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Abstract—In this paper, we present a new time delay maximum
likelihood estimator based on importance sampling (IS). We show
that a grid search and lack of convergence from which most
iterative estimators suffer can be avoided. It is assumed that
the transmitted data are completely unknown at the receiver.
Moreover the carrier phase is considered as an unknown nuisance
parameter. The time delay remains constant over the observation
interval and the received signal is corrupted by additive white
Gaussian noise (AWGN). We use importance sampling to find the
global maximum of the compressed likelihood function. Based
on a global optimization procedure, the main idea of the new
estimator is to generate realizations of a random variable using an
importance function, which approximates the actual compressed
likelihood function. We will see that the algorithm parameters
affect the estimation performance and that with an appropriate
parameter choice, even over a small observation interval, the time
delay can be accurately estimated at far lower computational cost
than with classical iterative methods.

Index Terms—Cramér–Rao lower bound (CRLB), Monte Carlo
methods, non-data-aided (NDA) estimation, optimization methods,
symbol timing recovery.

I. INTRODUCTION

P ARAMETER estimation is a crucial operation for any dig-
ital receiver; in particular the recovery of time delay intro-

duced by the channel. Typically, in network communications,
the time delay is usually assumed to be confined within the
symbol duration [1]. Particularly, symbol timing recovery al-
lows for sampling the signal at accurate time instants in order
to achieve satisfactory performances. The key task of timing re-
covery consists in determining the time instants at which the re-
ceived signal should be sampled in order to perform reliable data
recovery. However, in many other applications such as radar or
sonar systems [2], [3], where it can exceed the symbol duration,
the time delay is used to localize targets.

During the last few decades, many time-delay estima-
tors have been developed trying to achieve the well-known
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Cramér–Rao lower bound (CRLB). A key step in time recovery
schemes is the determination of an objective function from the
statistics of the received signal from which an estimate of the
time delay can be extracted. According to the criterion under
which this function is derived, time delay estimation techniques
are classified as [4]: minimum mean-square error (MMSE)
schemes, zero-forcing (ZF) schemes, early-late schemes and
maximum-likelihood schemes. In this sense, it is known that the
maximum-likelihood estimator is an asymptotically efficient
estimator, and that it performs close to the CRLB at relatively
high signal-to-noise ration (SNR) values [7], even for short data
records. Therefore, it has been subject to intense research. In the
case of data-aided transmissions, where the transmitted data are
a priori completely known, an expression for the global max-
imum of the log-likelihood function is analytically tractable.
However, when the transmitted data are completely unknown
(i.e., the parameter of interest should be blindly estimated),
the log-likelihood function becomes extremely nonlinear and
it is difficult to analytically find its global maximum. In this
case, maximum-likelihood (ML) solutions must be numerically
tackled. The grid search technique is the most basic alternative
to numerically find the maximum of the nonlinear likelihood
function. Unfortunately, this technique can be used only if the
range of the parameter is confined to a finite interval, otherwise,
iterative maximization procedures must be envisaged. The most
famous iterative procedures are the Newton–Raphson method
[5] and the expectation-maximization algorithm [6]. However,
these two prominent methods are known to converge to the
ML solution only if the initial guess is close enough to the true
unknown parameter value. If not, these iterative algorithms
may converge to a local maximum of the likelihood function,
or even diverge. To circumvent this problem, these algorithms
may use many initial values to improve their performance, but
this increases in counterpart their computational complexity
without even ultimately warranting their convergence to the
global maximum.

In this work, we resort to an entirely different approach for the
estimation of the time delay parameter. The compressed likeli-
hood function is derived considering the transmitted symbols
as unknown but deterministic. Based on this function, an itera-
tive algorithm earlier implemented in [8] performs better in the
high SNR region than the low-SNR unconditional ML (UML)
timing error detectors (TEDs) [1], but its performance still de-
pends on the initialization value making it therefore prone to
severe degradation due convergence uncertainty.

