .
Therefore, using (58), we obtain:

(61)

meaning that and are two independent RVs almost identi-
cally distributed according to (59) and (60), since their joint dis-
tribution above is the product of their two separate distributions.

IV. DERIVATION OF THE CA CRLBS

In Section IV-A, we will develop the analytical expressions
for the CA CRLBs of SNR estimates from coded BPSK-, MSK-
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Fig. 2. General recursive construction of Gray-coded square-QAM constellations from -QAM to -QAM.

and arbitrary square-QAM-modulated signals. For the sole pur-
pose of their validation, we derive in Section IV-B their empir-
ical counterparts (a set of valuable standalone would-have-been
contribution if derivation of the analytical ones were not all
made possible here, cf. Section I).

A. Derivation of the Analytical CRLBs

We begin first by deriving the FIM elements using the LLFs’
expressions obtained in the previous section. We consider the
case of square-QAM-modulated signals since it is the most
general and tedious one. Similar derivations can be applied in
the cases of BPSK-, MSK- and QPSK-modulated-signals to
obtain the corresponding FIM elements. Due to space limita-
tions also, we will provide the derivations details only for the
first FIM element since the other ones can be obtained in the
same way. Starting from (57), we readily have the following
result:

(62)

As mentioned previously, the two terms in the right-hand side
of (62) are analogous and they can be derived in the same way,

especially because the RVs and are almost identically
distributed. Thus, for ease of notations, we will henceforth use

to refer to when and to when ,
respectively. Using this generic notation and defining:

it can be shown that:

The second expectation is obtained by integrating over the dis-
tribution of obtained earlier in (59) and (60) for
and , respectively:

(63)
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where the expression of the first derivative, , is
given by (106) in Appendix C. We further simplify (63) by
changing by and using to obtain:

(64)

in which is defined as:

(65)

where, by using , the functions
and are, respectively, given by

(66)

and (67), shown at the bottom of the page. Furthermore, after
tedious algebraic manipulations, we show in Appendix C the
following identity:

(68)

Therefore, by using and injecting (64)
for and in (62), it follows that:

(69)

Equivalent algebraic manipulations, which are omitted here for
the sake of conciseness, lead to the following analytical expres-
sions for the second FIM’s diagonal element:

(70)

where (for or ) is given by:

(71)

The coefficients are given by9:

(72)

and the function is defined as:

(73)

where is defined by (74) at the bottom of the page.
Equivalent derivations also yield the following expression for
the off-diagonal element of :

(75)

in which with the function
being defined as:

(76)

Therefore, from (69), (70) and (75), the global FIM decomposes
into the sum of elementary FIMs:

(77)

where is the FIM pertaining to the estimation of
the SNR from the received sample alone:

(78)

This general FIM expression in CA estimation corroborates the
two traditional extreme cases of completely NDA and com-
pletely DA estimations. Indeed, in the former case, no a priori
information about the bits is available at the receiver end and,
therefore, thereby yielding

for all and . In the latter case, however, the
bits are a priori perfectly known and, therefore, at the receiver
side we have either
or and consequently

9For the specific case of , it can be further shown that .

(67)

(74)
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the LLRs verify . By injecting and
in the entries of and by recurring to some easy

simplifications10, one obtains exactly the same expressions for
the FIMs developed recently in [29] in the traditional NDA and
DA cases, respectively.
Now, since the inverse of any (2 2) matrix is directly ob-

tained by swapping the two diagonal elements and negating the
off-diagonal ones, it can be shown from (77) that:

(79)

where returns the determinant of any square matrix. Fi-
nally, injecting (79) and (6) in (5), it can be shown that:

(80)

where and is the
elementary CRLB pertaining to the estimation of the SNR given
the received sample only. The higher the weighting coef-
ficient, , the more contributes to the overall perfor-
mance limit. These coefficients are not equal since the received
samples are not identically distributed in contrast to the NDA
estimation scenario. Indeed, the latter yield identical elemen-
tary FIMs and equal weighting coefficients leading thereby to a
factor in the overall CRLB as shown in [29]. Now, in order
to explicitly express the CA CRLBs, one must use the overall
FIM, , given by (77) [which obtained implicitly from (78)]
and which is valid for both the linear and decibels [dB] scales. In
particular, if one is using the linear scale, then the corresponding
overall CA CRLB is obtained by injecting in (5) the second ex-
pression for the derivative of in (6) along with . After
some algebraic manipulations, it can be shown that the overall
CRLB for CA SNR estimates (in linear scale) of square QAM
signals is given by (81) at the bottom of the page. If one is, how-
ever, using the [dB] scale, then by using the following identity
which follows from both equalities in (6):

(82)

it can be directly shown from (5) that the CRLB for CA SNR es-
timates in the [dB] scale is directly deduced from the CA CRLB
in the linear scale, given by (81) on the bottom of the page, as
follows:

(83)

10The details are omitted here due to lack of space.

