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Abstract—A cooperative communication network is considered
wherein L sources aim to transmit to their designated destina-
tions through the use of a multiple-antenna relay. All sources
transmit to the relay in a shared channel in the first transmission
phase. Then, the relay linearly processes its received signal vector
using L relaying matrices and retransmits the resultant signals
towards the destinations in dedicated channels in the second
transmission phase. The goal is to jointly optimize the sources’
transmit powers and the relaying matrices such that the worst
normalized signal-to-interference-plus-noise ratio (SINR) among
all L destinations is maximized while the relays’ transmit powers
in the dedicated channels as well as the sources’ individual and
total transmit powers do not exceed predetermined thresholds.
It is shown that the jointly optimal sources’ transmit powers
and the relaying matrices are the solutions to an optimization
problem with a nonconvex objective function and multiple non-
convex constraints. To solve this problem, it is first proved that all
normalized SINRs are equal at the optimal point of the objective
function. Then, the optimization problem is transformed through
multiple stages into an equivalent problem that is amenable to
an iterative solution. Finally, an efficient iterative algorithm is
developed that offers the jointly optimal sources’ transmit powers
and the relaying matrices. An extension to the above problem
is then studied in the case when the cooperative communication
network acts as a cognitive system that is expected to operate
such that its interfering effect on the primary users is below
some admissibility thresholds. In such a case, the sources’ and
relay’s transmit powers should further satisfy some additional
constraints that compel a new technique to tackle the problem
of the joint optimization of the sources’ transmit powers and the
relaying matrices. An iterative solution to the latter problem is
also proposed and the efficiency and the high rate of convergence
of the proposed iterative algorithms in both the original and the
cognitive cases are verified by simulation examples.

Index Terms—Cooperative communication, joint source and
relay design, multi-source multi-destination network.
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I. INTRODUCTION

SING relay transceivers that send properly-processed
U versions of their received signals through the wireless
medium, cooperative communication techniques can substan-
tially increase the link reliability, the transmission coverage, and
the capacity of wireless networks [1]-[5]. While such relay-as-
sisted schemes were originally tailored for a point-to-point
communication between an isolated source-destination pair, the
growing interest in the broad potential applications of wireless
ad hoc networks has motivated increasing research efforts in
developing efficient cooperative communication schemes for
multipoint-to-multipoint wireless networks wherein multiple
sources aim to transmit their signals to their designated desti-
nations through possibly a shared channel [6]-[14]. A major
challenge in multipoint-to-multipoint cooperative networks
is to devise an energy-efficient communication scheme that
establishes channel links between all source—destination pairs
via possibly multiple relaying antennas and simultaneously
provides an acceptable level of quality of service to every
destination by either mitigating or preventing all cross-link
interferences that may be caused by irrelevant sources. Several
attempts have been made to tackle this challenge: Aiming to
increase the signal-to-interference-plus-noise ratios (SINRs) at
the destinations by minimizing the relays’ forwarded interfer-
ence and noise power, a linearly-constrained minimum-vari-
ance relay beamforming approach is developed in [7]. An
energy-efficient distributed relay beamforming technique that
guarantees target SINRs at the destinations is designed in
[8] and is generalized in [9] to the case that the relays share
some local information. To mitigate the cross-link interference
effect, zero-forcing and minimum-mean-square-error-based
signal processing techniques are developed in [10] and [11],
and to counter the degrading effect of the imperfect channel
knowledge, robust signal processing techniques are proposed
in [12]. The authors in [13] and [14] assume that all network
transmissions are carried out in interference-free orthogonal
channels and develop efficient resource allocation techniques
at the sources and/or relays to optimize some network level
performance metrics.

When sources use a shared channel to transmit their data, the
presence of cross-link interference makes it more challenging
to achieve the desired quality of service requirements at all
destinations. In such cases, the cooperative schemes that aim
to optimize the communication network only at the relaying
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phase [7]-[9], [12] or using separate designs at the transmission
and relaying stages [10], [11] may show an inadequate perfor-
mance. Motivated by the above fact, we present a joint design
at the transmission and relaying stages in a multipoint-to-mul-
tipoint cooperative network by jointly optimizing the transmit
powers at single-antenna sources and the linear signal pro-
cessing technique at the multiple-antenna relaying terminal.
Despite the significant contributions to the literature of mul-
tipoint-to-multipoint cooperative communication networks, to
the best of our knowledge, none of the existing works has con-
sidered the problem of joint power control at the sources and
the signal processing at the relay for a multipoint-to-multipoint
cooperative communication network.

In the first transmission phase, L sources transmit their sig-
nals through a shared channel and K relay antennas receive
different noisy and faded mixtures of the transmitted signals.
In the second phase, the relay linearly processes its K -dimen-
sional received vector by multiplying it with L relaying ma-
trices and then transmits the resultant signal vectors to the L in-
tended destinations through dedicated channels.! As the sources
use a shared channel in the first transmission phase, the cross-
link interference effects degrade the performance at the destina-
tions. Aiming to mitigate these effects while preserving fairness
among all destinations, jointly optimal sources’ transmit powers
and relaying matrices are sought that maximize the worst nor-
malized SINR among all destinations subject to upper-bounds
on the sources’ individual and total transmit powers and the
relay’s transmit power at all L dedicated channels. The optimal
variables are shown to be the solution to a complicated opti-
mization problem with a nonconvex objective function and mul-
tiple nonconvex constraints. As the first step to solve this opti-
mization problem, it is shown that the optimal sources’ transmit
powers for any given set of relaying matrices are those that bal-
ance all normalized SINRs. This property is then used to trans-
form the optimization problem through multiple stages into an
equivalent form that lends itself to an iterative solution. An ef-
ficient algorithm is then developed that obtains the jointly op-
timal set of sources’ transmit powers and the relaying matrices
through an alternating optimization technique. The per-iteration
computational complexity order of the proposed algorithm is
derived and it is shown that while the studied problem here in-
cludes the problem investigated in [16] as a special case, the
solution algorithm proposed in this paper enjoys a less per-iter-
ation computational complexity order than that of [16].

The studied multipoint-to-multipoint cooperative communi-
cation network is then treated as a cognitive network that oper-
ates in the presence of a primary system. In such a case, the op-
timal sources’ transmit powers and the relaying matrices should
further satisfy additional constraints on the incurred interfer-
ence to the primary users. These additional constraints pose a
significant challenge to obtaining the jointly optimal transmis-
sion strategies at the sources and the relay. In particular, un-
like in the original noncognitive case, the optimal relaying ma-
trices for a given set of sources’ transmit powers do not admit
closed-form representations and are shown to be the solutions to

IThe joint source power control and relay matrix design in multipoint-to-
multipoint cooperative communication networks with shared relay-destinations
channels is studied in [15].
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a set of quasi-convex optimization problems. An efficient tech-
nique to solve the latter quasi-convex optimization problems is
proposed and is then used in an iterative alternating optimiza-
tion-based algorithm that jointly derives the optimal sources’
transmit powers and the relaying matrices. Finally, the rapid
convergence property of the proposed iterative algorithms and
the validity of the analytical results are verified using a number
of simulation examples. We are currently investigating related
joint optimization problems in the case that the relay-destina-
tions communication is also carried out in a shared channel. The
solution to the latter problem will be disclosed in a future pub-
lication.

The rest of this paper is organized as follows. Section II
presents the signal model and the problem formulation and
Section III obtains the optimal sources’ transmit powers for a
given set of relaying matrices. Section IV derives the jointly op-
timal sources’ transmit powers and relaying matrices. Section V
tackles the above joint optimization problem in the case that the
sources and relay are cognitive terminals. Section VI presents
the simulation results and Section VII draws the concluding
remarks.

Notation: Uppercase and lowercase bold letters denote ma-
trices and vectors, respectively. | - | is the absolute value, || - ||
is the 2-norm of a vector, and tr( -) is the trace of a matrix.
()T, (-)*, and (-)¥ denote the transpose, the conjugate, and
the Hermitian transpose, respectively. E{-} stands for the statis-
tical expectation,  is the imaginary part, and [a] is the smallest
integer larger or equal to a. 1 is the vector with all entries equal
to 1 and e; is the vector with 1 at the 7th position and zeros else-
where. I is the K x K identity matrix. [-]; and [-],; stand
for the /th entry of a vector and the entry at the nth row and
the /th column of a matrix, respectively. Apax( - ) is the max-
imum modulus eigenvalue, (- ) is the eigenvector associated
with the maximum modulus eigenvalue normalized such that its
last entry is 1, and p( - ) is the spectral radius of a matrix. D(a)
is a diagonal matrix whose diagonal elements are the entries of
a.ajisthe (L. —1) x 1 vector obtained by removing the [/th entry
of the L x 1 vector a. A,7is the N x (L — 1) matrix obtained
by removing the /th column of the N X L matrix A and vec(A)
is the N L x 1 vector obtained by stacking the columns of A on
top of one another. ® is the Kronecker product. € denotes the
membership in a set while Card( - ) is the cardinality of a set. U
and C denote the union of two sets and the subset, respectively.
In this paper, > and > are elementwise inequalities, that is, if
A > B, then [A],;; > [B],; forall n and /. a S b means that
a < b with [a]; < [b]; for at least one /.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the cooperative communication network depicted
in Fig. 1 with L pairs of single-antenna terminals (S;, D;),l =
1,..., L where each source S; aims to transmit its data to its
designated destination D;. Assume that all direct source-des-
tination communication links S;D;,7,5 = 1,..., L are neg-
ligibly weak due to, for instance, large distances between the
sources and the destinations and the required communication
links between S; and D;,l = 1,...,L are established via a
K -antenna relay that employs the following two-phase amplify-