Motivated by these facts, we develop in this paper a new
noniterative approach to find the time delay conditional max-
imum-likelihood (CML) estimates. We implement the CML
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algorithm in a noniterative way. We avoid the grid search,
essential in traditional iterative approaches, by using the im-
portance sampling technique which has been shown to be a
powerful tool in performing NDA ML estimation. In fact,
this method was successfully applied to estimate other crucial
parameters such as the direction of arrival (DOA) [9], the
carrier frequency [10] or the joint DOA-Doppler frequency
[11]. The importance sampling technique is used in this paper
in the context of time delay estimation. Moreover, we adopt the
discrete-time model widely used in the field of sensors array
processing [12] and more recently formulated in the context
of time-delay estimation [8]. The resulting IS-based estimator
attains the modified CRLB (MCRLB) over both the medium
and high SNR regions, whereas the traditional UML TED,
being derived under the assumption of low SNR, does not
approach the MCRLB at the high SNR region.

The remainder of this paper is organized as follows. In
Section II, we present the discrete-time signal model that
will be used throughout this paper. We derive the compressed
likelihood function in Section III. In Section IV, we introduce
the importance sampling method that will be used in this article
to find the global maximum of the compressed likelihood func-
tion. Section V deals with the choice of the importance function
and discusses the impact of some parameters on the estimator
performance. The newly proposed algorithm is developed in
Section VI. Simulation results are discussed in Section VII and,
finally, some concluding remarks are drawn out in Section VIII.

II. DISCRETE-TIME SIGNAL MODEL

First, we present a list of notations and definitions that will
be used in this paper.

The expectation with respect to .

Euclidean norm.

, Transposition and conjugate transposition.

SNR Signal-to-noise ratio.

IS Importance sampling.

ML Maximum likelihood.

CML Conditional maximum likelihood.

MCRLB Modified Cramér–Rao lower bound.

QAM Quadrature amplitude modulation.

PAM Pulse-amplitude modulation.

Consider a traditional communication system where on one
hand the channel delays the transmitted signal and on the other
hand an AWGN with an overall power of corrupts the re-
ceived signal as follows:

(1)

where is the unknown time delay to be estimated, is the
unknown but deterministic channel distortion phase, is an
additive white Gaussian noise (AWGN) with independent real
and imaginary parts, each of variance and is the signal

amplitude. The unknown transmitted signal is modeled as
follows:

(2)

where is the number of transmitted symbols in the obser-
vation interval, are the unknown complex-valued
symbols, is the shaping pulse of energy and is the
symbol’s duration.

In the sequel, we outline the discrete-time signal model which
was proposed for the first time in [8] to derive an iterative CML
timing recovery algorithm. The received signal is passed
through an ideal lowpass filter of bandwidth and sampled at
a frequency , where is a given integer which
guarantees that is above the Nyquist rate. Then, the received
samples can be
written in a matrix form as follows:

(3)

where is the number of samples of and and are
defined as follows:

(4)

(5)

with

(6)

In (3), is the set of unknown data and signal phase, which
is given by

(7)

Moreover, the covariance matrix of is given by

(8)

where refers to the identity matrix and
. The sampled data is a linear function of the vector

but depends nonlinearly on the time delay . We mention
that the model of (3) presented in [8] is inspired from the model
widely used in array signal processing where each column of the
transfer matrix is a function of a different parameter, usually the
direction-of-arrival or the frequency of each incoming signal.
In the context of time delay estimation, the entire matrix
depends on the same parameter .

III. LIKELIHOOD FUNCTION

The conditional likelihood function of the observed data is
given by

(9)

where is the probability density function (pdf) of
conditioned on and parameterized by , and is a pos-
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itive constant which does not depend on the time delay and
therefore will be dropped, without loss of generality. Note
here that is any possible value of the time delay parameter

and that attains its maximum at , i.e.,
.

