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The Inverse Gaussian Distribution in Wireless Channels:
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Abstract—In this paper, we introduce the Inverse Gaussian
(IG) fading distribution to model the envelope and the power
of the received signal in radio propagation fading channels and
free-space optical (FSO) channels. The joint distribution of the
IG process and its derivative and the marginal distribution of
the derivative are developed. The obtained formulas are then
used to derive the second-order statistics of the received signal
envelope and the channel capacity under IG and Nakagami-
IG (NIG) fading distributions. Numerical results sustaining our
analysis are provided, and the impacts of various parameters on
the system performance are investigated.

Index Terms—Composite fading distribution, FSO channels,
inverse Gaussian (IG) distribution, Nakagami-IG (NIG) distribu-
tion, level crossing rate, average fade duration, channel capacity.

I. INTRODUCTION

EVEN after decades of research, the designers of future
mobile communication systems are still aiming to iden-

tify, comprehend and analyze new tractable models to describe
wireless fading channels. Fading models are typically used to
fit the histogram of the empirical/experimental measurements
of the envelope of the received random signals. Multipath
fading is commonly modeled using the well-known Rayleigh,
Weibull, Rice and Nakagami-m distributions. Recently, more
generalized and flexible models, that can offer better fits to
experimental data, have been proposed in [2] and [3]. On the
other hand, shadowing phenomena are modeled by the well-
known log-normal (LN) distribution (cf. [4] and references
therein). However, there exist real situations, for which the
LN distribution seems not to adequately fit the experimental
data, although one or another may yield a moderate fitting.
This is, for instance, accentuated for millimeter wave channels
(60 GHz or above) with high human motion where the LN
distribution failed in fitting the experimental measurements
since the strong attenuation of the human body at 60 GHz
considerably decreases the received power and changes the
character of the fading statistics [5]. In addition, in free-space
optical (FSO) communications, the atmospheric turbulence
originating from inhomogeneous variations in temperature and
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pressure increases the standard deviation of the shadowing
amount on the channel fading the received signal is subjected
to. Moreover, there exist analytical situations for which math-
ematical manipulations of the LN seems very cumbersome,
although other distribution forms afford simplicity.

The facts above call for using an alternative tractable
probability density function (pdf) to describe the physical
problems at the origin of shadowing effects. As an alternative
to overcome analysis intractability, researchers have employed
the two-parameter Gamma distribution in place of the log-
normal one [6]. This replacement, though yielding a closed
form, fails to capture the tailed behavior of the log-normal
distribution with large variance. Recently, the authors in [7]-
[11] noticed that the inverse Gaussian (IG) distribution pro-
vided a better fit to the log-normal distribution. In addition
to being tractable and similar to the log-normal distribution,
the pdf of the inverse Gaussian shows a heavier tail relative
to the LN [12] leading to the increase of the probability of
the distribution at low amplitude values. The IG is therefore
more adequate in allowing for a relatively higher shadowing
level. This property may be suitable for channel measurements
where there are several bodies with fast motion. By recalling
the inverse Gaussian distribution, the authors of [7]-[11] aimed
at providing closed-form expressions for the pdf, the error
rates and channel capacity. However, these statistics do not
provide any insight into the temporal behavior of the received
signal. Thus, to cope with the high-data-rate requirements
of new mobile communication systems, the analysis of the
dynamic behavior of the channel is inevitable.

In this paper, the information pertaining to the fading
behavior of the IG and the Nakagami-IG channels is obtained
through the study of the Level Crossing Rate (LCR) and the
Average Fade Duration (AFD) of both the envelope and the
channel capacity. To this end, we derive an exact expression
for the joint probability density of the IG process and its
derivative, which, in contrast to many other distributions, are
dependent. The obtained formulas are then employed to carry
out a second-order analysis framework.

The rest of this paper is organized as follows. In Section II,
we present the IG distribution and introduce its basic statistical
parameters. Moreover, we provide an exact expression for the
joint probability density of the IG process and its derivative.
Using this new pdf, we provide in Section III closed-from
expressions for the LCR and AFD of the envelope and
the channel capacity under IG fading. In Section IV we
consider the Nakagami-IG distribution as a compound model
for composite fading shadowing environments and we study
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its statistical properties for different levels of shadowing and
fading. Finally, Section VII summarizes the main results and
the conclusion of this work.

