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Abstract—In this paper, we present a new implementation of the
maximum likelihood criterion for the estimation of the time de-
lays in a multipath environment and then extend it to the estima-
tion of the time difference of arrival when the transmitted signal
is unknown. The new technique implements the concept of impor-
tance sampling (IS) to find the global maximum of the compressed
likelihood function in a modest computational manner. It thereby
avoids traditional complex multidimensional grid search or initial-
ization-dependent iterative methods. Indeed, one of the most inter-
esting features is that it transforms the multi-dimensional search
inherent to multipath propagation into a much simpler one-dimen-
sional optimization problem in the delays dimension. Moreover, it
guarantees convergence to the global maximum, contrarily to the
popular iterative implementation of the maximum likelihood crite-
rion by the well known expectation maximization (EM) algorithm.
Comparisons with some other methods such as the EM algorithm,
MUSIC and accelerated random search (ARS) demonstrates the
superiority of the proposed IS-based multipath delay estimator in
terms of estimation performance and complexity.

Index Terms—High-resolution methods, iterative methods, im-
portance sampling, maximum likelihood (ML) estimation, Monte-
Carlo methods, multipath propagation, timing recovery.

I. INTRODUCTION

IME delay estimation is a well studied problem with ap-

plications in many areas such as radar [2], sonar [3], and
wireless communication systems [4]. Typically, to allow esti-
mation of the time delay, an a priori known waveform is trans-
mitted through a multipath environment, which consists of sev-
eral propagation paths, among which the dominant ones, rela-
tively few, are considered. If the transmitted waveform is un-
known, only the difference of arrival times can be estimated
from the received signals at multiple separated antennas or sen-
sors [5]. In what follows, we will treat the two cases.

These two time delay estimation problems have been ex-
tensively studied in previous years [6]-[8]. The maximum
likelihood (ML) estimator is well known to be an optimal
technique. For the problem at hand, the likelihood function
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depends on the time delays and on the complex channel coeffi-
cients making its solution intractable in a closed form. A direct
implementation of this criterion requires a multidimensional
grid search, whose complexity increases with the number of
unknown delays. Therefore, iterative methods, such as the ex-
pectation maximization (EM) algorithm, have been developed
to achieve the well known Cramér-Rao lower bound (CRLB)
at a lower cost. But their performances are closely linked to
the initialization values and their convergence may take many
complex iterative steps and therefore, a tread-off must be found
between complexity and accuracy. Hence, there is yet a need
for developing a non-grid-search-based and a non-iterative ML
estimator with acceptable complexity. Alternatively, sub-op-
timal methods based on the eigen-decomposition of the sample
covariance matrix, which initially gained much interest in the
direction of arrival estimation, were later exploited in the con-
text of time delay estimation [9], [10]. While these suboptimal
techniques offer an attractive reduced complexity compared to
the grid-search implementation of the ML criterion, they still
suffer from heavy computation steps due to the eigenvalue de-
composition. Moreover, their performances are relatively poor
compared to the ML estimator, especially for closely-spaced
delays and/or few numbers of samples.

Motivated by these facts, we derive in this paper a new non-
iterative implementation of the ML time delays estimator which
avoids the multidimensional grid search by applying:

i) the global maximization theorem of Pincus proposed in
[11]

ii) a powerful Monte Carlo technique called importance
sampling (IS) offering thereby an efficient tool to find
the global maximum of the likelihood function.

Note here that many other traditional Monte Carlo techniques
(besides the IS method) can also be successfully applied. How-
ever, unlike the IS method, they are usually generated according
to a complex probability density function (pdf). Among these
methods we cite pure random search (PRS) which consists of
sampling i.i.d. random variables {X,,L}f:1 with uniform dis-
tribution and then computing arg max(f(X,),n = 1,..., R)
where f(.) is the function to maximize. PRS is easy to imple-
ment but its convergence is very slow. A modified version of
PRS, namely accelerated random search (ARS), was proposed
in [20] with faster convergence than PRS. Yet the IS technique
offers a powerful alternative in which the required realizations
are easily generated according to a simpler pdf. Additionally, it
offers a more judicious way to process the obtained realizations
using a simpler pdf [12]. This method has indeed been applied
to the estimation of the direction of arrival (DOA) [14], the joint
DOA-Doppler frequency [13], and more recently to the estima-
tion of the time delay in the context of modulated signals and a
single propagation path [15].
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To compare the current work with that of [15], we can high-
light the following differences: The main objective of the work
disclosed in [15] was to estimate the delay of a single path from
linearly modulated signals in the NDA (non data aided) case.
The compressed likelihood function was derived by injecting
back the ML estimates of the symbols as function of the un-
known single delay. All the derivations were carried out in the
time-domain and the problem was inherently one-dimensional.
A practical expression of the likelihood function was obtained
by using a discrete-time signal model. The problem considered
in this paper is to derive maximum likelihood estimators for
both the multiple delays and their time differences of arrival in
a multipath environment when the transmitted signal is known
or unknown, respectively (i.e., active and passive modes, re-
spectively). The optimization problem is therefore multi-dimen-
sional in nature. Hence, we reformulate it in the frequency-do-
main and the compressed likelihood function is derived by in-
jecting back the ML estimates of the channel multipath coeffi-
cients. Our major contribution consists in transforming the in-
tractable multi-dimensional search problem into an equivalent
one-dimensional optimization. In fact, we succeed through the
manifold-based model to find a periodogram that contains all
the information about all the unknown delays through its main
lobes. Thus, the single- and multipath problems are very dif-
ferent although they both treat time synchronization. We will
show that the direct use of the single-path time-domain formu-
lation in [15] will lead to very poor performance compared to
our new multipath IS-based estimator, thereby underlining the
importance and novelty of the proposed new frequency-domain
formulation.