Equivalent derivations lead to the following simple and
common CRLB expression for both BPSK and MSK signals:

(84)

where

(85)

with

(86)

Again, when , it can be easily verified that (84) yields
exactly the same expression for the NDA CRLB derived for
the very first time over a decade ago in [27] for BPSK. For
QPSK, the second to the only two cases addressed in that sem-
inal work, the CRLB can be simply obtained as a special case
of square-QAM with . Finally, it is worth mentioning
that all the derivations steps included in this paper are valid for
coded systems in general. Therefore, the CA SNR CRLBs de-
rived here are valid for any coded system. They can be evalu-
ated as far as the receiver decoder is able to produce soft esti-
mates for the LLRs of the bits (since they are the only quantities
needed to evaluate the CA CRLBs). Fortunately, owing to the
turbo decoding principle, it was shown in [8] that the extrinsic
information of the bits, which is delivered during the decoding
process, is an accurate estimate of these LLRs. Therefore, the
above CRLBs can also be evaluated for LDCP-coded systems,
as well, when they are decoded using the turbo principal (i.e.,
MAP or BCJR decoder) since they also produce the extrinsic
information during the decoding process.

B. Derivation of the Empirical CRLBs

In this subsection, we develop an empirical procedure
that evaluates the considered CRLBs through extensive
Monte-Carlo simulations. These empirical CRLBs, a set of
valuable would-have-been contribution rendered at once obso-
lete with the analytical ones achieved above, are still derived
here for the sole purpose of validating the new closed-form
expressions. In fact, the CRLBs can be obtained alternatively
from the symbols’ a posteriori probabilities (APPs). We will
also rely on another definition for the FIM elements which
involves the partial first derivatives of the LLF instead of its
second derivatives. In fact, as shown in [26], the FIM elements
can be written in the following equivalent form:

(87)

(81)
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where

(88)

is another formulation for the LLF in which
is a vector that con-

tains the actual sequence of transmitted symbols and
are all the possible sequences of coded symbols that can take.
Differentiating (88) with respect to and using the fact that

lead to the following expression:

(89)

Then, owing to Bayes’ formula:

(90)

it follows that the right-hand side of (89) is nothing but the fol-
lowing conditional expectation:

(91)

Now, since , then it follows
from (91) that:

The last two expectations are computed empirically using the
marginal APPs provided by the decoder. In fact, in turbo-coded
systems, these marginal APPs are computed iteratively using
the BCJR algorithm in the two SISO decoders, with exchange
of extrinsic information at each iteration. When the coded bits
(conditioned on ) can be considered as independent (which is
again a reasonable assumption due to the large-size interleaver),
this iterative procedure yields the correct marginal APPs at
steady state [45]. The required APPs of each transmitted symbol
are simply the product of the APPs of the corresponding bits that
are deliveredby the turbodecoder.Toevaluate theFIMelements,
however, the expectation involved in (87) is performed through
extensive Monte-Carlo simulations by generating a sufficiently
large number (say ) of noisy received sequences. The statistical
expectation is then approximated by an arithmetical mean using
all thegenerated realizations, according to the following formula:

(92)

which is valid for any transformation of a given random
variable with realizations .

V. SIMULATION RESULTS

In this section, we provide graphical representations of the
newly derived CA SNR CRLBs for different modulation orders
and different coding rates using received samples.
The encoder is composed of two identical RSCs concatenated in
parallel with systematic rate both and generator poly-
nomials (1,0,1,1) and (1,1,0,1), respectively. A large-size inter-
leaver is placed between the two RSCs. The output of the turbo
encoder is punctured in order to achieve the desired overall
coding rate ( ). For the tailing bits, the size of the RSC en-
coders memory is fixed to 4.
In order to evaluate the CA CRLBs, we used the direct ex-

pressions in (50) and (51) for and , respec-
tively.Moreover, in order to smooth the curves for the analytical
CA CRLBs, the bounds are averaged over 10 Monte-Carlo re-
alizations (at each SNR point). This is because the extrinsic in-
formation for each bit (used to approximate the corresponding
LLR) depends on the specific observation (i.e., noise realiza-
tion). Hence, the CA CRLB can be averaged over a very small
number of Monte-Carlo realizations (e.g., 10) in order to obtain
smooth curves. Moreover, in all the subsequent simulations, we
plot the CRLB in [ ] for the SNR estimates in [dB] scale.
In Figs. 3 and 4, we plot both the analytical and empirical