II. MARGINAL AND BIVARIATE PDF OF THE IG
DISTRIBUTION

Let ξ(t) be a stationary Inverse Gaussian random process
(for short: ξ ∼ IG(λ, β)) with the normalized underlying
covariance function ψ = ψ(τ). The marginal and bivariate
pdf of such a process are, respectively, given by [12]
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3
2 e
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Note that, (2) is the latest bivariate extension of the IG
distribution and that other forms of the joint distribution also
exist [12]. The expectation and the variance of ξ ∼ IG(λ, β)
are, respectively, given by λ and β3/λ. Consequently, its
coefficient of variation (CV ) is given by

√
β/λ. Integration

of (1) yields the Cumulative Distribution Function (CDF)
expression of ξ given by
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where γ(·) is the is the generalized (lower) incomplete Gamma
function [13, Eq. (6.1)]. An alternative expression for the CDF
of ξ is given by

Pξ(y)=N

(
(y−β)

√
λ

β2y

)
+ e

2λ
β N

(
−(y+β)

√
λ

β2y

)
, (4)

where N(z) denotes the normal probability integral N(z) =
(2π)−1/2

∫ z
0
e−1/2t2dt which can be evaluated by means of

expansions such as given in [14].
In view of its versatile nature, the IG distribution has numer-

ous applications in diverse fields [7]-[11] including wireless
communications. In [8]-[10], the IG model was used for
describing shadowing effects in RF wireless communications
and shown to be an accurate substitute for the cumbersome
log-normal distribution. Indeed, a comparison between these
two probability density functions that was carried in [15]
shows that when CV ≤ 1, the two functions agree well. By
recalling the following matching formulas between the two
distributions

λ =
eμ

2 sinh(σ
2

2 )
, and β = eμ+

σ2

2 , (5)

and considering the Loo’s fading model introduced in [16],
an urban area corresponds to (λ = 1, β = 1) and a
suburban area corresponds to (λ = 30, β = 1). Note that,
the condition CV ≤ 1 is satisfied in both urban and suburban
environments. When CV > 1, the inverse Gaussian density
curve has a higher peak and a heavier tail compared to the log-
normal density curve. Therefore, when early occurrences are
dominant in the measured data distribution, the IG provides a
suitable choice for the fading model. Though the log-normal
distribution is also applicable in such cases, the IG presents
the advantage of a closed-form mixture distribution.

In the context of optical systems, only recently have the
authors of [11] considered the IG distribution for modeling
turbulence-induced fading in FSO systems. All turbulence
conditions considered in [11] verify CV ≤ 1. Although
being an interesting distribution with many applications, the
IG model is still unknown namely in terms of its joint
distribution pξξ̇(y, ẏ), where ξ̇(t) is the time derivative of the
process ξ(t). The latter can be derived by using the bivariate
pdf pξ1,ξ2(y1, y2) and the substitutions y1 = y − τ ẏ/2 and
y2 = y + τ ẏ/2

pξξ̇(y, ẏ) = lim
τ→0

τpξ1,ξ2

(
y1 = y − τ ẏ

2
, y2 = y +

τ ẏ

2

)
. (6)

Recalling the McLauren series expansion of ψ(τ) and using
the fact that for any real differentiable random process ψ′(0) =
0 [17], we have

ψ(τ) ≈ 1 +
ψ′′(0)τ2

2
+O(τ3)

1− ψ2(τ) ≈ −ψ′′(0)τ2 +O(τ3). (7)

By applying (7) to (2) and performing some manipulations,
we obtain
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Tacking into account (7) and resorting to the fact that
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and
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we obtain the joint pdf of ξ and ξ̇ given by
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From (11), it can clearly be seen that the joint pdf pξ,ξ̇(y, ẏ)
cannot be written as a product of the marginal pdfs pξ(y) and
pξ̇(y). Hence, the processes ξ(t) and ξ̇(t) are not statistically
independent. Moreover, the distribution of the derivative ξ̇ can
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Fig. 1. Normalized LCR versus envelope level r in IG channels (continuous
lines) and Lognormal channels (broken lines).

be obtained by integrating (11) over y as
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∫ ∞
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The last integral can be calculated by the help of [18, Eq.
(3.471.9)] as
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where Kλ(·) is the modified Bessel function of the second
kind and order λ [18, Eq. (8.485)]. Moreover, the fractional
moments of ξ̇ can be easily obtained, for k ∈ R+, as
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where E[·] denotes the expectation operator.

III. LEVEL CROSSING RATE AND AVERAGE FADE

DURATION

A. Inverse-Gaussian (IG) Channels

As an accurate and simple distribution that can efficiently
model irradiance fluctuations in FSO systems, the IG channel
has been addressed in [11] through its generalized moments
and error probability. Here we provide the exact expressions
for the LCR and the AFD for both the received signal envelope
and the channel capacity.