The remainder of this paper is organized as follows. In
Section II, we present the system model for the active mode
(i.e., known transmitted pulse) and derive the corresponding
compressed likelihood function to be maximized. In Section III,
we detail the global maximization method applied to our
problem. In Section IV, the importance sampling technique
is described and then applied to the estimation of the time
delays both in active and passive modes. Simulation results are
discussed in Section V and, finally, some concluding remarks
are drawn out in Section VL.

II. SYSTEM MODEL AND COMPRESSED LIKELIHOOD FUNCTION

Consider an a priori known signal x:(t) transmitted through
a multipath environment. The received signal is a superposition
of multiple delayed replicas of the known transmitted waveform
modelled as follows:

r
mw=§hwufm+wm, (1)

where P is the total number of multipath components, w(#)
is an additive noise and @ = [ay,s,...,ap]T are the un-
known complex path gains resulting from scattering and fading
through the propagation medium. In addition, {Ti}fll are the
unknown time delays to be estimated and gathered in the vector
T =[r,72,...,7p| . If Fy = Ti is the sampling frequency,
the resulting samples, taken at instances {17 }:?:1 are:
P

y(nTy) = Z ax(nT,—7)+w(nTs), n=0,1,...,N—1,
i=1

where N stands for the total number of available samples and
the noise w(nTs) is a complex white Gaussian noise.

In general, the IS principle is suitable for the estimation of
non-linear parameters from the general linear models (GLM)
described as:

y=(0)s +w, (3)

where y = [y(0), y(T%), ..., y((N — 1)T,)]T is the received
data vector which depends linearly on some nuisance unknown
parameters 8 and non-linearly on the delays #. However, in con-
trast to the single-path scenario in [15], the time-domain for-
mulation of the input-output relationship in (2) cannot be used
as an input of our estimator without significant loss in perfor-
mance. Rather, a new frequency-domain formulation will be
adopted here. The reasons behind this important claim will be
discussed later in Section IV-A once the algorithm will be de-
veloped. Here, the received samples are transformed into the
frequency-domain where the model could be expressed in a ma-
trix form. In fact, taking the discrete Fourier transform of (2),
we obtain:

k=0,1,...,N—1,
! ) . “)
where {Y (k)12 {X (k)10 and {W(k)}n_," are the dis-
crete Fourier transforms (DFTs) of y(nT5), «(nT;) and w(nTy),
respectively. Then, considering this transformation, the channel
coefficients vector ¢ and the time delays T manifest themselves
as the linear and non-linear unknown parameters, respectively.
Hence we transform the basic model in (2) into the general form
of (3), using a compact representation of (4) as follows:

Y =&, (r)a+ W, (5)

in which ¥ = [Y(0),Y(1),....Y(N — 1)]T is viewed
as the received vector, &« = [a1,q9,...,ap]T and
W = [W(0),W(),....W(N — 1)]T is a complex white
Gaussian noise vector containing the DFT coefficients of sam-
ples of the additive noise. The matrix! ®,(7) depends only on

the unknown delays gathered in the vector 7 and is given by:

®,(1) = [#u(71), ba(72), -, bul7r)] (6)
with the columns {¢a(r,;)}f:1 being defined as:
$u(r) = [X(0). X (e “F* X (@)e T

J2m(N—1

)w 1T
X(N —1)e 7 } G

and X = [X(0),X(1),....,X(N — 1)]F and W =
(W(0),W(1),...,W(N — 1)]T are the (N x 1)-dimen-
sional vectors containing the DFT coefficients of samples
corresponding to the known transmitted pulse and the additive
noise components, respectively.

First, we consider the active model where, in contrast to the
passive model treated later in Section IV-B, the transmitted
signal z(t) is known to the receiver. Now, following the same

Note that we index ®,,(7) by a to refer to the active mode.
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arguments of [16], the likelihood function of the active model
(5) is given by:

1 1
A(T, Of) X p(Y,T,a) = WCXP{ — ?

X (Y~ &,(n)a) (Y — &,(r)a) } ®)

where p(Y'; 7, @) is the probability density function (pdf) of Y’
parameterized by 7 and & and o2 is the spectrum power of the
noise. Actually, the ML solution T, is defined as the global
maximum of the likelihood function in (8) with respect to 7.
However, this formulation of the likelihood function imposes a
joint estimation of 7 and & which is computationally intensive.
Therefore, it is of interest to obtain a likelihood function that de-
pends only on 7 that can be more easily handled. Observing that
AT, @) is quadratic with respect to ¢, we consider the nuisance
parameter, «, as deterministic but unknown and substitute, in
(8), a by the solution @(7) which maximizes the log-likelihood
function L(7, &) = In{A(7, @)} for a given 7. Indeed, it can be
shown that @(7) is given by:
-1
a(r) = (8l (ne.(r) el (Y. ©)
Replacing e in (8) by @(7) and omitting the terms that do
not interfere in the maximization with respect to 7, we obtain
the so-called compressed likelihood function of the system as
follows:

Lo(r) = %YH{)G (r) (@2 (1)@u(7)) ey, (0)

III. GLOBAL MAXIMIZATION OF THE COMPRESSED
LIKELIHOOD FUNCTION

To find the desired ML estimate, we need to maximize the
compressed likelihood function in (10) over 7. Yet, L.(T) is
non-linear with respect to 7; hence, a closed-form solution
seems analytically intractable. It is quite common in the current
literature to solve this maximization problem in an iterative
way, as an alternative for the trivial multidimensional grid
search. However, iterative approaches require an initial guess,
usually taken from the output of another suboptimal algorithm.
The iterative quadratic ML (IQML) [17] and the expectation
maximization (EM) algorithm [6], taken as examples in our
simulations, are some of the most famous iterative implemen-
tations of the ML estimator. Naturally, the performances of
these iterative algorithms depend severely on the available
initial guess and may even converge to a local maximum re-
flecting estimates which are completely different from the real
values of the delays (corresponding to the global maximum).
Other numerical algorithms have been developed to optimize
non-linear functions such as the simulated annealing technique
[19] and the accelerated random rearch (ARS) [20] and could
be applied here with various computational costs.