and-forward (AF) communication protocol: In the first phase,
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all sources broadcast their signals and the relay antennas re-
ceive different noisy and faded mixtures of the transmitted sig-
nals. In the second phase, transmissions from the relay antennas
to the destinations are carried out using L orthogonal channels
each of which dedicated to a single destination.2 To transmit
in the [th channel, the relay multiplies its K -dimensional re-
ceived signal vector by a relaying matrix WO and forwards
the result en-route to D;. This procedure continues in all L
channels. Throughout this work, it is assumed that transmitted
signals from the sources as well as noises at the destinations
and the relay are zero-mean and mutually statistically indepen-
dent and all source-relay and relay-destination channel links
are quasi-static flat fading. Let s; denote the transmitted signal
from S; with E{|s;|?} = p; and assume that we must have
p < P,l =1,...,L and Zlel p1 < Pr41 where the first
L constraints may be due to the sources’ limited power supply
and the last constraint may be imposed by regulations. Note that
Priy < Zle P, as otherwise the last constraint is trivially
satisfied. The above power constraints can be represented in a
more compact form as

up<P I=1,....,L+1 6
where u; 2 e,l=1,...,Landurq1 £ 1. Let gkl represent
the channel gain from S; to the kth relay antenna. Introducing
s = [s1...502]7, & £ l911--.9x1)F, and G £ [g1...81], the
relay’s received signal vector is given by

y=Gs+vVv 2)

where v 2 [vy...vg]7T is the noise vector at the relay with
E{|vx|*} = o7, . The signal transmitted from the relay in the
[th channel can then be represented as

x( — W(l)*y_ (3)

Using (2) and (3) and T1.1 and T1.2 from Table I, the relay’s
transmit power in the /th channel may be computed as

PV =E {x<l>Hx<l>}
_ * H 08
=t (WO (GD(p)GF + 2,) W

H
—w® E(p)w(l) 4)
where w(®) £ vec(W®) and E(p) £ (GD(p)GH +
¥,) ® Ix with p £ [p1...pr]T and X, £ E{vvH} =
D([o7, ...02 ]"). Due to regulations, it is also required that

vy e

pO<PO =1L (5)
where P() is a given upper-bound. Let h,(cl) denote the channel
gain from the kth relay antenna to D; in the [th channel. Intro-
ducing h®) 2 [hgl) e h(I?]T, the received signal at D; in its
dedicated channel is

2Depending on the duplexing mode, orthogonal relay-destination channels

may be devised in time or in frequency. All results in this paper hold for both
cases.
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2 = h(l)Tx(l) +n [=1,...,L (6)
where n; is noise at D;. Using (2) and (3) in (6), we have

2 =hO" WO 'Gs + hO WOy 4y 1=1,... L.
@)

Let us further introduce f,gl) £ g, oh®, Using T1.3 and T1.4
from Table I, (7) may be equivalently represented as

L
g =wO g0 4+ 3 w0,

ot
+w® (v ® h(l)) Fn, (8)
for! = 1,..., L. Note that the first and the second terms in (8)

are, respectively, the desired signal and the interference com-
ponents while the sum of the third and the fourth terms in (8)
constitute the aggregate noise component of the signal received
at Dy. Let 02, = E{|ny|?}. It is straightforward to show from
(8) and T1.5 in Table I that, for/ = 1,..., L, the SINR at D; is

M (W(l)7 p)

2
P ‘W(I)Hfl(l) ‘

L e . )]
S e ‘wm £ ‘ +wO TOw® 4 52
o
whereT!) 2 3, ® hOhO™ 1n this work,
O}
ﬁ,(Wa)?p)gM I=1,....L (10)

"

is used as the links’ performance measure where 7; is a nor-
malization factor that may be selected proportional to the target
SINR at D;. The goal is to determine the jointly optimal power
vector p, and relaying matrices W((,l) that maximize the min-
imum 7;(w(®, p) subject to the 2L + 1 constraints imposed
by (1) and (5). A max-min (normalized) SINR optimization
strategy is typically used when the intent is to preserve fair-
ness among multiple communication links [16], [18]-[20]. The
problem of interest may be more formally presented as follows:

i (w® )
max -, i (W P (11a)
subject to ulTpSPl l=1,...,L+1 (11b)
wOTEEWO < PO =1, L (1)

where W = [W®) . W], A part of the forthcoming de-
velopment is easier to follow if an equivalent representation of
(11c)is used that, similar to (11b), explicitly shows the linear de-
pendency of the left-hand side (LHS) of (11c) on p. It is straight-
forward to show from (4) that the /th constraint in (11c) can be
rewritten as

w (WU—L—U)T p<P (W<’—L—1>) (11d)
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Fig. 1. Cooperative communication network with L source-destination pairs
and a K -antenna relay. The depicted relay-destination channel gains and re-
laying matrix correspond to the second orthogonal channel.

TABLE I
SOME MATRIX OPERATIONS PROPERTIES FROM [17]

T1.1 tr (ATH) = (vec(A))Tvec(H)
T1.2 vec(AS) = (ST ®I) vec(A)
T1.3 vec (ASB) = (BT ® A) vec(S)
T1.4 (AeB)T = (AT @BT)
TI5 (A®B)S®G) = AS®BG
where
w W(lfol))

2 [[efwiE 0w g]
11
[GHW(FLA)TW(FLA)*G} }T
LL
P (W(l—L—l))
A p-L-1) _ 4. (W(z—L—l)*E“W(Z—L—l)"‘) (12)

andl =L+2,...,2L + 1.

The SINR expressions in (9) are decoupled in w("), [ =
1,...,L and, in that sense, (11) is reminiscent of the joint
users’ transmit powers and base-station receiver design in
wireless communication networks. There is a rich literature
on the joint optimization of transmit powers and receivers in
which the studied problems can be typically cast as maximizing
the minimum of the users’ SINRs subject to a total transmit
power constraint similar to the last constraint in (11b) [18],
[21]-[23]. However, due to the multiple constraints on p and
w®, 1 = 1,...,L in (11b) and (1lc) [or (11d)], these
techniques cannot be directly applied to solve (11). It should be
mentioned that the elegant technique proposed in [16] jointly
optimizes the transmit powers and some beamforming vectors
in the case that the transmit powers are constrained by several
linear inequalities as in (11b). Unfortunately, the solution to
(11) may not be obtained using the approach presented in [16]
as (11c) (or (11d)) imposes L additional constraints whose /th
one jointly depends on w(") and p and, further, is nonconvex
with respect to the total design parameters (w("), p). Although
(11) is more complex in comparison with the problem studied in
[16], it will be shown in Section IV that the technique proposed
here to solve (11) is less computationally complex than the
approach introduced in [16]. Interestingly, it is straightforward
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to adopt the technique developed here to solve the problem
studied in [16].

To determine the jointly optimal source power allocation and
receiving strategy, it may be helpful to first obtain the optimal
power vector for a given set of receivers and then use the ac-
quired insight to tackle the original joint optimization problem.
The next two sections adopt the above approach to obtain the
jointly optimal power vector and relaying matrices. Section III
derives the optimal power vector for a fixed set of relaying ma-
trices while Section IV obtains the jointly optimal power vector
and relaying matrices.

III. OPTIMAL POWER VECTOR FOR A FIXED SET OF
RELAYING MATRICES

As the first step to solve (11), we consider a given set of re-
laying matrices W ... W(L) and derive the corresponding
optimal power vector p,(W). Due to technical reasons to be
explained shortly below, we assume that

‘w(”Hf,g”‘ >0, Lke{l,...,K)}. (13)

The following reasons justify (13) in practice: 1) f,gl) is a
stochastic vector and the probability that w( )Hf,gl) = 0 is zero
for any arbitrarily-selected w("). 2) As the aggregate noise
power in (9) is larger than zero, the zero-forcing receiver is not
SINR-optimal. This means that the optimal w(") that maximizes
A (w(®, p) is not orthogonal to f,gl), k # [ and, hence, satisfies
(13). Following [24] and [25], (13) may be substituted by a
more relaxed condition. However, such a relaxation mainly
complicates the proofs of the forthcoming theorems while, un-
like in [24] and [25], does not seem to correspond to scenarios
of practical interest.

As the LHS of (11d) is always positive, it follows
from (12) that the selected WO should be such that
tr(WO' s, WOy <« PO for | = 1,...,L. Assuming
that the selected relaying matrices satisfy the latter conditions,
(11) reduces to

i (w® )
HISLX 1I§1111SHL il (w ,P (14a)
subjectto u/p< P, I=1,...,2L+1 (14b)

where, to simplify the notation, we have dropped the arguments
of uy( W LDy and P(WUL-D)forl = L+2,...,2L+1
in (14b). The following two observations are instrumental in
deriving p,(W):

Observation 1: When p = p,(W), at least one of the con-
straints in (14b) holds with equality. This is due to the fact that
all normalized SINRs in (10) are strictly increasing functions
of the power vector. Therefore, if all inequalities in (14b) are
strict for p = p,(W), one can multiply p,(W) with a factor
a1 > 1 and, without violating any of the constraints in (14b),
increase all 7;(w®, p,(W)) to 7;(w®, a1 p,(W)). This con-
tradicts the optimality of p,(W).