The LCR of ξ ∼ IG(λ, β) at the level y, denoted by LIG(y)
can be expressed, using [18, Eq. (3.461.3)], as

LIG(y) =

∫ ∞

0

ẏpξ,ξ̇(y, ẏ)dẏ =
β2
√−ψ”(0)
4πy2

e
− λ

2β2
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y .

(15)

As a result, the average fade duration of ξ ∼ IG(λ, β) can be
expressed as

AFIG(y) =
Pξ(y)

LIG(y)
, (16)

where Pξ(y) is the CFD of the IG process in (3). Then, by
properly substituting (15) and (3) into (16), the AFD of ξ ∼
IG(λ, β) is obtained according to
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(17)
Fig. 1 shows the LCR of ξ ∼ IG(λ, β) compared with the
known log-normal LCR. It is clear that, for CV ≤ 1, the
IG LCR presented here provides a very good approximation
of the log-normal LCR. As expected, when the CV is in-
creased, this estimation becomes less robust until eventually
the two distributions become completely divergent. The AFD
of ξ ∼ IG(λ, β) is sketched in Fig. 2 for different values of the
distribution parameters. We observe that increasing β results
in the decrease of the AFD, meanwhile for higher values of
λ, the AFD improves.

It is worth noting that similar results can be obtained for
MIMO IG systems using a simple pure selection combining
among L independent and identical brunches. By following
the same reasoning of [19], we conclude that the LCR of the
process y = max{y1, y2, ..., yL} is the same as the LCR of
any of the individual branches, i.e., it is given by equation
(15). Moreover the CDF of y is given by

PL(y) = [P (y)]L. (18)

The statistical characterization of the IG channel can be
done with the help of the mean, variance, pdf, and CDF and
the LCR of the signal envelope. However, to cope with the
high data rate requirements of new mobile communication
systems, the analysis of the dynamic behavior of the channel
capacity is inevitable. The instantaneous capacity of the IG
channel C(t) can be expressed as

C(t) = log2(1 + SNRξ(t)2) (bits/sec/Hertz), (19)

where SNR stands for the signal-to-noise-ratio.
The LCR LC(y) of the channel capacity C(t) over IG

channels is obtained as
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where by applying the concept of transformation of random
variables [17], we obtain
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2yẏ ln(2)

SNR

)
, (21)
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Then, by properly substituting (22) and (21) into (20), and
after some manipulations, a closed-form expression for the
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Fig. 2. Normalized envelope AFD versus envelope level r in IG channels.

LCR of the capacity of the IG channel is shown to be given
by

LC(y) =
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e
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The CDF PC(y) of the channel capacity C(t) can be derived
using (1) as follows
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Finally, the AFD of the channel capacity C(t) under ξ ∼
IG(λ, β), denoted by AFCIG(y) can be obtained as

AFCIG(y) =
PC(y)

LC(y)
, (25)

where LC(y) and PC(y) are given by (23) and (24), re-
spectively. In Fig. 3 we provide some numerical examples
of the capacity AFD of the IG distributed channel. Here, we
investigate the effect of the SNR and the distribution parameter
λ with β = 1. As expected, the channel loses its impact on the
capacity LCR by increasing the SNR. Moreover the channel
becomes more severe by decreasing λ and hence the AFD
performance deteriorates.

IV. COMPOUND-BASED IG CHANNELS

The Nakagami-IG (NIG) distribution arises from the prod-
uct of two independent random processes

R(t) = ξ(t)ζ(t), (26)

Fig. 3. Normalized capacity AFD versus the threshold level r in IG channels.

where ξ(t) is IG and
√
ζ is Nakagami-m distributed. The NIG

includes the IG-Rayleigh and IG-exponential distributions as
special cases. The resulting pdf of the NIG envelope R(t) (for
short: R ∼ NIG(λ, β,m,Ω)) is given by [10]

pR(r) = Ar2m−1

Km+ 1
2

(√
2λ
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√
mr2 + λ

2
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mr2 + λ
2

)m+ 1
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where A =
(√

λ
2β2

)m+ 1
2
√

λ
2π 4mme

λ
β

Γ(m) and m ≥ 0.5 is the
Nakagami-m parameter. However, in our performance study,
in order to derive closed-form expressions, we will restrict this
parameter to integer values. Subsequently, for integer m, the
CDF of R ∼ NIG(λ, β,m,Ω) is shown to be given by