In this context, the global maximization theorem proposed by
Pincus [11] offers an alternative to find the global maximum of
multidimensional functions, such as the one at hand in (10). In-
terestingly, it does not require any initialization and guarantees
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the convergence to the global maximum. The idea is very simple
and claims that the solution is given by (11):

Sy Jyriexp {pLe(r)} dT
p=oe [roo [yexp{pLe(T)}dT

where .J is the interval in which the delays are confined. The
only requirements to prove (11) are [11]:

+ the function L.(.) is defined over a compact;

« the function L.(.) is continuous in this compact;

« the function L.(.) attains its global maximum at exactly

one point of the compact.

Clearly, our objective function (the compressed likelihood
function) pL.(T) is continuous and from estimation theory the
compressed likelihood function have one global maximum.
Therefore convergence is guaranteed. Defining the pseudo-pdf?
L (7), for some large value of pg, as:

exp {poL.(T)}
f.] .. fJ exp {poL.(T)} et

then the optimal value of 7; is simply given by:

L. ()=

C:Po

(12)

7= / .../Ti/L;’pU(T)(lT./ i=1,2,..., P (13)
7 7

Intuitively, we can say that as py tends to infinity, the function
L. ,, () becomes a P-dimensional Dirac-delta function cen-
tered at the location of the maximum of L.(7). Thus, the ML
estimate is simply obtained from the evaluation of the P-di-
mensional integral in (13). Yet, this is a difficult task due to the
complexity of the involved integrand function [the pseudo-pdf
L. ,,(-)]. One solution is to exploit the fact that L, , (.) is a
pseudo-pdf and interpret 7; as the expected value of 7;, the i*”
element of a vector 7 distributed according to the multidimen-

sional pseudo-pdf L, , (.). Therefore, if one is able to gen-
erate ¢ realizations of a random vector, {'rk}f:l according to
L. ,, (1), it is reasonable to approximate the expected value of
7 using Monte Carlo techniques [12] as follows:

R
7= Th (14)
k=1

=l

Hence, we substitute the complex integration in (13) by a
simple samples average. Clearly, as the number of generated
values R increases, the variance of the sample mean becomes
smaller and T gets closer to the global maximum of the com-
pressed likelihood function. Yet a practical issue remains as how
to easily generate realizations according to L. , (7). The pro-
posed pseudo-pdf is a non-linear function of 7 and needs to op-
erate in a multidimensional space, which is not suitable for easy
generation of realizations. One solution is to approximate the
actual pseudo-pdf by a one-dimensional function and transpose
the problem of generating a vector to the generation of P inde-
pendent variables, then resort to the concept of IS as described
in the next section.

2L27p(] (7) is designated as a pseudo-pdf since it has all the properties of a

pdf although 7 is not really a random variable.
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IV. THE IMPORTANCE SAMPLING BASED
TIME DELAYS ESTIMATION

A. IS Concept

Importance sampling [18] is a Monte Carlo technique which
makes use of an alternative distribution (carefully designed) to
generate realizations. It is usually applied when the original dis-
tribution does not have a practical form, like L;, , (.) given in
our problem.

The approach is based on the following simple observation
on the integral involved in (13):

/ /TL;ﬂO dr—/ / q’r)dr, (15)

where g(T)’ is also assumed to have all the properties of a pdf,
called normalized importance function (IF). Thep, the right-

c.rQ

hand side of (15) is interpreted as the mean of 7; — o) when
T is generated according to ¢'(7). Unlike L;, , (.), it is of in-
terest to choose g(7)’ to be a simple function of 7. Then, we use
Monte-Carlo approximation to numerically compute the expec-

tation as done in (14):

[

where T, is now the k%" realization of T according to ¢’(.).
Clearly, the choice of ¢’(.) affects the estimation perfor-
mance. An inappropriate choice of g'(.) may need a large
number of realizations R to reduce the estimation variance and
result in a higher computational complexity. Therefore, the
value of 12 depends on how much ¢'(.) resembles L, , (.). In
the ideal case, generations according to g(.)" are the same as if
they were generated according to LL po( ). Therefore, ideally,
the shapes of the two functions g'(.) and L/, , (.) should be
similar to reduce the variance of the estimator given by (16)
[14]. On the other hand, we should keep in mind that ¢’(.) has
to be simple enough so that realizations can be easily generated.
Thus some tradeoffs are required to choose a function as simple
as possible yet similar to L , (.). In what follows, we will
show that owing some simplifications of L, , (.), we can build
an appropriate function g'(.) to properly generate variables.
Now, coming back to the expression of the actual compressed
likelihood function in (10), the inverse matrix (® (7)®, (1))
makes the compressed likelihood function, and consequently
the pseudo-pdf L, , (.), very non-linear with respect to 7. One

R /

1 Lc.pg(Tk7)
~— Th— >
Py

k=1

(16)

can approximate QH(T)@ (1) by a diagonal matrix to avoid a
heav}y; computation of the inverse. In fact, the diagonal elements
of & (7)®,(T) are given by:

[(8¥r),n)] =Y 1x(?
" k=0

and its off-diagonal elements are:

(e me.m)], =

1=1,2,...,P, (17)

F27k(Ton — T,
X _—
§ | 3l PXp{ ¥
(18)

m,nzl,?,...,P,m;«én.

1.2 : :
time domain
= frequency domain
1 - - :
08
=
g
£ 0.6
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Fig. 1. Complementary cumulative distribution function of the ratio K (7., .5 )

with a chirp transmitted signal.