CA CRLBs for 16-QAM and 64-QAM signals, respectively,
with two different coding rates (i.e., and

). First, we clearly observe from both fig-
ures a perfect fit between the analytical and empirical CRLBs,
validating thereby our new analytical expressions in all the con-
sidered cases.
We see also from both figures that the CRLB for CA esti-

mation is smaller than the CRLB for the NDA scenario. This
highlights the potential estimation performance gain that could
be achieved by leveraging the information about the transmitted
bits that could be gathered during the decoding process. This is
in contrast with the traditional NDA scheme where the SNR is
estimated directly from the output of the matched filter. Even
though the CA scheme performs to the CRLB limit nearly as
well as the NDA scheme at low SNR, near 0 dB, it always offers
a potential gain (over the latter) that sharply increases with the
SNR increasing. For instance, by the SNR value, , the
CA CRLB for 16-QAM signals soon becomes almost 10 times
smaller than the NDA CRLB. From this relatively small SNR
threshold, the CA CRLB starts to reach the DA CRLB simply
given by [27]:

(93)

Therefore, over a wide range of practical SNRs and without re-
lying on any pilot sequence, CA estimation could potentially
turn out to be equivalent to DA estimation which relies on the
perfect knowledge of all the bits (or equivalently the symbols).
Figs. 3 and 4 also show clearly the effect of the coding rate,
, on the SNR estimation performance. Even though the CA

CRLBs corresponding to the two considered rates ultimately co-
incide at moderate SNR levels, they exhibit a significant gap at
lower SNR values. In fact, with smaller coding rates, more re-
dundancy can potentially be provided by the turbo encoder and
the bits could then be decoded more accurately. In this case, the
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Fig. 3. CA vs. DA and NDA CRLBs [ ] for SNR estimation as function of
the true SNR [dB] with two different rates ( ): 16-QAM.

Fig. 4. CA vs. DA and NDA CRLBs [ ] for SNR estimation as function of
the true SNR [dB] with two different rates ( ): 64-QAM.

extrinsic information, which is used to approximate the LLRs
[8], [44], becomes increasingly high (in absolute value) and CA
estimation becomes even closer in CRLB performance to DA
estimation. By comparing Figs. 3 and 4 for a given code rate,
we observe that the CA CRLBs increase with the modulation
order and reach the DA CRLB at higher SNR thresholds as the
constellation size increases.
In Fig. 5, we plot both the CA and DA CRLBs for BPSK-/

MSK-modulated signals. In contrast to the higher-order modu-
lations case, the gap between the NDA and DA CRLBs for both
BPSK and MSK signals can be potentially bridged with CA es-
timation almost completely over the entire wide SNR range con-
sidered starting from around 0 dB.

Fig. 5. CA vs. DA and NDA CRLBs [ ] for SNR estimation as function of
the true SNR [dB] for BPSK and MSK signals, .

Finally, it is worth mentioning that the SNR levels at which
the CACRLB touches the DACRLB could be exploited in prac-
tice in order to predict the SNR thresholds at which a given
turbo-coded system provides a decoding BER at which SNR
estimation could nearly match the performance of the error-free
decoding case.

VI. CONCLUSION

In this contribution, we established the analytical expressions
for the CRLBs of SNR estimation from turbo-coded BPSK-,
MSK-, and square-QAM transmissions. We have also verified
for the sake of validation that our new analytical bounds per-
fectly match their empirical counterparts obtained here through
extensive Monte-Carlo simulations. The new CA CRLBs are
smaller than the NDA CRLBs thereby suggesting better SNR
estimation potential when properly exploiting the SISO infor-
mation about the transmitted bits that could be obtained from the
decoder. Furthermore, the newly established CA CRLBs start to
coincide with the DA CRLBs from relatively small SNR thresh-
olds that further decrease with lower modulation orders and/or
higher coding gains.