PR(r)=1−
e
λ
βmm
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(√
λ
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Proof: : see appendix.
The joint pdf pζ,ζ̇ under Nakagami-m fading is given

according to [4, Eqs. (2.20) and (9.721)] as

pζ,ζ̇(x, ẋ)=
2
√
2mm+ 1

2 x2m−1

√
πΩm+ 1

2Γ(m)
√−Δ”(0)

e

(
−mx2

Ω − 2m
Ω

ẋ2

−Δ”(0)

)

x > 0,m ≥ 0.5, (29)

where Ω = E[ζ2] is the average power and Δ(τ) is
the normalized autocorrelation function (ACF) of ζ2(t). For
instance, the ACF under isotropic scattering conditions is [20]

Δ(τ) = 1 + J0(2πfζ) and −Δ”(0) = (2πfζ)
2, (30)

where J0(·) is the Bessel function of the first kind of order
zero [18] and fζ denotes the maximum Doppler frequency
shift influencing the multipath fading component.
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Fig. 4. Normalized LCR versus envelope level r in NIG fading channels,
where the Doppler frequency shifts of the multipath and shadowing compo-
nents of the fading are assumed fζ = 100fξ .

Referring to (26), when ξ and ζ are signal envelopes in some
scattering fading channel subject to Doppler effect or to the
turbulence effect originating from variations in the refractive
index of the transmission channel in FSO channels, the signal
envelopes ξ and ζ are time-correlated random processes and
the LCR can be obtained according to [4, Eq. (9.725)] as

LCR(r) =

∫ ∞

0

ṙpRṘ(r, ṙ)dṙ, r ≥ 0, (31)

where pRṘ(r, ṙ) is obtained according to

pRṘ(r, ṙ)=

∫ ∞
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y
,
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y
− ẏr

y2

)
pξξ̇(y, ẏ)dẏdy,

r ≥ 0,∞ ≤ ṙ ≤ ∞. (32)

By properly substituting (11) and (29) into (31), the LCR of
R ∼ NIG(λ, β,m,Ω) at a level r, denoted by LNIG(r) can
be expressed, using [18, Eq. (3.323.2)] and [18, Eq. (3.461.3)],
as

LNIG(r)=

√
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√−Δ”(0)(mΩ )m− 1

2 e
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It is important to mention that the above integral can be
computed numerically with any desired accuracy by using
Matlab or Mathematica. Distinctively, by using the Taylor
series expansion

√
1 + x =

∞∑
n=0

(
1/2

n

)(
xnθ(1 − x) + x

1
2−nθ(x− 1)

)
,

(34)
where θ(·) is the Heaviside’s theta (unit) function [18], and
performing some algebraic manipulations, (33) can be con-
verted into the sum of two incomplete integrals converging

very fast, that is,

LNIG(r)=
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where Qn(r) =
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−ψ”(0)4mβ2r2

−Δ”(0)Ω

)n
. It is worth noting that

the LCR given in (35) converges rapidly. Indeed, the choice
N = 1 is enough for an approximation as it can be shown in
Fig. 4. Eventually, after substituting [13, Eqs. (6.1) and (6.2)]
into (35), the LCR under NIG can be readily obtained as
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where Pn = 3n− 2m. Note that even though this expression
seems more complicated than (33), it can be very useful in
the analysis of several LCR properties, namely the asymptotic
ones.

Finally, substituting (33) and (28) into (16), one can
readily obtain the AFD of the received envelope R ∼
NIG(λ, β,m,Ω) at a threshold r.

Some numerical examples of the LCR and the ADF of
R ∼ NIG(λ, β,m,Ω) for different fading environments, (i.e.,
for different values of m) are presented in Figs. 4, 5 and 6
where the parameter Ω for Nakagami-m distribution was set
to be equal to 2m. All these results are analyzed for urban
(λ = 1, β = 1) and suburban (λ = 30, β = 1) environments.
It is quite obvious form Fig. 5 that the parameter m has a
prominent effect on the statistics of the NIG channels. For
low signal levels r, the LCR of channels with low values
of m is higher than that of channels with higher values of
m. While for high signal levels r, the LCR of channels with
low values of m is lower than that of channels with higher
values of m. Moreover, it can be observed that decreasing
the value of the shadowing parameter λ increases the spread
of the LCR of the channel envelope, while it decreases the
maximum value of the LCR. Hence, when the shadowing and
multipath fading figures {m,Ω} and/or λ, β increase, the LCR
decreases as expected. Also from Fig. 4, it is observed that
the curve with (m = 1.5, λ = 5) has the same slope as the
curve with (m = 3.5, λ = 5), in contrast to the curve with
(m = 1.5, λ = 3.5) who has a steeper slope. This implies
that a stronger shadowing dominates the LCR performance.
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Fig. 5. Normalized LCR versus envelope level r in NIG fading channels,
where the Doppler frequency shifts of the multipath and shadowing compo-
nents of the fading are assumed fζ = 100fξ .