It is easy to verify, for 7,,, # 7, that:

[(eVme.m)]  <[(efme.m)] -

ThlS 1nequa1ity gives a week proof to approximate
o gr)q) ) by a diagonal matrix. We verify statistically that
(@, (T)®.(T))]rn is much smaller than (@7 (7)®, (7)1
w1th very high probability for almost all possible values
of the delay difference 7, — 7,. To that end, we consider
Trmin = Tm — Tn, as arandom variable uniformly distributed in?
[T, T] and we define K (7. ), the ratio (18)/(17), as follows:

Tk X (0 exp { 225}
S X

Then, we plot in Fig. 1 (T is equal to there) the comple-
mentary cumulative distribution function of K (7p:n) (random-
ized according to 7y, ), to verify that the diagonal elements of
®" (1)®,(7) are indeed dominant, with very high probability,
compared to its off-diagonal elements. Therefore, we adopt the
following well-justified approximation:

where I, is the p x p identity matrix. Then, we define the im-
portance function, g,, (.), in the active case as:

gﬂl (T) :exp{ 9 Zk

where p; is another constant different from p, for some practical
reasons. A further discussion on the appropriate choice of py and
p1 is left to the end of this section.

After some easy algebraic manipulations, we express (22) as:

(19

K(T’)’L;IL) = (20)

wa

& (r (1)

P Yo, (rel Y}, 2
TX (0P (1)@, (1) (22)

on (1) = [ ] ex p{ o 011‘X( o I(Ti)}, (23)

=1

3We consider here that the delays do not exceed T'.
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where I(7;) is the periodogram of the data in the frequency-
domain evaluated at each delay 7; as follows:

i X(k)'Y(k)exp {‘M} ‘ . (24

I(r;) = N
k=0

Note here that the multiplicative terms X (k), & = 0,..., N—
1 act as weighting factors. In fact, Y (k) is the DFT coefficient
of the received signal. Outside the transmitted signal frequency
band, Y (k) is composed only of noise. In this band, X (k) is al-
most equal to zero. Therefore the product X (k)Y (k) is close to
zero and this reduces the effect of noise in /{.). This property
improves considerably the performance of the estimator com-
pared to some other approaches where the received signal is di-
vided, in the frequency-domain, by the DFT of the known trans-
mitted waveform [9]. Actually, this operation is not suitable for
narrowband signals since it results in some harmful effects by
amplifying the additive noise in the low-energy frequencies. It
is suitable only for wideband signals, in contrast to our algo-
rithm which is also well adapted to narrowband signals.

Now, we comment on the advantage of this choice in (23)
for the importance function (IF). First, we notice that the joint
contribution of the different delays in g,, (.) is separable into
the product of their individual contributions as seen from (23).
Therefore, we successfully transform the multi-dimensional
search problem into a one-dimensional optimization. Hence,
we substitute the brute generation of realizations of the vector
T according to a multi-dimensional pdf to the generation of P
independent scalar realizations (i.e., one realization for each
entry of 7) using the elementary IF, g, (7;), defined as:

21 .
exp{az NSO IW}

Gp (T0) = (25)
fJ exp {WI(F)} dt
Finally, the normalized IF is given by:
gyir) = —mewlillr)
Sy Sy Tz exp {p1 T (ua) } du
with
o = ZA_ﬂl'X( o @7)

We mention that the choices of the parameters p} and pg are
of great importance since they affect the performance of the new
estimator. In fact, as already mentioned, g;, (1) is separable as

1

the product of P elementary IFs, [ (.), corresponding to each
delay 7; (i.e., g;,l (r) = Hil 9, (7i)). Hence, in practice, we
use the same 9y, (T) P times to generate the P elements of
the vector 7. Actually, for a noise-free observation, the function
g, () exhibits exactly P lobes centered at the locations of the
true delays and at each run, a realization is generated from the
vicinity of one of the P lobes. However, in the presence of ad-
ditive noise, other secondary lobes appear and ultimately affect
the generated values. For this reason, the parameter p} should
be increased to render the objective function 9 (.) more peaked

around the actual delays {7; }/._, . This behavior is illustrated in
Fig. 2 where we plot the function g, (.) for two values of p}.
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Fig. 2. Plot ofﬁprl(.) at SNR = 10 for (a) p; = 1 and (b) p; = 6.

Yet, we observe that p} cannot be increased indefinitely. In fact,
very large values of p} will ultimately destroy some useful lobes
and hence useful realizations may not be generated. Obviously,
proper choice of p} is of great importance. Its optimal value
should be the highest one that makes at least* P main lobes’
appear in Gt (.). Moreover, by attenuating the secondary lobes,
we reduce the probability of generating undesired realizations.
Consequently a good choice of pj reduces the number of neces-
sary realizations R and hence the complexity of the estimator.
Recall that the normalized IF g, : (7) is built upon an approx-
imation of the actual compressed likelihood function which re-
sults in biased estimates of the delays, especially at low SNR
values. However, we emphasize here the fact that this bias can
be reduced by the presence of the actual compressed likelihood

function in the weighting factor Le ”0(( D in (16). Thus, we can

maximize the contribution of L, , J) in the weighting factor by
choosing p} smaller than pg. The IS-based estimator requires
the generation of realizations according to 9 (.) then evalu-
ating the following mean values:
Z (i) ”° (7e) (28)

T % )
where 7, is the k" generated vector and T4 (i) refers to its "
element. The delays can actually take any positive value, but
in practice, they are confined in the interval [0, T] where T' is
any positive real value that can be chosen high enough® so that
€[0,T] fori =1,2,..., P. Therefore, since the parameters
are bounded from below and above, it is more convenient to use
the circular mean [21] instead of the linear mean in (28). In this

4q ot (.) should have exactly P lobes, but the additive noise makes other rel-
atively small secondary lobes appear.