Actually, one needs to maximize with respect to
in order to find the ML solution . However, (9) imposes a joint
estimation of and , which is very difficult to perform. There-
fore, two principal approaches are developed in the literature in
order to obtain a likelihood function that depends only on . On
one side, the unconditional maximum-likelihood (UML) esti-
mator introduced in [1] considers the data symbols as random
and hence averages the joint likelihood function over to obtain
a function that depends only on the time delay as follows:

(10)

On the other side, the data symbols are modeled as unknown
but deterministic in the formulation of the conditional likelihood
function. Therefore, , the solution that maximizes (9) with re-
spect to , for a given is used in (9) as a substitute of . Actu-
ally, which maximizes also maximizes the log-like-
lihood function given by

(11)

Therefore, taking the gradient of with respect to
and setting it to zero,

(12)

yields the following result:

(13)

where is the pseudo-inverse of the ma-
trix . Substituting into (11), one obtains the so-called com-
pressed likelihood function, that depends only on the unknown
time delay parameter

(14)

which can be further simplified by dropping the constant terms
to obtain the useful compressed likelihood function denoted by

as follows:

(15)

Note that the expression in (15) represents the cross-energy
between the pseudo-inverse filter and the sampled matched
filter . For equal to the timing parameter to be estimated,
the filter becomes a zero-forcing equalizer since the com-
ponents of are intersymbol interference (ISI)-free (i.e.,

, see [8]).

IV. GLOBAL MAXIMIZATION OF THE

COMPRESSED LIKELIHOOD FUNCTION

To perform maximum-likelihood estimation, we have to
maximize (15) with respect to . Unfortunately, a closed-form
expression for this optimization problem is not analytically

tractable since the objective function in (15) is extremely non-
linear with respect to . Therefore, many methods have been
developed to numerically find the maximum, but most of them
are iterative [1]–[8]. We cannot deny that these methods provide
good performance in terms of error variance, but unfortunately
they require, in counterpart, a sufficiently close initial guess
to converge to the global maximum of the likelihood function.
Otherwise, the result may be a local maximum, which does not
correspond to the true time delay value. This is why a subop-
timal algorithm needs to be applied firstly and then its output is
considered as an initial value for any iterative technique.

To avoid this challenging drawback of iterative methods, we
propose in this paper an entirely different technique which does
not claim any initial guess of the time delay parameter. We apply
the global maximization method earlier proposed by Pincus [13]
which provides a powerful tool for accomplishing nonlinear op-
timization and guarantees finding the global maximum without
any initialization concerns. In fact, the theorem of Pincus states
that the maximum of is given by

(16)

where

(17)

can be viewed as the normalized function of .
Note that in (16) and (17), is the integration interval in which

is supposed to be confined. In a certain way, can be
viewed as a pdf (since it verifies all the properties of a pdf), but
since is actually deterministic, is more conveniently
called a pseudo-pdf [9]. It is also worth noting that, as ,

becomes a Dirac delta function centered at the location
of its original maximum. We leave broad details on this point in
Appendix A.

The ML estimator for the time delay parameter, obtained
from the location of the global maximum of is given,
for a large value of , by

(18)

Now, we need to evaluate the integral given in (18), although
a direct integration remains always difficult if not impossible.
However, this integral is in a way the mean value of a random
variable distributed according to . It was shown in [14]
that this type of integral can be efficiently evaluated using Monte
Carlo simulations as follows:

(19)

where are realizations of distributed according to
the pseudo-pdf, , and hence the global maximization
problem reduces simply to a generation of random variables.
Yet, since it is a nonlinear function of , the direct generation
of realizations according to is computationally hard.
Thus, instead of pursuing a fruitless path, we use the importance
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sampling technique, as done in [9]–[11] for the estimation of
the signal directions of arrival, the carrier frequency and the
Doppler frequencies, instead of directly using (17).