APPENDIX A
PROOF OF LEMMA (48)

For better illustration, the two bits and are
highlighted in red color in Fig. 2. We recall that they are added
in “step 3” of the recursive construction from the lower-order

-QAM constellation. Here, we focus only on the bit
since the expression of can be obtained in the

same way. We also consider the example of the basic QPSK
constellation that is shown in Fig. 1. It can be seen that:

(94)
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Then, according to (45), we have
and . We now show that:

(95)

(96)

Due to space limitations, we will only prove (95) since similar
manipulations can easily prove (96).

• : On one hand, we have

. However, since we are comparing
integers, this implies that
and, therefore, we have (a): . On the other hand,
we have and, therefore, we
have (b): . Thus, using (a) and (b),
we obtain .

• : We have which

implies and, therefore,
, which completes the proof of (95).

APPENDIX B
PROOF OF THEOREM 1

This theoremwill be shown by mathematical induction for all
. In fact, for (i.e., 16-QAM) it is seen from (34) that

involves the two first MSBs only. Hence, ,
we have:

where and are given by

and . These are indeed special cases
(for ) of (50) and (51), respectively. Thus, the theorem is
trivially verified at order . Now, assume that (49) is true at
order (i.e., the -QAM). At order (i.e.,
the -QAM), we have from (47):

(97)

where is defined over the -QAM constel-
lation for which the property is assumed to hold true thereby
implying:

(98)

in which and define the coordinates of in the
constellation according to .
The expressions of and are given
from (50) and (51) by:

(99)

(100)

Injecting (98) in (97) and rearranging the terms, one obtains:

(101)

Recall that lies in the top-right quadrant, , of the pre-
vious -QAM constellation whose CCS is defined by the
– and –axes in Fig. 2. Recall also from the reasoning be-

tween (44) and (47) that the symbols and have exactly
the same MSBs, i.e., and for

. Using these results in (99) and (100), it fol-
lows that:

(102)

(103)

Hence, by making use of (102) along with (48), we obtain the
result given by

(104)

in which the last equality follows immediately from the defini-
tion in (50). Using the same steps in (104), we show that:

(105)

Finally, using (104) and (105) in (101) leads to
, meaning that the property is also true at

order and thus always true. This completes the proof of the
first part of Theorem 1. The proof of its second part (recursive
relations) follows immediately from (104) and (105). In fact, by

using , (52) is a di-

rect result of the fact that which is obtained
from (45). The recursive relation in (53) is shown similarly by
considering the counter and using (105).

APPENDIX C
PROOF OF (68)

We begin by developing the first and the second derivatives
of with respect to as follows:

(106)
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Then, by denoting , we obtain:

In order to find the expected value of ,
we multiply it by the pdf of and then integrate from
to . This yields the following result:

(107)

where , , and are defined as:

To evaluate these integrals, we use following formulas [47, pp.
384–390] for any and :

(108)

(109)

(110)

Actually, by expanding the integrands and recognizing some
odd and even functions, the integrals involved in the expressions
of , , and reduce to those of (108)–(110). Thus,
it can be shown that:

Injecting these results back into (107), we obtain the result given
by (68).

REFERENCES

[1] S. Nanda, K. Balachandran, and S. Kumar, “Adaptation techniques in
wireless packet data services,” IEEE Trans. Commun., vol. 38, no. 1,
pp. 54–64, Jan. 2000.

[2] S. Talakoub and B. Shahrrava, “Turbo equalization with integrated
SNR estimation,” presented at the IEEE GLOBECOM, San Francisco,
CA, USA, Nov. 2006.

[3] S. Talakoub and B. Shahrrava, “Turbo equalization with iterative online
SNR estimation,” in Proc. IEEE WCNC, New Orleans, LA, USA, Mar.
13–17, 2005, vol. 2, pp. 1097–1102.

[4] J. G. Proakis, Digital Communications. New York, NY, USA: Mc-
Graw-Hill, 2001.

[5] K. Balachandran, S. R. Kadaba, and S. Nanda, “Channel quality es-
timation and rate adaptation for cellular mobile radio,” IEEE J. Sel.
Areas Commun., vol. 17, no. 7, pp. 1244–1256, Jul. 1999.

[6] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo codes,” IEEE Trans. Commun., vol. 44, no. 10,
pp. 1261–1271, Oct. 1996.