Let £,(W) denote the set of indexes of the constraints in
(14b) that hold with equality when p = p,(W). We have

ulTpo(W) =P
u,lTpo(W) < Pl

1€ &(W)
1 ¢ Ey(W).

15)
(16)



ZARIFI et al.: JOINTLY OPTIMAL SOURCE POWER CONTROL AND RELAY MATRIX DESIGN

Observation 2: p,(W) balances all normalized SINRs, that
is,

(W) = 7 (w<l>, po(W)) forall I=1,...,L (17)
It is due to (13), which implies that the /th normalized SINR
is a strictly decreasing function of the powers of all sources
but the Ith one. Therefore, if one normalized SINR, say,
(W (l),po(W)) is larger than the others, a decrease in the
corresponding power [p,(W)]; results in an increase in other
normalized SINRs, and, consequently, the objective function.
This contradicts the optimality of p,(W).

Note that the SINR balancing property is the core to many
power control techniques [16], [18], [21]-[23], [26]. Let us in-
troduce

H 2
(W) 2 { OO 12k
0 =k

(W) é D Y1 YL

2 : 2
T

(W), 2 wO T TOw0 4 52 (18)

Then, it is direct to show from (9) and (10) that p,(W
satisfies

)in (17)

Q(W)T(W)p + Q(W)a(W) = p.  (19)

1
(W)
Using (19) in (15), it follows that p,(W) is also a solution to

1 1 1

i u/ Q(W)¥(W)p + Fl“lT Q(W)a(W) = ) (20)
forl € £,(W). Let
al QW)E(W) Q2(W)a(W)
AdW) = [,%u?n<w>w<w> ,%,u?n<w>a<w>} @D

forl = 1,.

[po (W) 1]"

p I |p
AI(W)|:1:|—W|:1:| lego(W)
As 7j(W) and the transmit powers are positive scalars, (22)
shows that 1/7(W) and [p,(W)T1]?" should constitute a
jointly positive eigenpair of A;(W) for all I € &,(W). To
continue our developments, we need the following theorem
whose proof is given in Appendix A.

Theorem 1: A;(W) is a nonnegative primitive3 matrix for
l=1,...,2L+1.

An interesting result of Theorem 1 is that the Perron’s The-
orem that holds for strictly positive matrices is also applicable

,2L 4+ 1. We have from (19) and (20) that
satlsﬁes

(22)

to Ay(W),l =1,...,2L+1 (see [27, Ch. 8]). In particular, we
have the following.
Corollary 1: Among all eigenvalues of A;(W),

Amax (A1(W)) is the unique eigenvalue of maximum modulus.
It is real and positive, algebraically simple, and associated

3A nonnegative matrix is primitive if it is irreducible and only has one eigen-
value of maximum modulus [27].
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with a positive eigenvector that is unique up to an arbitrary
scalar. A;(W) does not have any other eigenpair that is jointly
positive.

Note that Ayax(A;(W)) is usually called the Perron root of

Af(W). Let Q(A{(W)) £ [py(W)T1)T forl = 1,...,2L+1.
Due to the structure of A;(W) in (22) we have
u/p(W)=P [=1,...,2L+1. (23)
Moreover, it is straightforward from Corollary 1 that
(W) = — L€ £,(W) (242)

)\max(Al(W))

{po(lw)} _ [Pl<1w>} = Q(A(W)) 1€ E,(W). (24b)
Equation (24a) implies that when Card(€,(W)) > 1 we must
have Apax(Am(W)) = Apax(An(W)) for m,n € E,(W).
Moreover, (24b) suggests that p,(W) is not unique unless
Pm (W) = pn (W) form,n € £,(W). In what follows, we ob-
tain £,(W) and prove that Apax(Am(W)) = Anax(An(W))
and p,,,(W) = p,(W) for m,n € £,(W). First, we require
the following theorem.

Theorem 2: For any two distinct m andn € {1,...,2L+1}
we have
u, pr(W) < P (25)
if and only if
Amax (Am (W) < Amax(An(W)). (26)

Moreover, the following four statements are equivalent:

/\maX(Am (W)) = /\max(An(W)) (27a)
Pm (W) = Pn (W) (27b)
ul,pn(W) =P, 7¢)
ul'p. (W) =P,. (27d)

Proof: See Appendix B.
Now, we have all the machinery to prove the main result of
this section.
Theorem 3: The following four statements are equivalent:

Amax (A1, (W)) = -+ = Amax (A, (W)

> Amax (A(W)) LE{l,... I} (28)
E (W) ={l1,...,lu} (29)
= b (A (W) = -

= Amax (A1, (W))

# Amax (A (W) 1 ¢ {ly,....la}  (30)
Po(W) =pi, (W) =--- = py, (W)

#o(W) ¢ {l,... I} (3D

Proof: See Appendix C.

Note that (28) states that the /1 th, the [5th, ..., and the [y,th
elements in the sequence Apax (A (W)), [ =1,...,20L+1
are equal to one another and are strictly larger than other
elements. One may conjecture that it is unlikely to have
M = Card(é,(W)) > 1. However, it will be shown in
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Section IV that when the optimal set of relaying matrices
W, 2 W . W] is used, M, £ Card(E,(W,)) >
L+1

Using the developments in this section, the procedure to solve
(14) for a given W = [W .. W ()] can be summarized as

follows:
1) Form A;(W) in (21) and compute Apax(A;(W)) forl =
1,..., 2L + 1.

’

2) Sort the so-obtained Apmax(A(W)), 1 =1,...,2L+1
in a non-increasing order. There may be M > 1 eigen-
values that are equal to one another but larger than the
others. Denote the indexes of the corresponding matrices
asly,...,ly and find 77(W), the optimal value of the ob-
jective function in (14), from (30).

3) Form &,(W) as in (29). Knowing that Q(A; (W)) =
[pr,, (W)T 17 = [pr, (W)T1]" = Q(Aq, (W) for any
two distinct ,, and l,,, € £,(W), choose an [, € £,(W)
and compute Q(A;, (W)). Obtain the unique p,(W)
from (31).

Note also from Theorem 3 that when p = p,(W), the [;th, the

loth, . . ., the [sth constraints in (14b) hold with equality and all

other constraints hold with a strict inequality.

IV. JOINTLY OPTIMAL POWER VECTOR AND
RELAYING MATRICES

Building on the results in Section III, a four-step constructive
approach is used in this section to derive a necessary and suffi-
cient condition for the optimal pair of W, and p, = Po(W,)
that solve (11). In the first step, an initial representation of this
condition is given. The next two steps are intermediate stages to-
wards an equivalent representation of the so-obtained condition
that can be used to develop an efficient iterative algorithm to ob-
tain W, and p,. The final form of the necessary and sufficient
optimality condition along with the aforementioned iterative al-
gorithm are presented in the fourth step.

Step 1: Theorem 3 states that p, can be uniquely computed
as [pI1]T = Q(A(W,)), | € &(W,). To characterize W,,,
note from Theorem 3 that when a set of relaying matrices
W is used, the balanced normalized SINR 7(W) is equal to
1/ Amax(A1(W)),l € E,(W). Therefore, it should hold that
Amax(A1(W5)) < Amax(A(W)) where [ € £,(W,) and
W is any arbitrary set of relaying matrices. In other words,
W, minimizes A\pax(A;(W)) for I € &,(W,). However, the
latter minimization should be performed over the feasible set
of relaying matrices that satisfy (11d). It should be stressed
that the constraints in (11b) do not depend on relaying matrices
and, therefore, do not affect the aforementioned feasible set.
The above argument shows that W, and p,, are jointly optimal
if and only if

W, = argmin Apax (A(W)) 1€ E,(W,), (32a)
w

T
subject to w; (W(Z*L*1)> pPo < P (W(I*Lfl)) , (32b)
forl=L+2,...,2L + 1, where

[p"} = Q(AI(W,)) 1€ E(W,). (32¢)

1
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The optimization problem (32) has a complicated structure.
Some challenges to solve (32) are as follows:

1) The aim in (32a) is to jointly minimize the common max-
imum-modulus eigenvalue of multiple non-symmetric ma-
trices Apax(A1(W)), 1 € E,(W,). It seems that there is no
systematic approach to solve such a problem in general.

2) This minimization should be performed over a feasible set
that satisfies (32b). The feasible set in (32b) depends on p,
which, according to (32c), itself is a complicated function
of the to-be-obtained W,.

3) As W, is unknown, so is £,(W,) in (32a) and (32c).

4) In general, £,(W,) may have a nonempty intersection
with the set of constraints indexes {L + 2,...,2L + 1}
in (32b).

Therefore, some u;(W=>=1) and P,(W(==~1)) that deter-
mine the feasible set of relaying matrices in (32b) may also have
an indirect effect on this feasible set through p, in (32c¢).

Step 2: The following observations help to represent (32) in

a more benign form.

Observation 3: W, and p, satisfy all constraints in (11d)

with equality, that is,

w (ng_L_l))Tpo =h (W(I_L_l)) )

o

(33)

forl=L+2,...,2L+1.