V. THE IMPORTANCE SAMPLING TECHNIQUE

It has been shown that the importance sampling technique is a
powerful tool to compute multiple integrals; in particular the one
given in (18). In fact, it can be easily seen that for any function1

:

(20)

where , called the normalized importance function, is an-
other pseudo-pdf which must be chosen as a simple function of

so that realizations distributed according to can be easily
generated. Then, the Monte Carlo method is used to empirically
compute the integral in (20) simply via the following summa-
tion:

(21)

where is the th realization of according to the normalized
importance function and is the number of realizations.
Typically, and should be very similar to reduce
the variance of the estimates. However, remains a com-
plex function and in counterpart needs to be as simple as
possible. Therefore, some tradeoffs must be found in the con-
struction of the importance function. In fact, the inverse ma-
trix in the actual compressed likelihood function,

(or equivalently ), is very nonlinear with re-
spect to . Intuitively, one can replace this inverse matrix by the
diagonal matrix . Hence, a reasonable approximation of
the compressed likelihood function is

(22)

The approximation of with is very rea-
sonable for most of the conventional pulse shaping functions.
For instance, it can be verified that for the widely used square
root-raised cosine pulse, the diagonal elements of
are dominant compared to its off-diagonal ones. In fact, as de-
fined in (5), the columns of are built upon shifted versions of
the shaping pulse , therefore every element of can be
seen as the convolution of two shifted versions of (the shift
being an integer multiple of ), which value is maximum when
the shift is the same, i.e., in the diagonal elements. Whereas,
when the shift is not the same, the value of the convolution is
very low. See Appendix B for more details about this obser-
vation. In the particular case where the pulse shape does not
generate inter-symbol interference, the approximation becomes

1In our case, we have ���� � � .

strict equality and (22) yields the exact compressed likelihood
function. Then, a reasonable importance function is given by

(23)
where is another constant different2 from . Note that the
normalization of by yields the normalized

importance function (i.e., ). But

since the periodogram of the data evaluated at the time delay
, , is given by

(24)

then, we rewrite the importance function as follows:

(25)

with

(26)

The normalization of (25) leads to the pseudo-pdf which
will be used, hereafter, to generate the realizations involved in
(21):

(27)

It is also worth noting that the performance of the new
maximum-likelihood estimator depends on the choice of .
In fact, our ultimate goal is to find the global maximum of
the function . However, this
function exhibits many local maxima even in the total absence
of noise, and it is often difficult to distinguish between the
global and a local maximum. For this purpose, is chosen
to render the objective function in (27) more peaked around
its global maximum which will have a relatively higher peak
compared to the local maxima. This behavior is illustrated
in Fig. 1, which plots the function for and

, in the total absence of the additive noise. Moreover,
we show in Appendix C how this parameter renders
more peaked around its global maximum. Based on this fact, it
can be stated, a priori, that it is better to arbitrarily increase
in order to achieve better performance. However, this is much
easier said than done since, in practice, this leads to numerical
overflows. Actually, the best value of is the highest possible
without resulting in any overflow in the computation of
as it will be seen in Section VII. Same argument is valid for

2In our case, � can be equal to � , unlike for the multiple parameters esti-
mation where � should be different from � .
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Fig. 1. Plot of � ��� for � � �� and � � �� using a root-raised cosine

pulse and for � � ���.

. In fact, the approximation of by means

that the quantity is almost
equal to where (note that

the superscript in refers to the word “approximate”
where we approximate with by replacing

by ). This means that will results in an
overflow in as far as results in an overflow

in . Therefore, the optimal value, , of

verifies where is again the optimal value
of .

We also note that the matrix in (22) exhibits an interesting
structure since its columns are simply shifted versions of the
pulse shape. Hence, the matrix-by-vector operation can be
viewed as a filtering operation of the received samples with a
filter whose coefficients are the central row of . There-
fore, the computation of (27) is quite simple and realizations
distributed according to in (27) can be easier generated
than according to in (17).

VI. ESTIMATION OF THE TIME DELAY

In the sequel, two scenarios will be proposed depending on
the range of the unknown time delay parameter. In the first sce-
nario, we assume that the time delay parameter takes values
within , where is a strictly positive integer (i.e.,

). In the second scenario, we assume that the time delay pa-
rameter takes values within .