[7] J. Hagenauer, “The turbo principle: Tutorial introduction and state of
the art,” in Proc. Int. Symp. Turbo Codes Related Topics, Brest, France,
Sep. 1997, pp. 1–11.

[8] G. Colavolpe, G. Ferrari, and R. Raheli, “Extrinsic information in it-
erative decoding: A unified view,” IEEE Trans. Commun., vol. 49, no.
12, pp. 2088–2094, Dec. 2001.

[9] E. Dahlman, S. Parkvall, J. Sköld, and P. Beming, 3G Evolution: HSPA
and LTE for Mobile Broadband. Oxford, U.K.: Academic, 2007.

[10] M. A. Boujelben, F. Bellili, S. Affes, and A. Stéphenne, “SNR esti-
mation over SIMO channels from linearly-modulated signals,” IEEE
Trans. Signal Process., vol. 58, no. 12, pp. 6017–6028, Dec. 2010.

[11] A. Stéphenne, F. Bellili, and S. Affes, “Moment-based SNR estimation
for SIMO wireless communication systems using arbitrary QAM,” in
Proc. 41st Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA,
USA, Nov. 4–7, 2007, pp. 601–605.

[12] M. A. Boujelben, F. Bellili, S. Affes, and A. Stéphenne, “EM algorithm
for non-data-aided SNR estimation of linearly-modulated signals over
SIMO channels,” presented at the IEEE GLOBECOM, Honolulu, HI,
USA, Dec. 2009.

[13] A. Stéphenne, F. Bellili, and S. Affes, “Moment-based SNR estimation
over linearly-modulated wireless SIMO channels,” IEEE Trans. Wire-
less Commun., vol. 9, no. 2, pp. 714–722, Feb. 2010.

[14] M. A. Dangl and J. Lindner, “How to use a priori information of data
symbols for SNR estimation,” IEEE Signal Process. Lett., vol. 13, no.
11, pp. 661–664, Nov. 2006.

[15] N. Wu, H. Wang, and J. M. Kuang, “Code-aided SNR estimation based
on expectation maximisation algorithm,” Electron. Lett., vol. 44, no.
15, pp. 924–925, Jul. 2008.

[16] N. Wu, H. Wang, and J. M. Kuang, “Maximum likelihood
signal-to-noise ratio estimation for coded linearly modulated sig-
nals,” IET Commun., vol. 4, pp. 265–271, 2010.

[17] M. Bergmann, W. Gappmair, H. Schlemmer, and O. Koudelka, “Code-
aware joint estimation of carrier phase and SNR for linear modulation
schemes,” in Proc. 5th Adv. Satellite Multimedia Syst. Conf., Cagliari,
Italy, Sep. 2010, pp. 177–182.

[18] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol.
20, no. 2, pp. 284–287, Mar. 1974.

[19] M. A. Khalighi, “Effect of mismatched SNR on the performance of
log-MAP turbo detector,” IEEE Trans. Veh. Technol., vol. 52, no. 5,
pp. 1386–1397, Sep. 2003.

[20] K. T. Shr and Y. H. Huang, “SNR estimation based on metric normal-
ization frequency in Viterbi decoder,” IEEE Commun. Lett., vol. 15,
no. 6, pp. 668–670, Jun. 2011.

[21] T. A. Summers and S. G. Wilson, “SNR mismatch and online esti-
mation in turbo decoding,” IEEE Trans. Commun., vol. 46, no. 4, pp.
421–423, Apr. 1998.

[22] M. C. Reed and I. Asenstorfer, “A novel variance estimator for turbo-
code decoding,” presented at the ICT,Melbourne, Australia, Apr. 1997.

[23] S. Minying, L. Yuan, and S. Sumei, “Impact of SNR estimation error
on turbo code with high-order modulation,” presented at the IEEE
VTC—Spring, Milan, Italy, May 2004.

[24] A. Worm, P. Hoeher, and N. Web, “Turbo-decoding without SNR es-
timation,” IEEE Commun. Lett., vol. 4, no. 6, pp. 193–195, Jun. 2000.



BELLILI et al.: CLOSED-FORM CRLBs FOR SNR ESTIMATION 4033

[25] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
Channels and Modulation, 3GPP TS 36.211, V8.2.0 (2008-03), Re-
lease 8.