Equation (33) can be proved as follows. First, assume that
PZ(ng_L_l))/u;(W((,l_L_l))Tpo = g > 1 for some L +
2 < I} < 2L+ 1. Then, without violating any constraint in (11b)

or (11d), one can multiply w((,lfol) with /a3 and increase

g (w8 " p,) to ﬁz_L_l(\/qzwgfL*l),Po)- A part
(I-L-1)

of the achieved gainin;_; _,(\/aawo . Po) can be offset
by decreasing [p,];_; _;. Such a decrease in [p,];_; _; results
in an increase in ﬁl(wgl)7 po) foralll <[ # |—L—1 < L.This
shows that if (33) does nothold foralll = L +2,...,2L + 1,
one can increase the objective function in (11) without violating
any constraints. This is in contradiction with the joint optimality
of W, and p,.

Observation 4: When W, and p, are jointly used, at least
one of the inequalities in (11b) holds with equality, that is,

ul'p, = P, (34)

foratleastonel € {1,...,L+ 1}.

This can also be proved by contradiction. Assume
that all inequalities in (11b) are strict at optimum. Then,
miny<i<p41 P/ulp, £ az > 1 and azp, does not violate
any of the constraints in (11b). However, it follows from (33)
that if azp, is used along with W ,, then all constraints in (11d)
are violated. To avoid this, the relaying matrices WL can

be replaced by /31_L_1W((,I_L_1) where

B, & pi-L-1) (QSP(I—L—I)

~ (o~ e (W02 3w, 20)) )
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forl =L+ 2,...,2L 4+ 1. It is straightforward to verify that

azw (\/ ﬁz—L—1W(()lfL71))T Po
=P (VB W)

forl = L+2,...,2L+1. Therefore, the set of relaying matrices

[\/ﬂlwgl) . \/,[3LW(()L)] and the transmit power vector azp,
satisfy all constraints in (11b) and (11d). It follows from (9) that

(36)

Ul ( Brwh, Oé3po)

2
D )

[po]l W((7

L " 9
> polk ‘ng) fél)‘

L 0T poo 12
0(3 o v o

k=1 @31
k£l
(37)
where
1 az—1 (Wo“)*EuWa(’)T)
- : <1, (38)
s a3 PO

forl =1,..., L. Using (38) along with the fact that 1/a3 < 1,
it can be obtained from (9), (10), and (37) that

w (VB asp,) > (wi.po) =1 L (39)

This contradicts the joint optimality of W, and p,.

When W, and p, are jointly used, let A,(W,) = {l €
{1,...,L+1}|ul'p, = P,}. Then, it directly follows from Ob-
servations 3 and 4 that £,(W,) = A, (W,)U{L+2,...,2L+
1} and the optimization problem (32) can be reformulated as

W, = argmin Apax (Ai(W)) 1 € E,(W,), (40a)
A%

subjectto  w (W“—L—l))T po = P, (W(I‘L_l)) . (40D)

forl=L+2,..., 2L + 1, where

7] =amiw)

le AL,((W,)U{L+2,...,2L +1}. (40c)
As p, is the optimal power vector associated with W, and the
equality constraints in (40b) hold for W = W, (40b) implies
by its own that {L + 2,...,2L + 1} C &,(W,) (see the defi-
nition of &,(W,) in Section IIT). From the equivalence of (29)
and (31), it follows that {L + 2,...,2L + 1} C &,(W,) is an
alternative representation of [pZ1]7 = Q(Ap12(W,)) =

= Q(A2p4+1(W,)). Therefore, (40c) is partly en-
forced by (40b). This redundancy can be avoided by re-
placing [ € A,(W,) U {L + 2,...,2L + 1} in (40c) by
l € A,(W,). Further, as A,(W,) C {1,...,L + 1} is
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also a nonempty subset of £,(W,), the equivalence of (28)
and (29) establishes the fact that [* € A,(W,) if and only
if I* = argmaxi<i<r4+1 Amax(Ai1(W,)). The optimization
problem (40) can now be equivalently expressed as

W, = argmin A pax(A;(W)) 1€ E(W,), (4la)
w

T
subject to w; (W(Z*L*1)> Po =P (WU*L*l)) , (41b)

forl =L+ 2,...,2L + 1, where

I* = argmax Apax (A1 (Wy)).

[po} = (A (Wo)) 1<I<L+1

1
(41c)

Note that [ and [* in (41b) and (41c) belong, respectively, to
the disjoint sets of {L + 2,...,2L + 1} and {1,...,L + 1}.
Moreover, according to (1), the set of A;(W,) in (41c) depends
on the pairs of u; and P; that are independent from the relaying
matrices. These facts are useful in developing a simple iterative
algorithm that alternately optimizes p and W to obtain p,, and
W,. We would like to stress again the fact that even if * in (41c)
is not unique, the equivalence of (27a) and (27b) guarantees the
uniqueness of p,.

Step 3: The structural properties of A;(W) can be used
to represent (41) in a simpler form. First, as A;(W),l =
1,...,2L 4+ 1 is a nonnegative primitive matrix, we have [27,
Corollary 8.1.31]

[A(W)x];

[x]:
[A(W)x];

xl;

forl =1,...,2L 4+ 1. Moreover, the following lemma holds.
Lemma 1: If an L X 1 vector g > 0 satisfies the /th constraint
in (14b) with equality, then

)\maX(Al(W)) - r)£l>a())( 1§5r££1+1

= min max

x>0 1<i<L+1 “42)

Ao 1] 1
max ——————='= max ——————,
1<i<L+1 q 1<i<L 7 (w(l), q) ’
P
Ao 1]
1<igL+1 [q] T dier 7 (w®,q)’ 43)
1].

Proof: See Appendix D.

Using a different representation, a special case of (43) has
been shown in [18, Lemma 2] when only Ele [q]; is con-
strained. An important property of the equations in (43) is that
their right-hand sides (RHSs) are not functions of the index of
A;(W). Therefore, as long as uqu = P, the extremal values
at the LHSs of (43) are independent from [. The following the-
orem uses (42) and (43) to derive an equivalent form of (41).
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Theorem 4: The optimization problem (41) can be equiva-
lently represented as

ng) = argmax 7 (W<l)7 Pa) l=1,...,L (44a)
wil)
subject to w ' E(p,)w® = PO [=1,...L (44b)

where

I* = argmax Apax (A (W,)).

[pf’} = Q(A;(W,)) arguax

1
(44c)

Proof: See Appendix D.

Step 4: Note in Theorem 4 that the [th normalized SINR de-
pends only on w® and w(®) appears only in the /th constraint
in (44b). Therefore, if p,, is known, the subproblem (44a)—(44b)
can be solved by independently maximizing 7;(w(), p,) sub-
ject to the [th constraint in (44b) for [ = 1,.. ., L. This property
is used in the following theorem that describes W, and p,, as
explicit functions of one another.

Theorem 5: Let

1]

() 2 VP (5" (POTp) + 2,2 (0) S0

—-1/2

—1
x (POYi(p) + 0%, E(p)) f}”) (43)

where &; can be selected as any arbitrary unit-norm scalar and

H
Yi(p) £ FD(py)F) +T( (46)
with FO £ [£1 ... £)] Then, W, and p,, are jointly optimal

if and only if

—1
wih = G(po) (POL1(p) + 02, B(po)) £
I=1,...,L (47a)

I* = argmax Apax (A1 (W,)).(47b)
1<I<L+1

| = oew)
Proof: See Appendix E.

The fact that W, and p,, are explicit functions of one another
in (47a) and (47b) gives rise to Algorithm I in Table II that ob-
tains W, and p,, with an arbitrary accuracy by alternately op-
timizing Wy, for the given p[,_1; and then py,; for the given
W - The convergence of Wy, and pp,,) to W, and p, for a
growing n is also shown in Appendix E. The convergence crite-
rion in Algorithm I may be selected as ||pj,,) — Pn—1)|| < €1 or,
considering that all normalized SINRs are balanced at optimum,
as maxi1<i<r, ﬁl(W[(L)], p[nfl]) —minj<<y, ﬁl(WEL)], p[nfl]) <
€2 where €1 and €5 are small constants.

As will be verified by numerical results in Section VI, Algo-
rithm I enjoys a very rapid convergence and, in practice, only a
few (less than 5) iterations are typically required to balance all
normalized SINRs to 77(W,). The following remark concludes
this section.
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TABLE II
ALGORITHM I: SOLUTION TO JOINT POWER CONTROL AND
RELAYING MATRICES DESIGN

i Initialize: n=0:pjg =20
: Repeat
n=n+1
l _ -1 g
: W[(n)] =G (Pr-1)) (P“)Tl(p[n—l}) + 031=(pm71])) £
. _ (1) (L)
t Wy = [W[”] '”W[n]}
: l[*n] = argmax Amax (Ay (W[n]))
1<I<L 1
. |Plnl| —
: [ [{’]:I = Q(AL;J (W[n]))
:until the prescribed convergence criterion
is satisfied

[ Y O

[N

Remark 1: The most computationally demanding steps in
each iteration of Algorithm I are Steps 4 and 6 where it is re-
quired to compute the inverse of a K2 x K2 matrix and eigen-
decompose L + 1 matrices of size L + 1 x L + 1. Therefore,
the computational complexity of each iteration of Algorithm I
is O(K% + L*). A slightly modified version of Algorithm I
can be used to solve the joint beamforming and power alloca-
tion problem considered in [16] which may be recast as a sub-
problem of (11) with the objective function (11a) and the L + 1
constraints in (11b). The approach used to solve (11a)—(11b) in
[16] is to decouple it into L + 1 parallel problems each of which
aiming to optimize the objective function (11a) subject to one
of the constraints in (11b). It has been shown in [16] that one
and only one of the solutions to the so-obtained L + 1 decou-
pled problems is also the solution to (11a)—(11b). Scaling the
problem in [16] such that it has the same dimensionality as our
investigated problem, the approach used to solve (11a)—(11b) in
[16] requires to iteratively solve up to L+ 1 decoupled problems
with each iteration having the complexity of O( K + L?). This
results in a total computational complexity of O(LK® + L*)
per iteration to solve (11a)—(11b). Therefore, the per-iteration
computational complexity of Algorithm I is less than that of the
algorithm in [16]. Both algorithms seem to have similar conver-
gence rate and, hence, the smaller per-iteration computational
complexity of Algorithm I may be translated into its overall
computational advantage to the technique proposed in [16]. Re-
calling the discussion at the end of Section II, it should be fur-
ther stressed that the algorithm in [16] may not be used to solve
(11) in its entirety due to the presence of L additional nonconvex
constraints in (11c).