A. First Scenario:

As already mentioned in the introduction, in many applica-
tions such as radar or sonar transmissions, the actual time delay
introduced by the channel may exceed the symbol’s duration.
In this subsection, we assume however that the time delay does
not exceed , where is a given strictly positive integer,

i.e., . This upper limitation of the interval is jus-
tified since, in each communication system, we always have an
a priori idea about the maximum range3 of . As we have seen
in the previous section, the maxima of are periodic, with
period . Therefore, many secondary peaks may appear which
ultimately affects the estimate of . In fact, to obtain unbi-
ased estimates of , the expected value of the estimation error

should be equal to zero, i.e.,

(28)

However, it may occur that the difference between and
is very important. In fact, to simplify, assume that has

only two peaks and neglect the others. Then the generated values
will take values around and , with higher probability
around where the highest peak is located. If we denote by

the set of realizations taking values near and the set
of realizations taking values near , then from (21) the
estimated, , can be approximated by

(29)

with denoting the cardinal of , i.e., the number of
elements of . Therefore, since

and is always not equal to zero. Moreover,
the bias is larger at low SNRs and/or short data records. This
property was also previously observed in the case of frequency
estimation in [15].

To circumvent this problem, the pseudo-pdf, , must be
centered around . To that end, two intuitive methods may
be envisioned. We may either eliminate the secondary peaks to
keep only the principal one, or we can generate other peaks in
a way that the number of secondary lobes on either side of the
principal lobe is the same. The first idea seems to be the most
efficient, but it is unfortunately unrealizable and we opt for the
second alternative. Indeed, as we have seen, the estimation bias
stems from the peaks taking place after the principal lobe. Thus,
we have to modify so that it becomes quasi-symmetric
around . To that end, the simplest way is to suppose, virtu-
ally, that takes negative values although is always positive.
We extend the interval of definition of from to

, where is a positive integer smaller than . In
this way, virtual secondary lobes appear before as well as after

. Moreover, as it can be seen from Fig. 2, the probability of
generating realizations around is almost the same as
the one of generating realizations around . Hence, the
estimator becomes unbiased and the estimate is more accu-
rate. So far, we have established an unbiased estimator based
on a linear average of the generated realizations. But through
simulations, we noted a performance change according to the
constellation type. In fact, for a constant-envelope constellation
such as phase-shift keying (PSK), the estimator works perfectly.
However, its performance degrades dramatically for noncon-
stant-modulus constellations such as pulse-amplitude modula-
tion (PAM), quadrature amplitude modulation (QAM), etc. In
fact, as we have previously seen, the main problem that faces

3Note that � can be always chosen as large as desired to ensure that � �

��� �� �.
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Fig. 2. Plot of the cumulative distribution function (CDF), � ��� whose pdf is
� ���, ��� � 5 dB.

the new ML estimator is the presence of secondary peaks. Al-
though we have explained, in Section V, how to reduce the ad-
verse effects of these peaks, they generate irreversible errors in
the case of nonconstant-envelope constellations. To simplify the
problem, without loss of generality, we suppose again that
exhibits only two peaks, one located at and the other located
at . From (25), and can be written
as follows:

(30)

and

(31)

Noting that the samples of the received signal are limited in
time to and the magnitudes of for

are very small compared to those of
for , then, the term

can be neglected. Considering this result, we express
as a function of :

(32)

where depends mainly on the amplitude of the first
symbol. In practice, it may occur that the amplitude of the
first transmitted symbol is the smallest one. In this case, the
contribution of in is far less important

than the other terms, i.e.,
for . As a result, will be closer to

, which is a local maximum making the estimate
shift toward . The same problem occurs when the last

transmitted symbol has the smallest amplitude with the only
difference that the shift will be toward .

To avoid these problems, must be as large as possible.
To that end, we slightly modify the algorithm in the case of
non-constant-modulus constellations by sending two a priori
known symbols: one at the beginning and one at the end of the
frame. Moreover, these two known symbols must be of highest
energy among the constellation points. Then, is no longer
negligible compared to , for , and the difference
between the magnitude of and is large
enough to avoid an important detection error. The same thing
holds for and .