Similarly, the same statement is true for the envelope AFD as
shown in Fig. 6.

By following the same rationale used to obtain the LCR of
the capacity under IG distributed channels, the LCR of C(t)
under NIG channels can be readily expressed as

LCNIG(r)=

√
λβ
√−Δ”(0)( m

SNRΩ)
m− 1

2 e
λ
β (2r − 1)m−0.5

16πΓ(m)
×∫ +∞

0

1

y2m+3
e
−m(2r−1)

Ωy2SNR
− λ

2β2
y− λ

2y ×√
y3 +

−ψ”(0)4mβ2(2r − 1)

−Δ”(0)ΩSNR
dy. (37)

Using the concept of transformation of random variables, the
pdf pC(y) of the channel capacity C(t) can be found as

pC(r)=
2r ln(2)

SNR
pR2

(
2r − 1

SNR

)

=A
2r ln(2)

SNRm
(2r − 1)m−1 ×

Km+ 1
2

(√
2λ
θ2

√
m

SNR (2
r − 1) + λ

2

)
(√

m
SNR (2

r − 1) + λ
2

)m+ 1
2

. (38)

Moreover, the CDF PC(y) of the NIG channel capacity C(t)
can be obtained as follows

PC(r)=
A

2
SNR

(
1− Jm,m+1

(√
2r − 1

SNR
,m+ 1,

λ

2

))
+

A

2

{
1− Jm,m

(√
2r − 1

SNR
,m,

λ

2

)}
, (39)

where Jp,q(x, y, z) is given in (43). Consequently, the AFD
expression of the capacity under NIG(λ, β,m,Ω) is the ratio
between (37) and (39). In Figs. 7 and 8 we show some curves
of the capacity LCR and AFD under NIG channels. From

Fig. 6. Normalized AFD versus envelope level r in NIG fading channels,
where the Doppler frequency shifts of the multipath and shadowing compo-
nents of the fading are assumed fζ = 100fξ .

Fig. 7. Normalized LCR of the capacity versus threshold level r in NIG
fading channels, where the Doppler frequency shifts of the multipath and
shadowing components of the fading are assumed fζ = 100fξ .

Fig. 7, we observe that increasing the shadowing standard
deviation (small λ) decreases the maximum value of the LCR
of the channel capacity, while it obviously increases the spread
of the IG pdf. From Fig. 8, it can be observed that, for low
signal levels r, the AFD of the channel capacity at low values
of m is lower than that of channels with higher values of
m. While for high signal levels r, the AFD of the channel
capacity at low values of m is higher than that of channels
with higher values of m.

V. CONCLUSION

Drawing upon the classical crossing theory of random
processes, we have derived new closed-from formulas for
the second-order statistics of inverse Gaussian distributed
channels. We have derived analytical expressions for the CDF,
LCR, and ADF of the envelope and channel capacity of
the IG and the mixture IG channels. Moreover, we have
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Fig. 8. Normalized AFD of the capacity versus threshold level r in NIG
fading channels, where the Doppler frequency shifts of the multipath and
shadowing components of the fading are assumed fζ = 100fξ .

investigated the effect of the distribution parameters, that
reflect the shadowing and fading severity in the context of RF
communications and the turbulence strength in the context of
FSO, on the obtained metrics. The results presented in this
paper are quite useful for the design and analysis of land
mobile terrestrial channels.

VI. APPENDIX: CUMULATIVE DISTRIBUTION FUNCTION

(CDF) OF NIG

The CDF of the received R ∼ NIG(λ, β,m,Ω) is obtained
upon integration of (27) as

P (r) =
A

2

[
Jm,m

(
r2,m,

λ

2

)
− Jm,m

(
0,m,

λ

2

)]
, (40)

where

Jp,q(x, y, z) =

∫
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and b =
√
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Using the fact that

dx−sKs(x)

dx
= −x−sKs+1(x), (42)

and integrating by parts (41), we obtain
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Using (43), the CDF of the received envelope R ∼

NIG(λ, β,m,Ω) can be readily obtained as

P (r)=1−
e
λ
θmm

√
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