V. JOINTLY OPTIMAL DESIGN IN A COGNITIVE NETWORK

A. Problem Formulation and Solution Description

In this section, the jointly optimal power vector and relaying
matrices are derived in the case that the studied multipoint-to-
multipoint cooperative system acts as a cognitive network that
shares the spectrum with M receiving terminals of a primary
system (see Fig. 2). In such a scenario, the cognitive network
should not disrupt the communication between the primary ter-
minals. When the cognitive transmitters and the primary re-
ceivers concurrently operate in the same radio channels, the
latter requirement necessitates maintaining the interfering effect
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of the cognitive transmitters on the primary receivers below cer-
tain tolerance thresholds [14], [16], [28], [29]. Let ¢,,,; denote
the channel gain from S; to the mth primary receiver U, and
Py, stand for the interference tolerance threshold of U,,, in the
first transmission phase of the cognitive network. Then, it should
hold that

thp < Pu, (48)
where t,,, = [[tm1]?- .. |[tmz|?]T. In the second phase, the in-
terfering effect on the primary network is due to the relay’s L
orthogonal transmissions. Let r( ) «. denote the channel gain from
the kth relay antenna to the mth primary receiver in the [th or-
thogonal channel. Then, the interference inflicted on the mth
primary receiver in the /th channel is

IO = pOT 0 = " (y ® rg,’)) m=1,...,M (49)

where () = [ri,ll)l . rr(,lL)K]T and the second equality is a direct

result of (3). Assume that the interference tolerance threshold of
U,, in the [th channel is P[(]li which, in general, may be different
from Py, . Then, it should hold that

E {‘ISL)‘Z} —w®" (E{yyH} ® rffl)l‘,(fl)H) w®

= w2 (p)w!

<P m=1,...,M, Il=1,..,L (50

where 20 (p) 2 (GD(p)G + £,) & r)r®" Note that if

the operating frequency band of U,,, does not overlap with that
of Sy,...,S or some of the L orthogonal channels, then the
corresponding constraints in (48) and (50) should be ignored or,
alternatively, the corresponding interference tolerance thresh-
olds at the RHSs of (48) and (50) may be set to infinity.

Following a similar discussion prior to (11), the jointly op—
timal power vector p. , and the set of relaying matrices W , 2
[ngg .. WEE)] can be computed as the solution to
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Fig. 2. The cooperative communication network as a cognitive system. The
depicted relay channel gains and relaying matrix correspond to the second or-
thogonal channel.

may be adopted to solve (51). However, one should take note of
the following remarks when trying to adopt Observations 3 and
4 in the current context:

Remark 2: In (11), w(") appears only in the Ith constraint
in (11c) [or (11d)]. Due to this one-to-one correspondence be-
tween w(l) [ = 1, ..., L and the constraints in (11d), all those
constraints hold w1th equahty at the optimal point of (11). In
contrast, in (51), w(® appears not only in the /th constraint in
(11c) [or (11d)], but also in M constraints in (50). In general,
not all above M + 1 constraints can simultaneously hold with
equality at the optimal point of (51).

Remark 3: It has been shown in Observation 4 that at least
one of the L + 1 inequalities in (11b) holds with equality at the
optimal point of (11). Using a similar approach as in the proof
of (34), it can be verified that at least one of the L + 1 + M
inequalities in (11b) and (48) hold with equality at the optimal
point of (51).

Following a procedure similar to that in Sections III and IV
prior to Theorem 4 while taking into account Remarks 2 and 3,
the solution to (51) can be characterized in the theorem below.

Hvsllég 12111<UL m (W(l)7p) Theorem 6: Let wglg = vec(WS{Z) and A, ;(W) as in (52)
subjectto  (11b), (11c), (48), (50). (51) at the bottom of the page. Then, it holds forl = 1,..., L that
While the objective function (11a) and the set of constraints W(l) = argmax ij; (w( )7Pc O) (53a)
(11b) and (11c) are shared in (11) and (51), the latter optimiza- wil)
tion problem is further constrained by M inequalities in (48) subject to W(l) =(p. O)W(l) < p® (53b)
and M L inequalities in (50). Fortunately, (48) and (50), respec- OH=0) ' 6 0
tively, have the same structures as (11b) and (11c) [or (11d)] w B (Peo)w' < Py, m=1,....M
and, therefore, a procedure similar to that in Sections III and IV (53¢)
.Al(VV)7 1217...7L+1
.y QW)¥(W Q(W)o(W
Aca(W) 2 (W)¥(W) (W)o(W) B VO

L 1 (W)E(W)

PUI L—1

ti L 1 2(W)a(W)

PU1L1
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where

|:pc,o:| = QA (Wey))

"= argmax Amax(Aci(Weo)).
1<ISM+L+1

(53d)

The following comparlson between (44) and (53) is instructive:
If p, is known, then wo ,0=1,..., Lin (44) can be derived by
independently solving the subproblem (44a)—(44b) for each I.
Similarly, it can be observed from (53) thatif p. , is known, then

£’2, Il =1,...,Lcanbe obtained by independently solving the
subproblem (53a)—(530) for each [. In other words, if p = p¢,o,

then wﬁll is the solution to the following problem:

0)
rjvlf?i‘m ( ,p) (54a)
subjectto w " E(p)w® < PO (54b)
wOTED (pyw® < PP m=1,...,M.(54c)

In contrast to (44a)—(44b), (54) does not admit a closed-form
solution. In fact, (54) is not even convex in w® and, hence,
may not lend itself in general to an efficient numerical solution
technique. Despite the above fact, it is shown in Section V-B
that (54) can be recast as a quasi-convex optimization problem
and, hence, be efficiently solved through examining a sequence
of convex feasibility problems [30].

B. Optimal Relaying Matrices for a Fixed Power Vector

First, it is direct to show from (9) that

2
(e /) [w g
w(l)H‘I‘l(p)w(l) + 02, '

i (w,p) = (55)

Due to (55), the optimal solution vectors in (54) and the fol-
lowing problem are identical:

‘w<z>Hfl<z> ‘2

max subject to (54b), (54c¢).
W WO (w0 1 gz, e GO39

(56)

Next, note that neither the objective function nor the M + 1
constraints in (56) change with an arbitrary rotation of w(®).
Therefore, without any loss of generality, w(!) can be rotated
such that %{w(’)Hfl(l)} = 0. It is now direct to observe that the
optimal solution vectors in (56) and the following problem are
the same up to an immaterial unit-norm scalar:

l)Hf(l)

Tl(p)1/2 0 w(®
0 On, 1
subject to  (54b), (54c)

S {W(”Hff”} -0

The to-be-maximized objective function, the M + 1 inequality
constraints, and the single equality constraint in (57) are quasi-
concave, convex, and linear, respectively. Therefore, (57) is a

max

(57)
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quasi-convex optimization problem [30]. It can be equivalently
represented as

max o
w(l) 9

subject to  (54b), (54c)
3 {Wu)Hfl(z)} -0

gll[Xi@)2 0 ] [w® w0,
0 On, 1 -

Note that the last constraint in (58) is convex for any fixed 1. Let
¥* denote the optimal value of the objective function obtained
by solving (58). Fix ¥ and consider the following associated
convex feasibility problem

(58)

w®
(54b), (54c)

& {W(l)Hfl(l)} -0

9 Yi(p)'/? 0] [w® < wOHg0
0 O, 1 = !

(59)

Find
such that

It is straightforward to verify that 9* > 4 if and only if (59)
is feasible (see also [30]). This property can be exploited to
develop an efficient algorithm that uses a simple bisection
technique to solve the quasi-convex optimization problem (58).
First, select an interval [} ,9}¢/] that is known to contain ©*. For
instance, one can choose 9, = 0. To select 97, note from (58)
that

’wu)Hfl(z)’?

wO L (p)w) + 02,

9*? < max

- w®

subject to (54b). (60)

Therefore, 97 > 0 can be selected such that

H (1 2
‘W(z) fz()‘

Y2 = max

subject to (54b). (61
ma W(I)H'I‘l(p)w(l) o2 ] (54b). (61)