[26] S. M. Kay, Fundamentals of Statistical Signal Processing. Engle-
wood Cliffs, NJ, USA: Prentice-Hall, 1993, vol. 1, Estimation Theory.

[27] N. S. Alagha, “Cramér-Rao bounds of SNR estimates for BPSK and
QPSKmodulated signals,” IEEE Commun. Lett., vol. 5, pp. 10–12, Jan.
2001.

[28] F. Bellili, A. Stéphenne, and S. Affes, “Cramér-Rao bounds for NDA
SNR estimates of square QAM modulated signals,” presented at the
IEEE WCNC, Budapest, Hungary, Apr. 2009.

[29] F. Bellili, A. Stéphenne, and S. Affes, “Cramér-Rao lower bounds for
NDA SNR estimates of square QAM modulated transmissions,” IEEE
Trans. Commun., vol. 58, no. 11, pp. 3211–3218, Nov. 2010.

[30] J. Yang, B. Geller, and S. Bay, “Bayesian and hybrid Cramér-Rao
bounds for the carrier recovery under dynamic phase uncertain chan-
nels,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 667–680, Feb.
2011.

[31] J. Yang, B. Geller, and A. Wei, “Approximate expressions for
Cramér-Rao bounds of code aided QAM dynamical phase estima-
tion,” presented at the IEEE ICC, Dresden, Germany, Jun. 2009.

[32] S. Bay, B. Geller, A. Renaux, J. P. Barbot, and J. M. Brossier, “On
the Hybrid Cramér Rao bound and its application to dynamical phase
estimation,” IEEE Signal Process. Lett., vol. 15, pp. 453–456, May
2008.

[33] J. Yang, B. Geller, and A. Wei, “Bayesian and hybrid Cramer-Rao
bounds for QAM dynamical phase estimation,” presented at the IEEE
ICASSP, Taipei, Taiwan, Apr. 2009.

[34] S. Bay, C. Herzet, J. M. Brossier, J. P. Barbot, and B. Geller, “Analytic
and asymptotic analysis of bayesian Cramér-Rao bound for dynamical
phase offset estimation,” IEEE Trans. Signal Process., vol. 56, no. 1,
pp. 473–483, Jan. 2008.

[35] J. P. Delmas and H. Abeida, “Cramer-Rao bounds of DOA Estimates
for BPSK and QPSKmodulated signals,” IEEE Trans. Signal Process.,
vol. 54, no. 1, pp. 117–126, Jan. 2006.

[36] J. P. Delmas, “Closed-form expressions of the exact Cramer-Rao
bound for parameter estimation of BPSK, MSK, or QPSK wave-
forms,” IEEE Signal Process. Lett., vol. 15, pp. 405–408, 2008.

[37] F. Rice, B. Cowley, B.Moran, andM.Rice, “Cramér-Rao lower bounds
for QAMphase and frequency estimation,” IEEE Trans. Commun., vol.
49, no. 9, pp. 1582–1591, Sep. 2001.

[38] W. Gappmair, “Cramér-Rao lower bound for non-data-aided SNR es-
timation of linear modulation schemes,” IEEE Trans. Commun., vol.
56, no. 5, pp. 689–693, May 2008.

[39] I. Bergel and A. J. Weiss, “Cramér-Rao bound on timing recovery of
linearly modulated signals with no ISI,” IEEE Trans. Commun., vol.
51, no. 4, pp. 634–640, Apr. 2003.

[40] F. Rice, M. Rice, and B. Cowley, “A new bound and algorithm for star
16-QAM carrier phase estimation,” IEEE Trans. Commun., vol. 51, no.
2, pp. 161–165, Feb. 2003.

[41] N. Noels, H. Wymeersch, H. Steendam, and M. Moeneclaey, “True
Cramer-Rao bound for timing recovery from a bandlimited linearly
modulated waveform with unknown carrier phase and frequency,”
IEEE Trans. Commun., vol. 51, no. 3, pp. 473–483, Mar. 2004.

[42] W. Gappmair, R. Lopez-Valcarce, and C. Mosquera, “Joint NDA es-
timation of carrier frequency/phase and SNR for linearly modulated
signal,” IEEE Signal Process. Lett., vol. 17, no. 5, pp. 517–520, May
2010.

[43] V. Lottici and M. Luise, “Embedding carrier phase recovery into
iterative decoding of turbo-coded linear modulations,” IEEE Trans.
Commun., vol. 52, no. 4, pp. 661–669, Apr. 2004.