B. Second Scenario:

In many cases, the time delay does not exceed the symbol
duration . Therefore, we must look for the global maximum
only in . As previously explained, the maxima of the im-
portance function are periodically located, with a period equal
to . Moreover, since we know a priori that does not exceed

, then we can more conveniently use the circular4 (instead of
the linear) mean to evaluate the mean in (18). It will be seen in
Section VII that the use of the circular mean provides consid-
erable performance enhancements in the low-SNR region. As it
will be explained later, the use of the circular mean considerably
reduces the computational cost.

To introduce the concept of a circular mean, consider a cir-
cular random variable which takes values in a finite interval
that can be mapped into the unit circle. For instance, let be
a random variable defined in [0,1] with pdf . Then, the cir-
cular mean of is defined as:

(33)

where denotes the angle in radians. Having realizations of
, its circular mean is [16]

(34)

In our case, if the time delay is not confined within the interval
[0,1], it can be easily transposed into this interval by normalizing

by . Then, the resulting transposed estimate is inversed to
obtain an estimate in the original interval. Hence, the IS estimate
of using (34) and (21) is

(35)

or, finally,

(36)

4Note that the circular mean cannot be used in the first scenario when � may
exceed � since it always returns an estimate in ��� � 	 by virtually bringing, into
this interval, all the secondary lobes of the normalized importance function.
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where

(37)

Note that we need to find the angle of a complex number, and
thus, we can remove any positive real factor taking place in (36)
without affecting the final result. This means that the two strictly
positive normalization constants and can
be simply dropped. Moreover, an overflow may occur since both
the numerator and the denominator are exponentials. To circum-
vent this problem, we replace5 by :

(38)

where we multiply by a real scalar factor.

C. Summary of Steps

In the following, we summarize the steps of the new algorithm
for the two considered scenarios.

1) Based on the sampled data , ,
evaluate the periodogram according to (24).

2) Compute the normalized importance function in (27). Note
that, in practice, we use a discreet model by substituting the
integration in the denominator of (27) by a summation as
follows:

(39)

where is the total number of points in the time delay
interval.

3) Generate realizations of the parameter using the
inverse probability integration as detailed in Appendix D.

4) Evaluate the weight coefficient defined in (37) (or
defined in (38) if we consider that is in ) for

each generated value .
5) Compute the mean of the generated variables multiplied by

the weight coefficients to find the ML estimate of the time
delay.

VII. SIMULATION RESULTS

In this section, we will present numerical results to substan-
tiate the performance of the new ML estimator as a function
of the SNR. We will also refer to our new IS-based ML esti-
mator as “IS algorithm.” The normalized (by ) mean-square
error (NMSE), defined in (40), will be used as our performance
measure:

(40)

5Note that the same simplifications have been used in [9] to estimate the signal
DOA.

Fig. 3. Performance versus � for ��� � 10 B.

and computed over 1000 Monte Carlo runs. The modified
Cramér–Rao lower bound (MCRLB) is also normalized by

and the total number of transmitted symbols, , in the
observation window is set to and is taken equal
to 28. Unless specified otherwise, a root-raised cosine shaping
pulse of roll-off factor of 0.5 is used. First, the effect of
(or equivalently ) on the performance of our IS-based ML
estimator is shown in Fig. 3 at an SNR of 10 dB. As it could be
predicted, the mean-square error decreases as increases to-
ward its optimal value and, for too large values, the performance
deteriorates due to numerical overflows. In the implementation,

can be set as a function of the power of the received samples
. Moreover, using computer simulations, we verify that for a

root-raised cosine filter the ratio is almost equal to 1.
Then to reduce the computational complexity, we can set this
ratio to 1 in (21) and (36). In fact, Fig. 4 shows the NMSE of the
IS-based time delay ML estimator when this ratio is preserved
in the importance function and when it is set to 1. As it can
be seen, this simplification does not degrade the performance
of the estimator while reducing the computational complexity
considerably. This simplification is also valid for any linear
modulation scheme. Therefore, in the following simulations,
we consider that