The optimization problem (61) has a closed-form solution
for w(¥). Substituting the optimal w() into the objective
function of (61) yields 9y = (PO . 0" (POY,(p) +
oZ{E(p))_lfl(l))l/z. After determining 7 and ¥y, the
convex feasibility problem (59) can be solved for the midpoint
¥ = (I + Ju)/2 to determine whether 9* is in the lower
or the upper half of the interval. If the problem is feasible,
set ¥, = ¢ and if not, set ¥y = . Continue the procedure
until ¥y — ¥, < ey where ¢y is the required accuracy. It is
guaranteed that 9* € [Jpdy] at each iteration of the above
algorithm. As the length of [ Jy/] is halved at each iteration,
exactly [log,(Dy/ey)] iterations are required to guarantee
that 1J is in the ey-vicinity of ¥* where Dy is the length of the
original interval. The last w(!) obtained by successfully solving
the convex feasibility problem (59) is then the approximate
solution to (57) and, hence, to (54). Note that the approximation
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TABLE III
ALGORITHM II: SOLUTION TO JOINT POWER CONTROL AND RELAYING
MATRICES DESIGN IN A COGNITIVE NETWORK

:Initialize: n =0; pjgj >0

1

2: Repeat

In=n+1

4: Obtain w[(rlg], l=1,...,L by solving (54) for p = p[,,_q]
. _ (1) (L)

5 Wiy = [Wip) -+ Wi

6:1f = argmax Amax (At (W)

1<IKMA+L+1
Pin
P = (A, (Wi)

8: until the prescribed convergence criterion
is satisfied

~

error can be made arbitrarily small by properly selecting €.
In this paper, CVX [31], [32], a free package for specifying
and solving convex problems, is used to solve (59). For other
feasibility examining-based techniques to solve quasi-convex
problems see, for instance, [19] and [33].

C. Derivation of the Jointly Optimal Solution

The technique developed in Section V-B to solve (54) ob-
tains the optimal relaying matrices for a given power vector.
This, along with Theorem 6 that expresses W, and p., as
explicit functions of one another, give rise to Algorithm II in
Table III that derives W , and p. , with an arbitrary accuracy
by alternately optimizing W, for the given py,_1) and then
P[] for the given W{,;. Note that although Algorithms I and
IT have similar structures, they have two essential differences:
1) In Algorithm I, w[(:l) is a closed-form function of py,_1
while, in Algorithm II, it should be obtained using the bisec-
tion technique developed in Section V-B; 2) in Algorithm I, lf‘n]
is the argument for which Apax (A/(Win)), 0 = 1,..., L+ 1is
maximal, while in Algorithm II, l[*n] is the argument for which
Amax(Aci(Wpn)), 1=1,...,M + L+ 1 is maximal.

The following remark is in order.

Remark 4: Since Ao (W)l = 1,...,M + L + 1 are
nonnegative primitive matrices, if A ;, (W) < A, (W),
then Amax(Ac,i; (W) < Amax(Ac,i,(Wi)) [27, Corollary
8.1.19]. This property may be useful in reducing the compu-
tational complexity of Algorithm II. First, note from (21) and
(52) that, for any two distinct I1,lo € {1,...,L + M + 1},
Amax(Aci, (W) and Apax(Acr,(Wiy,))) only differ in
their last rows. Therefore, if, for instance, the last row of
A1, (Wy,) is element-wise less than or equal to that of
A1, (Wiy), then l[*n] # 1y, and, hence, there is no need
to compute Amax(Ac,1,(Wiy,)). This decreases the required
number of maximum eigenvalue computations in step 6 of
Algorithm II and, consequently, reduces the overall computa-
tional complexity of the algorithm. Finally, note from (52) that,
for any two distinct l1,lo € {L 4+ 2,..., L + M + 1}, the last
line of A.;, (W) is element-wise less than or equal to that
of Acy, (W[n]) if ;tll—L—l < —1

ti,—r—1.
PU1171471 PU1271,71 2

VI. SIMULATIONS

Simulation examples are used to verify the derived analytical

results. In all examples, Uzk = 0,2” =o’fork =1,...,.K
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4.5

AVERAGE ITERATIONS

Fig. 3. Average number of iterations required for the convergence of
Algorithm I versus L and K.

.....,Land PO = 10062 for! = 1,...,L. The
target SINRs are set to y; = 10 (dB) for [ = 1,...,L. All
source-relay and relay-destination channel gains are randomly
and independently drawn from a zero-mean unit-variance cir-
cular complex Gaussian distribution and in all but the first ex-
ample remain fixed during the simulation.

Fig. 3 shows the average number of iterations required to sat-
isfy the convergence criterion €2 = 0.02 in Algorithm I for dif-
ferent L and K and 100 independent realizations of the channel
gains. Upper bounds on the sources’ individual transmit power
are set to P, = 1002 for | = 1,...,L while the sources’
total transmit power is constrained by Pr4+1 = @1 - L - 1002
with o = 0.8. Note that since Py < ZIL=1 Py, the total
transmit power constraint is not trivially satisfied. As can be ob-
served from Fig. 3, the average number of required iterations
increases with L. However, even in the most severe case when
only K = 2 relay antennas are available to balance L = 6 nor-
malized SINRs, the average number of required iterations does
not exceed 4.5. This verifies the excellent convergence rate of
the algorithm.

Throughout the rest of simulations, .. = 3 and K = 4 are
considered. Fig. 4 shows ﬁl(w[(i)], P[n—1)) versus the iteration
index 7 in Algorithm I with P, = 1002 for [ = 1,2,3 and
Py = @7 -3 - 100 with o7 = 0.8. A very rapid convergence
of all normalized SINRs to the common optimal value can be
observed from the figure.

In the next example, it is assumed that P, = ¢ - p for
l =1,2,3and P, = 3 - p. Then, the optimal balanced nor-
malized SINRs ﬁl(w((,l)7po) are obtained from Algorithm 1.
Fig. 5 displays ﬁl(wgl), Po) versus p/o? for several . For the
sake of comparison, the minimum of the normalized SINRs
when only the relaying matrices are optimized and all sources’
transmit powers are equal to p is also shown. In the latter case,
the sources’ total transmit power is Py, and, hence, is always
larger than or equal to the sources’ total transmit power in
the case when the sources’ transmit powers and the relaying
matrices are jointly optimized. Despite the above fact, Fig. 5
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Fig. 5. m(w{), p,) versus p/o2.

shows that the proposed joint optimization approach always
performs better than the case when the sources transmit with
equal powers. Note that as ¢ increases, the upper-bound on the
sources’ individual transmit power gets larger and the sources’
total transmit power constraint is expected to act as the only
active constraint* in (11b). If it is the case, the optimization
problems corresponding to larger values of ¢ share exactly
the same set of active constraints and, hence, have exactly the
same solution. This property explains the observation that the
curves corresponding to ¢ = 1.6 and ¢ = 1.8 in Fig. 5 are
indistinguishable from each other. Finally, note that as the total
transmit power constraint seems to be active when ¢ = 1.6
and ¢ = 1.8, the sum of the sources’ transmit powers should
be equal to that in the simulated equal-power case. Compared
to the latter curve, the curves corresponding to ¢ = 1.6 and
¢ = 1.8 show close to 20% increase in the minimum of the
normalized SINRs.

4The active constraint is the one that holds with the equality.
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The next example investigates the case when the
upper-bounds on the sources’ individual transmit powers
are P, = « - 1002 and P, = P; = 1002 while the sources’
total transmit power is constrained by Py = 7 (P1+ P2+ P3).
Fig. 6 displays ﬁl(wgl), Po) versus « for o7 = 0.5, o7 = 0.8,
and ¢ = 1.1. For the sake of comparison, a plot associated
with each of the three ﬁl(wgl ,Po) curves is also shown that
displays 7, the minimum of the normalized SINRs when only
the relaying matrices are optimized and all sources’ transmit
powers are equal to ¢t = ([Po]1 + [Po]2 + [Po)3)/3. Note that
the sources’ total transmit powers in each of the associated
7 plots is equal to the sources’ total transmit powers in its
corresponding ﬁl(wgl),po) curve. It can be observed from
Fig. 6 that the minimum of the normalized SINRs obtained by
the proposed joint optimization approach is substantially higher
than its counterpart when sources’ transmit powers are equal.

It is known from Observation 4 that when the sources’
transmit powers and the relaying matrices are jointly opti-
mized, at least one of the inequalities in (11b) holds with
equality. Fig. 7 shows the index of the active constraint in (11b)
versus « for the three ﬁl(wgl), Po) curves shown in Fig. 6. As
expected, when « is small and, hence, the first source’s transmit
power has a small upper-bound, the first constraint in (11b)
is active. As « grows, the fourth constraint that corresponds
to the total transmit power becomes active first for o = 0.5
and then for ¢ = 0.8. Note that when ¢ = 1.1, we have
Py > P + P> + P5 and, therefore, the total transmit power
constraint should never be active. This is corroborated in Fig. 7.

Figs. 8 and 9 investigate the case when the studied multi-
point-to-multipoint cooperative system is a cognitive network
that shares the spectrum with M receiving terminals of a pri-
mary system. It is assumed in both examples that P; = 1002 for
l=1,2,3and Py = @7 -3 - 100? with o7 = 0.8. Moreover,
all source-primary user and relay-primary user channel gains
are randomly and independently drawn from a zero-mean cir-
cular complex Gaussian distribution with the variance 0.2 and
Py, = PL(TZ) =Pform=1,...,Mandl =1,..., L where
Plo? = o.