SMain lobes are the ones which are centered around the actual unknown de-
lays while secondary lobes are those which are centered around value that do
not correspond to any one of the true delays.

6In network communications, the delays are usually confined in the symbol
duration, whereas for radar and sonar systems, the symbol duration does not
really exist and the observation window must be longer than the largest delay.
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context, the alternative formulation of the IS-based estimator is
given by:

1 1&E (i)

~ . k

=l Y F(T)exp { j2m o

Ti ZWTARk:l (”')GXP{*’ T } (29)

where F(1}) is the weighting factor defined by:

Lé,po (’rk)

F(Tk‘) = g’/(’rk) :

(30)

From the formulation in (29), we only need to find the
angle of a complex number. Therefore, any positive multi-
plicative term will not affect the final result. Thus, the two
strictly positive constants [, ... [ exp{poL.(x)}dz and
[y [, I exp{piI(u;)}du;, used in the normalization of
L’F ,,0( Y and gﬂl( &), respectively, can be dropped. However, the
exponential terms in both the numerator and the denominator
of the weighting factor F'(.) may result in an overflow in the
computation. To circumvent this problem, F(.) is substituted
by F'(.):

r
F'(Ti) = exp {ﬂOLc(Tk) - Z I (7(2))

(/’OL (T1) )} (€2))

Note from (31) that the arguments of the exponential terms
are either negative or zero and that the values of the exponential
cannot exceed one.
Summary of Steps: In the following, we recapitulate the dif-
ferent steps for the direct implementation of the new algorithm:
1) Compute the DFT [Y(0),Y(1),...,Y (N — 1)] of the re-
ceived signal samples.

2) Use the Fourier transform coefficients to evaluate the peri-
odogram according to (24).

3) Compute the samples of the one-dimensional pdf g,/ (),
used for the generation of the required realizations, at K
points as:

— max
1<IKR

exp{pl(m)}
Sy exp {piI(mi)}

where K is the total number of points’ in the interval J,
ie, J = {(), %, ey Trnas — %, Tmaw} which determine
the precision of tuning. Note that we substitute the integra-
tion in the denominator of g, (.) by a summation over the

discrete points of the interval J.

gp'l (Tl> =

7K stands for the number of points { 7] lK: El for which we evaluate the
one-dimensional pseudo-pdf g:‘, (.) and whose obtained values are used during
1

the generation of the corresponding random realizations. In fact, the interval

J = [0. Trmas], where 7., is the maximum delay value, is discretized into
small equal-size bins of width “22* over which the points 7 = %me for
1 =0,1,..., K — 1 are considered. It is clear, then, that there is degree of

freedom regarding the choice of K. For instance, K can be freely selected to
meet any intended resolution and/or accuracy. Actually, if we aim at estimating
the unknown delays with a resolution of A7{"**}  then we should simply select
K to satisfy Tmas < Ar(res) or K > %%y Of course, as K increases,
the computational cost becomes higher.

4) Generate one realization of 7 using g/, . (.). To do so, we
generate realizations according to Gt (.) P times to re-
trieve one realization of the P-dimensional vector 7. More
details on this point are left to the Appendix. Repeat this
step I — 1 times.

5) Evaluate the weighting factor F’'(r;) fori = 1,2,..., R
and compute the circular mean of the generated values bal-
anced by the weighting factors to find the ML estimate of
the multiple unknown delags Note that we must evaluate
the term po L.(77) — p} >_,,,—1 I(T1(m)) for all generated
vectors {'rl};il before computing F' ().

Frequency—vs. Time-Domain Formulation: To better jus-

tify our frequency-domain formulation, considering the time-
domain formulation in (2), a compact representation of the re-
sulting samples is given by:

y=:(1)a+w,
in which y = [y(0).y(T%),....y((N — D)T,)], w =

[w(0), w(Ty),...,w((N — 1)T,)] and ®,(7T) depends on
the time delays vector and is given by:

(33)

®,(1) = [p:(11): §u(72): - .-, b (7P)] (34)
with the columns {qﬁt(n)}il being defined as:
(i) = [o(—m),w(Ts — i)y (N = DT - 7))
(35

However, unlike the proposed formulation in the frequency-
domain, the problem with this time-domain representation is
that the approximation

&H (1)®,(1) ~ Ip, (36)

would no longer be accurate. In fact, following the same steps
from (17)to (20), the diagonal elements of ®; (7)®,(7) will be
given by:

N—-1
[(@H( )@, )} Z (kT —m))?, 1=1,2,....P,
! 37
and its off-diagonal elements are:
N-1
[(cpf (T)Qt(r))}m_n: S (KT, — 7n)e(KTs — 7))
’ k=0
mn=1....Pm#*n. (38)

Similarly, we can consider here the delay difference 7,,, ,, =
T,n — Tr, @s a random variable and define, as done in the fre-
quency-domain, K (7., ), the ratio (38)/(37), as follows:

S o *(KTs — ) (kKTs — 72)
Y :f |T<M;

In Fig. 1, we also plot the complementary cumulative distri-
bution function of K (7., ) (randomized according to 7,,.,) to
compare this time-domain ratio with the one earlier obtained
in the frequency-domain. Clearly, the probability that the diag-
onal elements of ®. (7)®,(t) are dominant in the time-domain
is significantly lower than the probability that the diagonal ele-
ments of @ (7)®,(r) are dominant in the frequency-domain.

K(T’ITL;H) - (39)

- Tm)'
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Therefore, we would not be able to neglect the off-diagonal el-
ements of ®/ (7)®,(r) compared to its diagonal elements and
thus a diagonal approximation of ®; (7)®;() would no longer
be accurate and hence possible in the time-domain. We recall
here that this approximation is extremely important in order to
obtain a simple importance function as the one obtained in the
frequency-domain.