(41)

Note that this simplification remains valid when the inter-
symbol interference is not important (for high values of the
roll-off factor). As the roll-off factor tends to 0, it appears nec-
essary to consider the ratio in order to achieve better perfor-
mance of the estimator. Moreover, we implement the iterative
CML estimator, called CML-TED, proposed in [8] and com-
pare its performance to the performance of our IS-based CML
estimator. As far as we know, among all the existing synchro-
nization techniques, the CML-TED algorithm achieves the best
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Fig. 4. Estimation performance considering and setting to
1 with QPSK modulation.

performance, but, as an iterative procedure, its performance de-
pends strictly on the initial guess. To corroborate our claims,
we consider in Fig. 5 two initial values of for the CML-TED,
which should be seen as the result of another estimator. In Fig. 5,
the small crosses represent the normalized variance where the
initial value is very close to the true time delay value, i.e., veri-
fies , with being the true time delay value to
be estimated and is the initial guess. As it can be seen from
this figure, even with a close-enough initial guess, our IS-based
estimator outperforms the CML-TED estimator in the high SNR
region although the CML-TED achieves better performance at
low SNR values. We also note that, at high SNR values, the
performance of our IS-based estimator is close to the MCRLB.
This means that, in this region, our new time delay estimator ex-
hibits performances equivalent to those that could be achieved if
the transmitted data were perfectly known to the receiver. How-
ever, if we consider , the performance of the
CML-TED deteriorates considerably over the entire SNR re-
gion. This illustrates the fact that the CML-TED algorithm fails
to estimate the time delay if the initial value is not appropriately
chosen, while no initialization concerns are raised with our new
IS-based CML estimator. Moreover, the second variant of the
IS algorithm, namely considering the time delay as a circular
variable, is also represented in Fig. 5. We see in this case that
the variance error is reduced in the low SNR region. In addi-
tion, in both cases, starting from an SNR value of about 5 dB,
our IS-based algorithm surpasses the iterative algorithm, even
when assuming a sufficiently accurate initial guess.

Furthermore, in Fig. 6, the CML-TED algorithm exhibits
a variance penalty for a roll-off equal to 0.2. This penalty is
higher for smaller excess bandwidth. It has been shown in
[8] that the CML-TED reaches the asymptotic compressed
CRLB , and the difference between the MCRLB
and the becomes more important as the roll-off factor
decreases. Then the performance of the CML-TED cannot
approach asymptotically the MCRLB for small roll-off factors.

Fig. 5. Comparison between the estimation performance of the IS algorithm
using the two scenarios and the tracking performance of the CML-TED using
QPSK modulation.

Fig. 6. Comparison between the estimation performance of IS algorithm and
the tracking performance of CML TED using QPSK modulation and for a
roll-off factor of 0.2.

In contrast, the new IS-based algorithm always reaches the
MCRLB in the high SNR range, irrespectively of the roll-off
factor value.

In Fig. 7, performance curves are drawn for 16-QAM and
64-QAM, as examples for non-constant-modulus constella-
tions. As explained in Section VI, we force the first and the
last transmitted symbols to be of maximum energy. To illus-
trate the performance degradation in the case of higher-order
modulations, we also plot the NMSE for QPSK. As we can
see, the IS algorithm achieves close performance for the three
modulations orders, with, however, a small improvement for
the QPSK modulation. To illustrate the performance enhance-
ment achieved by forcing the first and the last symbols to
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Fig. 7. Normalized MSE of the time delay estimate for different QAM modu-
lation order, using a root-raised cosine filter with a roll-off factor 0.5.