Fig. 8 shows the optimal balanced normalized SINRs
ﬁl(wgl, Pe,o) obtained from Algorithm II versus the number
of primary users M for p = 2, p = 5, and ¢ = 10 (dB).
When ¢ = 10 (dB), the interference tolerance threshold of the
primary users is so high that the constraints in (48) and (50)
are very unlikely to be active. As can be observed from Fig. 8,
in such a case the performance of the cognitive network is not
sensitive to M. However, as ¢ = 10 decreases, the constraints
in (48) and (50) can impose an increasingly degrading effect on
the performance of the cognitive network. This effect should
be in general exacerbated as M and, consequently, the number
of constraints in (48) and (50) increase. Fig. 8 verifies the
above conjecture by showing that 7; (wﬁli, Pc.o) is a decreasing
function of M for p = 2 and ¢ = 5.

Fig. 9 displays ﬁl(w[(i)] , P[n—1)) versus the iteration index n
in Algorithm IT for M = 3 and p = 2, p = 5, and ¢ = 10 (dB).
A rapid convergence to the optimal values can be observed in
all cases.
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curves shown in Fig. 6.

VII. CONCLUSION

A multipoint-to-multipoint cooperative communication net-
work has been studied wherein multiple sources transmit their
signals to a multiple-antenna relay in a shared channel and then
the relay retransmits linearly processed versions of its received
signal to the designated destinations in orthogonal channels.
The jointly optimal sources’ transmit powers and the relay’s
linear processing matrices have been sought so as to maximize
the worst normalized SINR at the destinations subject to the
relay’s as well as both sources’ individual and total transmit
power constraints. The optimization problem has a nonconvex
objective function with multiple nonconvex constraints. It has
been shown that the optimal sources’ transmit powers and the
relaying matrices balance all normalized SINRs and an efficient
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iterative alternating optimization-based algorithm has been de-
veloped to obtain those optimal values. The per-iteration com-
putational complexity order of the proposed algorithm has been
derived and it has been shown that although the problem con-
sidered in [16] can be recast as a simple special case of the
problem investigated in this paper, the proposed algorithm has a
less per-iteration computation complexity order than that of the
algorithm in [16]. An extension to the studied joint optimiza-
tion problem has then been tackled in the case that the sources
and relay are cognitive terminals whose transmit powers are fur-
ther constrained by maximal admissible levels of interference
induced on the primary users. Although these additional con-
straints necessitate using a completely new approach to find the
optimal relaying matrices for a given set of the sources’ transmit
powers, the developed solution algorithm in the cognitive sce-
nario has a minimal structural difference with its counterpart
in the original noncognitive case. Simulation results have been
used to verify the efficiency and the rapid convergence of the
proposed algorithms.
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An interesting research direction currently under investiga-
tion is to solve related problems in the case that the relay-desti-
nations communication is also carried out in a shared channel.
The solution to the latter problem will be disclosed in a future
publication.

APPENDIX A
PROOF OF THEOREM 1

The fact that A;(W) > 0 is obvious from (18). To prove that
A (W) is primitive, we need to show that there is an m > 1
for which A;(W)™ > 0 (see [27, Theorem 8.5.2]). It can be
observed from (18) that each of the first L rows of A;(W) has
only one 0. It is also straightforward to show that the last row
of A;(W) has at most one 0 for any u; = 0. Now, note that
[A(W)2i; = S Z [A(W)]ik[Au(W)]y; is comprised of
L + 1 summands. Following our above discussion, at most two
of these summands are zero and the rest are positive. Therefore,
A (W)? > 0 for L > 1. Obviously, the single-user case of L =
1 is of no interest to us. This completes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

We require the following two lemmas to prove Theorem 2.
Lemma 2: If A is a nonnegative primitive matrix, there is no
y1 and y» such that

Ayl § )\max(A)yl
AYZ ; )\max(A)YQ-

(62)
(63)

Proof: Since A is a nonnegative primitive matrix, Apax(A)
is real and positive. Moreover, A7 is also a nonnegative prim-
itive matrix and, hence, there exists a unique (up to a scaling
factor) g > 0 such that ATq = \ax(A)q [27, Ch. 8]. Now,
assume that (62) holds. As at least one entry of Ay is strictly
less than the corresponding entry of Ap,ax(A)y1, we must have
qTAy1 < Amax(A)qTy1, and, therefore, Amax(A)q Ty <
Amax(A)qT y1. This contradiction shows that there is no y that
satisfies (62). The proof of (63) is similar to that of (62), and we
skip it.

Lemma 3: The matrix Apax(A,(W)I — Q(W)E(W) is
invertible forn = 1,...,2L + 1.
Proof: As [p,(W)T1]T = Q(A,,(W)), we have

QUW)¥(W)p, (W) + 2(W)a(W)
Using (64) and the fact that Q(W)a (W) > 0, we obtain

QW) Z(W)p,(W) < Anax(An(W))pn (W) (65)
As Q(W)®(W) > 0 and p,(W) > 0, (65) implies that
Pp(AW)T(W)) < Amax(An(W)) [27, Corollary 8.1.20],
and, hence, Apax (A, (W))I— Q(W)® (W) is invertible. This
completes the proof.
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Proof of Theorem 2: First, we assume that (25) holds and
establish (26). Left-multiplying both sides of (64) by ul and
using (25) in the resulting equation, we obtain

W) E(W)p,(W) + -l 2(W)a(W)

< A (A (W), (66)

A straightforward result of (64) and (66) is that

A (W) [p"(lw )} S Amax(An (W) [p"(lw)} . (67)

If (26) does not hold, we have Apax(An(W)) >
Amax(An(W)). Using the latter inequality in (67), it follows
that

However, Lemma 2 states that (68) is impossible. Therefore,
(26) holds. Now, assume that (26) holds and prove (25). From
(26) and (64) it follows that

QUW)E(W)p,(W) + 2(W)a(W)

> Anax (A (W))pa (W), (69)

If (25) does not hold, then uZ, p,, (W) > P,,. Left-multiplying
both sides of (69) by u’, and using the latter inequality yields

U AW E(W)p, (W) + -l 2(W)a(W)
> Amax (A (W)).

(70)

Combining (69) and (70), we obtain

A (W) {pn(lwq > A (Ao (W) [pn(1W)] D

Inequality (71) is in contradiction with Lemma 2. There-
fore, (25) is correct. It remains to prove the equivalence of
(27a)—(27d). First, let us show that (27a) implies (27b). From
(64) and Lemma 3, we have that

pn(w) = (/\max(An(W))I - Q(W)‘P(W))_l

xQ(W)a(W). (72)
It is also known that
QW) ¥ (W)p,n(W) + Q(W)a(W)
:)\max(Aﬂ’L(W))pm(W) (73)
which implies that
pm(w) = (/\max(Am(W))I - Q(W)\IJ(W))71
xQ(W)o(W). (74)

Therefore, when (27a) holds, the RHSs of (72) and (74) are
equal and (27b) immediately follows. To obtain (27a) from
(27b), just note that when (27b) holds, the LHSs of (64)
and (73) are equal and, therefore, Apax(An(W))pn(W) =
Amax (Am(W))Pm(W) = Amax(Am(W))pn(W). As
pn.(W) # 0, (27a) follows. This establishes the equivalence of
(27a) and (27b). Now, let us prove the equivalence of (27b) and
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(27¢). It is immediate from (23) that (27¢) follows from (27b).
The fact that (27c) yields (27b) can be proved as follows. If
(27¢) holds, then (64) yields

LWL QW) T (W)p, (W) + —ul,Q(W)o(W)

P, P,
= Amax(An(W)).  (75)

From (64) and (75), it holds that

A (W) |:pn (IW):| = Amax(Am(W)) |:pn(lvv):| . (76)
However, A,,(W) is a nonnegative primitive matrix
and has one and only one positive eigenpair. Therefore,
[P (W)T1T = Q(A,,(W)) = [pm(W)T1]T. This estab-
lishes (27b). The equivalence of (27d) and (27b) can be proved
using a similar approach as in the proof of the equivalence of
(27c) and (27b).