To conclude, unlike the time-domain formulation in [15], pro-
posed developments in the frequency-domain allow us to obtain
a very simple one-dimensional importance function, one of the
key contributions of this work. The net advantages of the new
frequency-domain formulation against the time-domain formu-
lation in [15] will be clearly illustrated by simulations later in
Section V.

B. Time Delays Estimation in Passive Systems

In a passive system, the transmitted signal is considered to
be unknown. In this case, only the time difference of arrival
(TDOA) can be estimated from multiple received signals at
spatially separated destinations [5]. In this section, we assume,
without loss of generality, the presence of two separated sen-
sors. The received signals at these two sensors are modelled as:

.7/1 th

y2(t) = Z Qo 2(t — T24) + walt),

=1

= T13) + wi(t), (40)

(41)

where {Tn;i}f:"l and {an;i}f;"l, forn = 1,2, are the delays and
the complex gains of the received signal at the nt" sensor and
{P,}>_, are the known numbers of multipath components. For
the sake of simplicity, suppose that i (¢) has only one signal
component (P} = 1). The received signal at this sensor is con-
sidered as a reference and hence it is assimilated to a noisy
known signal. Then, similarly to (4), we express the sampled
signals (40) and (41) in the frequency-domain as:

127 kTy.
Tk =X e {20 L wn. @)
s 2k
Yo(k) = Zl s X (k) exp {TZ} + Wa(k),
k=0,1,...,N -1, (43)
where  {Vilh)hle  {Va(B)hloo  {Wi(RZ, and

{Wg(k)}k:() are N samples of the Fourier transform of
samples of y1(%), y2(t), wi(t) and wa(t), respectively. As
mentioned above, the TDOAs will be estimated by considering
the received signal in the first sensor as a reference. This
s1m lifies to the estimation of the P, delay differences

= Ty; — T1;1 fori = 1,3,..., P>. Therefore, we rewrite
(43) as follows:

r, NG
2k A
Ya(k) = E 3;Y1(k) exp {—JT

=1

} + Wy(k), (44)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 1, JANUARY 1, 2013

in which

()[2;1‘ .
ﬁi:, 5 ’1/21,2,...
@11

()
J2rkAS
W, (k) = Wa(k Z@Wl pr{ T} (46)

P, (45)

Doing so, we highlight the parameters of interest in the ex-
pression of Y2 (k). Moreover, there is an analogy between the
formulation of the active case in (4) and the passive one in (44).
More precisely, the major difference is in the reference signal
(X for the active case and Y'; for the passive case).

Then, gathering all the frequency samples, we obtain the fol-
lowing matrix representation:

Y, = [¥2(0), Ya(1),.
=®,(A;)B+ Wp»

Yp(N - 1)]”
(47)

where the matrix ®,(A ;) is function of the TDOAs defined as:
®,(A,)= [¢p (AgU) .6, (AQ)) s (Agpﬂ)} . (48)
2 (@)
() _]27TA7—
8, (A1) =r©.m0 )exp{ e

N T
j2r(N — DAY }

Yi(N — 1)exp {

N b
i=1,..., P (49)
ﬂz{%, @,....—QQ;P‘Z]T. (50)
Ull;l 041:,1 (11;1
and
T
A, = [A 1 A(?X...,AQPJ)} (51)

is the vector of the TDOAs of interest. W, is a complex white
Gaussian noise vector containing the samples { W, (k) 2\;01
Considering these notations, it turns out that the estimation of
the TDOASs can be performed using the same algorithm devel-
oped above for the active system. We only have to substitute the
vector ¢, (7) by (bp( +) and X (k) by Y1 (k) in the expression
of the periodogram in (24). The remaining steps follow in the
same way.

Now we rediscuss the estimation problem when P; is dif-
ferent from 1. The problem then consists of estimating P x P»
different parameters. To that end, we refer again to the results of
the active case. P, X P» values are generated according to 9y, ()
by substituting X (k) and Y (%) in the expression of I(.) by Y1 (.)
and Y5(.), respectively. Then, the generated values are classified
from the smallest to the highest and organized as follows:

A= AN A A

Al (52)

where each vector {A )k} is formed from P> TDOAs. The
final step consists of evaluatmg the following means as in (29):

A,
A-rrﬂl’:b = 9 T I ZF( rn)) €xXp {j?Tr 7—,;(”)} (53)
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Fig. 3. Estimation performance of the IS-based algorithm in the time and fre-
quency domains.

V. SIMULATION RESULTS

To properly assess the performance of our new IS-based ap-
proach, we compare the performance of the proposed IS-based
method to the expectation maximization (EM) algorithm [6] as
one representative example of the iterative implementations of
the ML criterion and to the MUSIC-type algorithm proposed in
[5] as one representative example of suboptimal subspace-based
methods. We also compare our solution to the ARS technique
[20], a numerical algorithm developed to optimize non-linear
functions, by applying it to the likelihood function. The esti-
mation error of the different estimators is also compared to the
Cramér-Rao lower bound (CRLB) which reflects the theoret-
ical achievable performance taken as a benchmark for all the
considered algorithms. In all simulations, the transmitted pulse
is a chirp signal which is widely used in radar and sonar appli-
cations. The number of samples is set to N = 70. We consider
3 propagation paths with closely-spaced delays [37, 6T, 8T].
The multipath gain is assumed to be equal for the three paths
and we fix R to 1000. Note that R affects the accuracy of the
proposed estimator. Its value can also be freely chosen as high
as possible and it is clear that a very large value of R results
in a consistent estimate of the mean value computed in (29)
as well-known from estimation theory. But, by increasing I?,
we are actually trading increased complexity for enhanced es-
timation accuracy. After extensive simulations, we found that
a relatively small value of R = 1000 yields very satisfactory
trade-off between performance and complexity, since the esti-
mator reaches the CRLB over a wide SNR range. The SNR is
defined as SNR = £ F,,O .