Fig. 8. Comparison of the estimation performance with and without forced
symbols using 16-QAM modulation and for a roll-off factor of 0.5.

have maximum constellation magnitude, we plot, in Fig. 8 the
performance of the new IS-based ML estimator without this
constraint. As anticipated, the performance is strongly affected
by the two edge symbols since the curve corresponding to the
nonforced symbols does not approach the MCRLB. Therefore,
for non-constant-envelope modulated constellations, it is es-
sential to force the first and the last transmitted symbols to have
maximum energy, as explained in Section VI.

VIII. CONCLUSION

A computationally efficient technique has been developed
to implement the CML estimator of the time delay parameter.
Based on a discrete-time model, the transmitted symbols are
supposed to be unknown and no restriction on their distribution
was assumed. To avoid iterative techniques and their drawbacks,

the importance sampling method was used to find the ML solu-
tion. Its main advantage over the iterative procedures is that it
does not require any initial guess of the time delay parameter
and that it is far less computationally expensive while retaining
good performances. Moreover, its convergence to the global
maximum is guaranteed. Relative to other proposed methods
such as the CML-TED, the IS-based estimator exhibits better
performance at high SNR. In practice, the choice of the algo-
rithm parameters and is critical for the estimation per-
formance and for a good choice of these parameters, a small
number of generated realizations can be sufficient to achieve
satisfactory performance and reduce the computation burden.

APPENDIX A
PROOF OF

In the following, we prove that defined in (17) tends
to a Dirac delta function centered at the location of its global
maximum as . To do so, consider the general case
where is an integrable function having one global max-
imum, denoted :

(42)

and denoting by the following normalized function:

(43)

where is the definition domain of . Then, for a given real
number , we have

(44)

However, since is the maximum value of the function
, then is a negative number and, therefore,

tends to 0, as well as , when
tends to . As a result

(45)

for any real . Moreover, if we consider that
, then whatever , we have

and , which is

in conflict with the assumption that .
Finally, we conclude that and since

, becomes a Dirac delta function

centered at when tends to .
APPENDIX B

JUSTIFICATION OF THE APPROXIMATION

The diagonal elements of are the convolution of the
same shifted version of ( for

where is defined in (6)). Whereas, when
the shift is not the same (i.e., , ),
the value of the convolution, , is, according to the
Nyquist criteria, equal to zero. However, since we take some
samples of , , is not re-
ally equal to zero but still very small and negligible in front of
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Fig. 9. Plot of � ���, � ��� and � ���.

. To clarify, we plotted in Fig. 9 the following three
functions: ,

and and we take for example
. Then, notice

from this figure that some samples of are negative, which
will compensate for positive samples in from
the same function thereby resulting in very low convolution.
However, the samples of are always positive and there is
no compensation effect in added
to the fact that , this results in the following con-
clusion: . Using the same arguments
for the other off-diagonal elements of leads to the fol-
lowing approximation:

(46)

APPENDIX C
PROOF OF THE EFFECT OF ON

In the following, we briefly show how (or equivalently
) can render more peaked around its global maximum.

Starting from , define the function :

(47)

where is the true time delay value to be estimated and
is the approximation of defined in the right-hand side of
(22), i.e., . The first derivative of
with respect to is given by

(48)

And noting that , it follows that

(49)

Therefore, . Hence, is an
increasing function with respect to , i.e., for every

we have , which
means . We conclude that renders

the objective function more and more peaked around its global
maximum.

APPENDIX D
METHOD TO GENERATE

In this appendix, we detail how to generate realiza-
tions according to . First, we generate a vector

of realizations uniformly distributed
in [0,1]. Then, we search , where is
the reciprocal function of the cumulative distribution function
(CDF) of defined as

(50)

Unfortunately, a closed-form expression of is not
analytically tractable. Moreover, since is a steep-slope
function, a fine search to find as is re-
quired and makes the process computationally intensive. How-
ever, since is an increasing function of , the function

is unimodal. This observation allows us
to adopt the golden search [17] to find the location of the min-
imum of . The golden search is appropriate for this problem
because it converges after a small number of iterations and re-
quires only one function evaluation per iteration.
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