APPENDIX C
PROOF OF THEOREM 3

Let us first prove the equivalence of (28) and (31). Assume
(28). According to Theorem 2, (28) holds if and only if

uf pi, (W) =P, lm,ln € {l1,..., I} (77)
and
l.llTpln(W) <P I,e€ {ll, . l]u} and [ ¢ {ll,. . ,lM}
(78)

Using the equivalence of (27b)—(27d), we have from
(77) and (78) that p,(W) = --- = p;, (W) #
pi(W) for I ¢ {ly,...,lp}. We know that p,(W) €
{P1(W),...,p2r+1(W)}. However, p,(W) cannot be equal
to p; foran l ¢ {li,...,l5}. This is due to the fact that
otherwise we have u/ p;(W) < P; and, hence, the con-
tradictory relation of Apax(A;(W)) > Amax(Ayg, (W)) for
ln € {l1,...,lp}. This establishes (31). To prove the reverse
direction assume (31). Then, (23) yields (77) and the equiva-
lence of (27b)—(27d) along with the fact that p,(W) satisfies
all constraints in (14b) yield (78). We already know that (77)
and (78) together are equivalent to (28). This completes the
proof of the equivalence of (28) and (31). The equivalence of
(29) and (31) can be shown as follows. Assume (29). From
(24b) we have that p,(W) = p; (W) for I, € &E,(W).
However, to obtain (31) we need to prove that p,(W) is
unique, that is, p,(W) = p;,(W) = --- = py,, (W) and,
further, p,(W) # pi(W) for Il ¢ {li,...,lpr}. Using the
fact that p,(W) = p, (W) for [, € &£(W) in (15) and
(16) and applying the equivalence of (27b)—(27d), (31) fol-
lows. In turn, when (31) holds, (29) directly follows from
(23). Now, let us prove the equivalence of (30) and (31).
From the equivalence of (27a) and (27b), it directly follows
that b, (W) = " = Piy (W) 7é pl(W) if and Only if
/\maX(All (W)) == /\maX(AlM (W)) # )‘maX(Al(W))
for I ¢ {l1,...,lp}. Now, recall that 1/7(W) and
[Po(W)T1]T constitute the jointly positive eigenpair of
A(W) for some | € {1,..., 2L + 1}. Therefore, if
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P(W) = p,(W) = - P, (W) # pi(W)
for I ¢ {li,...,ln}, then 1/7(W) cannot be equal to

Amax(A;(W)) for an [ ¢ {ly,...,lp} for otherwise we
have the contradictory relation of p,(W) = p;(W). A sim-
ilar argument when 1/(W) = Apax(A,(W)) = -+ =
Amax (At (W) # Amax (A (W) for 1 ¢ {l4, ..., Ipr} shows

that p, (W) cannot be equal to p;(W) foran ! ¢ {l1,...,lx}.

This establishes the equivalence of (30) and (31) and completes
the proof.

APPENDIX D
PROOFS OF LEMMA 1 AND THEOREM 4

Proof of Lemma 1: Forany L x 1 vectorq > 0 and [ =
1,...,2L + 1, it holds that

(79)

Note that (79) directly follows from the definition of 77;(w("), p)
in (10) and that of A;(W) in (21). If q satisfies the [th constraint
in (14b) with equality, we have
_ 1 . 1 u/q
113117‘,1§nL 777 (W(7) q) 113117‘,1§nL ﬁ7 (W(7) q) ’ Pl
L
1 (W] [q]m
< —. _m3m
Py mz::l im (W™, q)
1 uqu
- 121%)2 i (w(’i)7 q) P,

1
- B O

N

(80)

Using (80) in (79), the equations in (14b) follow.

Proof of Theorem 4. First, note that as (11¢) and (11d) are
equivalent, so are (41b) and (44b). As such, (41b) and (41c) are
in fact repeated, respectively, in (44b) and (44c). Therefore, we
need to show that if (41b) and (41¢) hold, then (41a) yields (44a)
and vice versa. To show this, we use an approach that is inspired
by the proof of [18, Theorem 2]. Let us first assume (41a). For
l € £&(W,) we have

)\maX(Al (Wo)) < /\max(Al (W))
[A(W)x]

= min max :
x>0 1<i<L+1

< max
1<i<L+1 [po]
k2

e ] o

where the first equality is due to (42) and the second equality
follows from the fact that p,, satisfies the /th constraint in (14b)
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with equality for all [ € &,(W,) and all matrices W' that
satisfy (41b). Therefore, for all the latter matrices W and all

l € £&,(W,) it holds that

1
i _— > .
H‘li\l,n 11%11?1;2 771' (W(i), po) = )\max(Al(WO)) (82)
As [pI1)T = Q(A;(W,)) for I € £,(W,), we have
1
)\nlax ‘A' WO = —
WD = 5w
_ 1 _ _ 1
771 (wl(Jl)7 po) ’F]L (W¢(7L)7 po)
= Iga<x + (83)
1sisl i (WO, 7po)
It follows from (82) and (83) that
. 1 1
min max ————— 2> Iax -
W 1<i<L 7 (W(’L),p(,) 1Si<E . (w((,’ .po)
_ 1
(W)
p— 1 _
771 (Wg1)7 po)
S (34)
(w7 )
L {Wo "5 Po

Obviously, the inequality in (84) can only hold with equality.
Using the latter fact in (84), we have

N A (4) =f
mv3X1Ignil£L i (W -,Pa) = U(Wo)
o (5, = o
= ﬁL (ng)7pO> .

Recall that W, and p, constitute the unique pair of solutions
to (41) and 77(W,) is the maximum possible value among all
minimum normalized SINRs. Therefore, a necessary condition
to achieve 7j(W,) is that all normalized SINRs are equal. Using
this result in (85), we have

max i (W, p, ) = 7(W,)

(85)

=i (w{P.p,) i=1,....L. (86)
Finally, note that 7;(w(), p,) only depends on w() and the
maximum of 771'(w('i)‘7 Po) over W is in fact the maximum of
ﬁi(w(l), po) over w® fori=1,..., L. This establishes (44a).
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Let us now assume (44a) and prove (41a). We have for [ €
E,(W,) that

A (W)x].
min Apax(A;(W)) = minmax  min M
W x>0 1<i<L+1  [x];

o [7]],

> min min
1<i<L+1 Po
1
K]
. . 1
= min min —
W 1<i<L 7f; (w(D, p,)

1
win Y
i _ 4
1sisk i (Wa 7po>

= min
1<i<L+1 [Po}
i

= )\max (Al(wo)) (87)

where the second and the fourth equalities follow from the fact
that p, satisfies the /th constraint in (14b) with equality for all
I € £,(W,) and all set of relaying matrices that satisfy (41b)
and the third equality is due to (44a). Comparing the first and
the last expressions in (87), it also follows that the inequality
in (87) can only hold with equality. This establishes (41a) and
completes the proof.

APPENDIX E
PROOFS OF THEOREM 5 AND THE CONVERGENCE OF
ALGORITHM |

Proof of Theorem 5: Note that (44) is an alternative
representation of the necessary and sufficient joint opti-
mality condition (32). As (47b) repeats (44c), we only need
to show that wgl in (47a) is the unique solution (up to
an arbitrarily selected unit-norm scalar) to the subproblem
(442)—(44b). Let w® 2 (1/VPD) . E(p,)/?w® and
w2 (1/VPD) - B(p,)/2w" . Using (55) for p = p,, the
[th optimization problem in (44a)—(44b) may be represented as
(88) at the bottom of the page. It follows from the unit-norm
constraint on W) that 02, = o2 W' w® and (88) may
be expressed as (89) at the top of the next page. The unique
solution (up to an arbitrarily selected unit-norm scalar) to (89)
is given by

W) = P ((p,) /2 (PO (p,)

-1
+ 02 8(p,) B(po) ?)  E(po) "

~ (1 _ N
Wﬁ) = argmax

2
(Ipelef0)P® [ 5 (p) /260

subject to ww® = 1,

w(l)

POwWOE(p,) 127 (p,)E(po) /2w + o2,

(88)
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H 2
([palt/n) PO 50" E(p,) /2|

4329

VNV(()I) = argmax

w W E(p,)=1/2 (PO (p,) + 02,E(p,))

subject to WO w® = 1. (89)

E(po)—l/z‘yv(l)

-1
- % E(p) (POL(p,) + 02 E(P)) £
(90)

where the scaling factor (;(p,)/V P® in (90) is to guarantee
v~v((,l) ! v~v£l) = 1. Equation (47a) directly follows from (90). This
completes the proof of the theorem.

Convergence of Algorithm I: The vector p,) in Algorithm
I satisfies all constraints in (1) for all n. Therefore, ||pp,|| is
bounded by a scalar that is independent from n and, hence,
there exists a poo such that lim,, oo Pln] = Poo [18], [34].
Note that a detailed proof of the convergence of pp,) to a
vector p,, may be presented along with the same lines as
in the proof of ([35], Theorem 1). It is direct to show that
P(Z)Tl(p[n_l]) + 02, 8(Ppn—1) is full-rank and G;(pp,—1)) is
upper-bounded and both are continuous functions of py,, 1) for
l=1,..., L+ 1. Hence, it follows from Step 4 in Algorithm
I that w[(fl)] is a continuous and bounded function of py,_jj

forl = 1,...,L + 1. As such, lim,,_,~ W[(:L)] = ngo) =
G(Poo)(POY (Poc) +02,B(poc)) T, 1= 1,0, L1,

Next, Amax(Ai1(Wpy,))) is a continuous and bounded func-
tion of Wy, for I = 1,...,L + 1. This shows that
Amax(A (W), m» = 1,2,... is a convergent se-
quence t0 Apax(A)(Weo)) for I = 1,...,L + 1. Let
Ir) £ argmax;<;<;.q Amax(A1(Ws)). Note from the
equivalence of (27a) and (27b) that even if [*_ is not unique,
Q(Ai: (W) is unique. The vector Q(A;(Wy,))) is also a
continuous function of Wy,; forl = 1,..., L + 1. Therefore,
lim, oo UAI(Wp)) = QAI(Wa)),l = 1,...,L + 1.
In particular, lim,_, Q(Az[*n] (Wp) = QA (W),
Considering both sides of Step 7 in Algorithm I when n — oo,
we have [pL1]7 = Q(A; (Wa)). Hence, W, and peo
jointly satisfy the necessary and sufficient optimality condition
in (47a)—(47b) and are optimal.
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