[44] L. Zhang andA. Burr, “Iterative carrier phase recovery suited for turbo-
coded systems,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp.
2267–2276, Nov. 2004.

[45] T. Richardson, “The geometry of turbo-decoding dynamics,” IEEE
Trans. Inf. Theory, vol. 46, no. 1, pp. 9–23, Jan. 2000.

[46] N. Noels, H. Steendam, and M. Moeneclaey, “The Cramér-Rao bound
for phase estimation from coded linearly modulated signals,” IEEE
Commun. Lett., vol. 7, no. 5, pp. 207–209, May 2003.

[47] A. Jeffrey and D. Zwillinger, Tables of Integrals, Series, and Products,
7th ed. New York, NY, USA: Academic, 2007.

Faouzi Bellili was born in Tunisia, on June 16,
1983. He received the Diplôme d’Ingénieur degree
in signals and systems (with Hons.) from the Tunisia
Polytechnic School in June 2007 and the M.Sc.
degree, with the highest honor from the National
Institute of Scientific Research (INRS-EMT),
University of Quebec, Montreal, QC, Canada, in
December 2009. He is currently working towards the
Ph.D. degree at the INRS-EMT. He authored/co-au-
thored over 40 peer-reviewed papers in reputable
IEEE journals and conferences. His research focuses

on statistical signal processing and array processing with an emphasis on
parameters estimation for wireless communications. Mr. Bellili was selected
by the INRS as its candidate for the 2009–2010 competition of the very
prestigious Vanier Canada Graduate Scholarships program. He also received
the Academic Gold Medal of the Governor General of Canada for the year
2009–2010 and the Excellence Grant of the Director General of INRS for
the year 2009–2010. He also received the award of the best M.Sc. thesis of
INRS-EMT for the year 2009–2010 and twice—for both the M.Sc. and Ph.D.
programs—the National Grant of Excellence from the Tunisian Government.
He was also rewarded in 2011 the Merit Scholarship for Foreign Students from
the Ministère de l’Éducation, du Loisir et du Sport (MELS) of Québec, Canada.
Mr. Bellili serves as a TPC member for the IEEE GLOBECOM conference
and he acts regularly as a reviewer for many international scientific journals
and conferences.

Achref Methenni was born in Dammam, Saudi
Arabia, on November 19, 1987. He received the
Diplôme d’Ingénieur degree in telecommunication
from the Ecole Supérieure des Communications de
Tunis-Sup’Com (Higher School of Communication
of Tunis), Tunisia, in 2011 and the M.Sc. degree
from the Institut National de la Recherche Scien-
tifique-Energie, Matériaux, et Télécommunications
(INRS-EMT), Université du Québec, Montréal, QC,
Canada, in 2013. He is currently working toward
the Ph.D. degree at INRS, Montreal, QC, Canada.

His research activities include signal processing for Turbo-coded systems, and
parameters estimation for wireless communications in general. Mr. Methenni
received twice—for both the M.Sc. and Ph.D. programs—the National Grant
of Excellence from the Tunisian Government.

Sofiène Affes (SM’04) received the Diplôme d’In-
génieur in telecommunications in 1992, and the
Ph.D. degree with honors in signal processing in
1995, both from École Nationale Supérieure des
Télécommunications (ENST), Paris, France. Since
then, he was with INRS, Canada, as a Research
Associate until 1997, an Assistant Professor until
2000, and Associate Professor until 2009. Currently
he is Full Professor and Director of PERSWADE,
a unique 4 million dollar research training program
on wireless in Canada involving 27 faculty from 8

universities and 10 industrial partners. Dr. Affes has been twice the recipient
of a Discovery Accelerator Supplement Award from NSERC, from 2008 to
2011, and from 2013 to 2016. From 2003 to 2013, he held a Canada Research
Chair in Wireless Communications. In 2006, he served as General Co-Chair of
IEEE VTC’2006-Fall, Montreal, Canada. In 2008 he received from the IEEE
Vehicular Technology Society the IEEE VTC Chair Recognition Award for
exemplary contributions to the success of IEEE VTC. He currently acts as
an Associate Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS and
the Wiley Journal on Wireless Communications & Mobile Computing. From
2007 until 2013 and from 2010 until 2014, he has been an Associate Editor
for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, respectively. He is serving now as
General Co-Chair of IEEE ICUWB to be held in Montreal in fall 2015.