To further illustrate previous discussion in Section IV-A on
the net advantages of the new frequency-domain formulation of
the IS-based algorithm against the alternative time-domain in
[15], we compare the mean square error (MSE) performance of
both resulting implementations. As expected there, essentially
from the accuracy or inaccuracy of the frequency- and time-do-
main diagonal-matrix approximations of (21) and (36), respec-
tively (see also Fig. 1), Fig. 3 clearly shows that the performance
of the time-domain estimator would degrade considerably com-
pared to what can be achieved by the proposed frequency-do-
main estimator.

(a)

b
10' : 10 _© :
& || —@— Ist path —&— st path
—#— 2nd path —#— 2nd path
& 3rd path 3rd path
10'}
100.
0 58]
2] » 100
= =
107!
107!
e
—2 i P —2 i i
i 0 10 20 30 10 5 , 10 15
Po P

Fig. 4. Estimation performance vs. (a) po and (b) p;.

(@) (b)
11 — — 2.5
——11=3T | ——T
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=i g 05
4t ' &
3 Lﬂ 0, Sy
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Fig. 5. Estimation bias of the IS-based algorithms vs. SNR (a) E { ;—7} and
by E{z} -2

As mentioned in Section IV, the algorithm is sensitive to the
choice of py and p). To study the effect of each parameter on
the estimation performance, we fix one of them and vary the
other. It is seen from Fig. 4(a) that there is no dependence on
the value of pp as soon as pg is larger than p. On the other
hand, as illustrated in Fig. 4(b), p} affects seriously the esti-
mation performance of the new IS-based algorithm. As already
mentioned, small values of p} may not reduce the effect of the
additive noise involved in g, (.), while too large values reduce
the desired lobes revealing the actual delays in 9ot (.) thereby
preventing their generation. Therefore, an appropriate choice of
P is necessary in order to obtain near-optimal performance. We
see from Fig. 4 that for p) taking values between 2 and 7, the
performance is almost the same, and thus the optimal value of
P} can be freely selected from this relatively large range. In the
following simulations, po and p/ are set, respectively, to 15 and
6. For a non-symmetric likelihood function, the evaluation of
the mean using (29) may introduce a bias in the estimation. But
it can be shown that this bias can be significantly reduced by
increasing the design parameter pq. This property can be easily
inferred from the proof of Pincus’s theorem as originally intro-
duced in [11]. Another remarkable point is, however, that the
bias is larger for the delays that are located close to the edge
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Fig. 6. Estimation performance of the IS-based, ARS-based, EM ML and the MUSIC-type algorithms vs. SNR in an active system for (a) Ist path, (b) 2nd path,

(c) 3rd path, and (d) average over paths.

of the interval J (that is assumed to contain all the delays).
The use of the circular mean in (29) eliminates indeed the bias
that is due to edge effects. We corroborate our claims by com-
puter simulations in Fig. 5 depicting the mean and the estimated
bias associated to our estimator. This figure shows clearly that
the bias is almost equal to zero for the three delays. Now re-
turning to the comparison of the different estimators, we recall
that the EM and IS-based algorithms are two different imple-
mentations of the ML criterion. They are hence expected to ex-
hibit the same performance since they both try to maximize the
same objective function. Yet, it should be kept in mind that the
IS-based and MUSIC-type algorithms do not require any ini-
tialization while the EM algorithm is iterative in nature. Con-
sequently, we consider for the EM algorithm two scenarios in
which the initial values are selected as random variables, cen-
tered at the real time delays and having a variance of 472 and
1072 reflecting, respectively, relatively accurate and less accu-
rate initializations. Fig. 6 depicts the performance of these tech-
niques. As expected, the three ML-based estimators perform
better than the MUSIC-type estimator. However, for less accu-
rate initialization, the performance of the EM algorithm dete-
riorates considerably over the entire SNR range. On the other
hand, the ARS presents a good performance. But its computa-
tion cost remains very high since simulations reveal that it starts
converging after 5000 realizations, 5 times more than required
by the IS-based algorithm (R = 1000). We see also that while
the MUSIC-type technique approaches the CRLB only as far as
the SNR is sufficiently high; the proposed algorithm performs
close to the CRLB over the entire SNR range. This is hardly
surprising since the IS-based estimator is a far more accurate
implementation of the ML criterion. Same conclusions hold in

the passive case whose performance results for all considered
techniques are depicted in Fig. 7 for P, = 1 and P> = 3.

In Table I, we assess the complexity of the proposed IS-based
estimator and compare it to the other algorithms in terms of
computational intensity. Complexity stands here for the order
of the number of complex-valued multiply and add operations
of each technique based on its algorithmic description. In this
table V., stands for the number of iterations for the EM and
ARS algorithms and M is a parameter of the algorithm intro-
duced in [5]. The third column of this table shows the ratio
of complexities between all the techniques by taking our new
IS-based technique as a reference (its number of operations in
the denominator). The grid search algorithm is included in the
table for complexity comparisons only and is not included in the
simulations. It is seen that our new IS-based algorithm provides
the best trade-off between complexity and accuracy. In fact, the
EM-based method is slightly less complex but it exhibits serious
performance degradation when it is not accurately initialized.

So far, comparisons have been performed vs. the SNR.
To study the resolution power of the different estimators, we
consider two propagations paths and vary the delay separation
AT = 71 — 79 at an SNR value of 10 dB. The results are
shown in Fig. 8 for an active system. Clearly, as the difference
between the delays gets smaller, the estimate becomes less
accurate for all three methods. Yet the three ML-based estima-
tors still perform better than the MUSIC-type algorithm. For
well spaced delays, all the methods perform the same. Same
results hold for the passive system but the simulations were not
included for the sake of conciseness. Another important point
to study is the effect of the signal bandwidth on the estimation
performance. In fact, since all the derivations are made in the



MASMOUDI et al.: A MAXIMUM LIKELIHOOD TIME DELAY ESTIMATOR IN A MULTIPATH ENVIRONMENT USING IS 191

. (a)

wf [S—based
—&— EM ML good init.

—&— EM ML bad init.
—©— MUSIC

=5 0 5 10 15 20 25
SNR [dB]

" . _©

=t [S—based

=—— EM ML good init.

—O— EM ML bad init.

—6— MUSIC

- = =ARS

- - -CRLB
O by

s 0 5 10 15 20
SNR [dB]

. (b)

=== [S—based
=—— EM ML good init.

—&— EM ML bad init.

10 —6— MUSIC
5 s
=
1072
107
-5 0 5 10 15 20 25
SNR [dB]
(d)
10° . .
e [S—based
=—— EM ML good init.
—@— EM ML bad init.
o —— MUSIC
1077 - = = ARS
& N - - -CRLB
22] ™
>
107
107 ; : : : :
-5 0 5 10 15 20 25
SNR [dB]

Fig. 7. Estimation performance of the IS-based, ARS-based, EM ML and the MUSIC-type algorithms vs. SNR in a passive system for (a) Ist path, (b) 2nd path,

(c) 3rd path, and (d) average over paths.

TABLE I
COMPLEXITY ASSESSMENT OF THE ALGORITHMS

Algorithm Complexity Complexity ratio

IS-based O(2Nlog(N) + 2NK + 4K + R(P?N + P>+ 2NP+ PN 4+ N) + P) 1

Grid search O((P?N+ P>+ 2NP+ NP+ N)KP) 10400

ARS O((P?N 4+ P?>42NP+ NP+ N)N;,.,.) 3.452

EM O(P(K? 4+ 2K)N,ier) 0.786

MUSIC-type | O(N2?+ N(2N—1) +3M3 + (2(M? + M(M — P)) + M)N + N(N—1)) | 1.109
10! e — . s lower frequency in the chirp signal) is expected to have an

) 1] fg\j{bﬁfd impact on the estimation procedure. Therefore, we compare

—e— MUSIC in Fig. 9 the four estimators under different normalized signal

1004 = = —ARS bandwidth values (normalized by the sampling frequency i.e.,

g 107!
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1073
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Fig. 8. Estimation performance of the IS-based, ARS-based, EM ML and the
MUSIC-type algorithms vs. A7 in an active system.

frequency-domain, the signal bandwidth (defined in the given
example here as the difference between the higher and the

W T, where W, is the signal bandwidth). Clearly, the proposed
method outperforms the MUSIC-type algorithm over the entire
bandwidth range, although the gap between the two methods
decreases as the bandwidth increases while the performances
of the IS-based and the ARS technique are almost the same.
Note that the EM algorithm is also less sensitive to bandwidth
variations. Same results hold for the passive system but the
simulations were not included for the sake of conciseness.
Now we consider the case of time-varying channels. While the
proposed method is primarily developed under the assumption
of constant path gains, we verify through simulations that, in
a Rayleigh-fading channel, it is also robust to time variations
and that the ML-based estimators, namely the IS-based and
the ARS algorithms, outperform MUSIC-type methods over
relatively low Doppler frequency. Nonetheless, from Fig. 10
the performances of the two estimators, in an active system,
degrade considerably as the normalized Doppler (i.e., fp7s)
increases. In fact, the time variations of the channel coefficients
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Fig. 10. Estimation performance of the IS-based, ARS-based and the MUSIC-
type algorithms vs. fp Ty at SNR = 10 dB in an active system.

are not taken into account when developing these algorithms,
and it was shown in [22] that, in this case, the estimates become
necessarily biased.® Note, in this case, that we are no longer
able to obtain the estimates of the channel coefficients using
(9). It is for this reason that the EM algorithm was omitted in
this scenario since it is based, at each iteration, on an estimate
of a, which cannot be performed for time varying channels.

VI. CONCLUSION

In this paper, we developed a new implementation of the
ML-based estimator for multiple time delays based on the con-
cept of importance sampling (IS). We considered the two cases
of active and passive systems. The new algorithm is far less ex-
pensive in terms of computational complexity than the tradi-
tional multidimensional grid search method. Moreover, unlike
the iterative methods, the IS-based algorithm does not suffer
from initialization drawbacks. It performs well over the entire
SNR range since its convergence to the global maximum of the
likelihood function is guaranteed. In addition, it avoids the com-
putational burden of the eigen-decomposition operation that is

8In [22], the effect of the time varying envelope has been treated in the case
of frequency estimation with the MUSIC and ESPRIT algorithms.
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widely encountered in classical subspace-based techniques in
multiple parameters estimation. On the other hand, the ARS
algorithm performs the same as the IS-based algorithm. This
could be expected since both algorithms return the global max-
imum of the likelihood function without depending on initial-
ization. However, the ARS algorithm requires a higher number
of realizations and thus results in an increase in the computa-
tional cost. In practice, the appropriate choice of the parameters
po and p’, a critical issue for the IS-based algorithm, can be per-
formed to further optimize the estimation performance.

APPENDIX
METHOD TO GENERATE THE VECTOR T

In this appendix, we present some practical hints to easily
generate a single realization of the vector 7.
— Define ¢ as a discrete representation of the interval [0, 7]

(le,£=0: ﬁ with % being a given step for some s).

— Generate 71 according to 9 (.) using the inverse prob-
ability integration method. To do so, consider a random
variables % uniformly distributed over [0, 1]. Then find
T1 = argmaxye¢ |G(z) — u|, where G(x) if the cumu-
lative distribution function associated to g, (.) (for more
details, see [15]).

— Then eliminate the generated value 7; from & so that it
cannot be generated again.

— Repeat the last two steps P — 1 times to generate
T2, T3, ..., Tp and obtain one realization of the P-dimen-

sional vector T.
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