
4732 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

Quasi-Convexity of the Asymptotic Channel MSE in
Regularized Semi Blind Estimation

Abla Kammoun, Karim Abed-Meraim, Senior Member, IEEE, and Sofiène Affes, Senior Member, IEEE

Abstract—In this paper, the quasi-convexity of a sum of
quadratic fractions in the form �

���
��� �

���� ��
is demonstrated

where �� and �� are strictly positive scalars, when defined on the
positive real axis �. It will be shown that this quasi-convexity
guarantees it has a unique local (and hence global) minimum.
Indeed, this problem arises when considering the optimization
of the weighting coefficient in regularized semi-blind channel
identification problem, and more generally, is of interest in other
contexts where we combine two different estimation criteria.
Note that V. Buchoux et al. have noticed by simulations that
the considered function has no local minima except its unique
global minimum but this is the first time this result, as well as the
quasi-convexity of the function is proved theoretically.

Index Terms—Asymptotic analysis, channel estimation, expo-
nential polynomial, minimum MSE, quasi-convexity, regulariza-
tion, semi-blind estimation.

I. INTRODUCTION

M ANY parameter estimation techniques use combined
criteria to exploit different features or properties of

the considered signals and hence improve the estimation per-
formance. Examples of such combined techniques include the
blind source separation (BSS) method in [1], and the blind
equalization method in [2] where second and higher order sta-
tistics-based criteria are combined to restore the source signals,
and the channel equalization and offset estimation technique
in [3], where again two criteria based on two different features
of the transmit signals are jointly used to improve the receiver
performance.

In [4], a similar approach is used for channel shortening in
OFDM systems, and in [5] and [6], semi-blind channel identifi-
cation methods are considered where data-aided and blind tech-
niques are combined together to shorten the training sequence
while preserving a high channel estimation quality.

When combining two criteria, one uses a weighting param-
eter that needs to be optimized. In [7], the weighting coefficient
is optimized in such a way the asymptotic mean square error
(MSE) of the channel estimate is minimum.

The latter is shown to be a nonlinear function and its optimiza-
tion in [7] is done numerically using a line search algorithm.
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In this paper, we demonstrate that the previous asymptotic
MSE function is quasi-convex which provides a guarantee that
numerical optimization always leads to the desired optimal
weighting parameter value.

Moreover, one can observe that many asymptotic MSE func-
tions have similar forms to that in [7] and thus, we believe the
result given in this paper might be extended and adapted to other
problems, where an optimal weighting coefficient is needed to
combine two contrast functions. As an example, we can cite
the case where a contrast function is linearly combined with an
MSE criterion. Referring to the work in [8], we can easily show
that in this case, the expression of the asymptotic MSE has the
same form as the one described in [7].

From the mathematics point of view, our work can be viewed
as a contribution to the study of the roots of real exponential
polynomials. It should be noted that this issue has been studied
for general cases in [9], where interesting results about the
number of roots of real exponential polynomials with real
frequencies have been presented. Unfortunately, these results
yield a loose bound for the number of roots of the considered
exponential polynomial and thus are of no interest for our
particular case given by (12). We have provided in our work an
original proof that takes into consideration the specifications of
the considered exponential polynomial.

The paper is organized as follows. Section II summarizes the
results in [7] and shows that the considered MSE optimization
problem can be cast into the optimization problem of a sum of
quadratic fractions of the form

Sections III and IV are completely devoted to the derivation
and the proof of the quasi-convexity of the asymptotic MSE
function. In particular, Section III contains some basic notions
and results about quasi-convex functions. Conclusion and final
remarks are given in Section V.

Notation: Operators and Tr denote Hermitian, matrix
inversion and trace operators. Moreover, the real and imaginary
parts of a complex are denoted respectively by and

.

II. REGULARIZED SEMI-BLIND CHANNEL ESTIMATION

In many signal processing applications, the major problem is
to find out how to estimate some parameters at a low cost and
with a good accuracy. The best estimate we can have is obtained
by taking into account all the information that we can get about
the desired parameter. This approach involves in general high
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Fig. 1. Time-multiplexed training scheme.

computational complexity, thus restricting its interest to only
theoretical issues.

Actually, in practice, suboptimal approaches retain only one
kind of information on which they are based to derive a mini-
mization problem with only a single criterion. An intermediate
approach that is based on linearly combining competitive cri-
teria has been recently proposed in many signal processing ap-
plications. For instance, in [4], the channel shortening is being
improved by linearly combining the null tones criterion with that
of the guard interval. Also in the context of estimating sparse
parameter vectors, (where ) quasi-norms are often lin-
early combined to standard statistical criteria, thus allowing to
take into account the sparsity of the desired solution [10].

The optimal selection of the regularizing parameter that
makes the best trade-off between two different criteria is im-
portant for the considered parameter estimation problem. To
the best of our knowledge, the minimization of the mean square
estimation error with respect to the regularizing coefficient
has been only analysed rigorously in [7], in the context of
semi-blind channel estimation.

Since we will heavily rely on the asymptotic expression de-
rived in [7], it may be illuminating to provide a brief overview
on the regularized semi-blind estimation technique.

Regularized semi-blind estimation technique combines blind
and training-based criteria. They have been introduced first in
the context of Single Input Multiple Output (SIMO) systems.
In this case, if denotes the unit power transmitted signal, the
vector received by the receiving antennas is given by:

(1)

where is the vector of the -th tap of the channel im-
pulse response and denotes the additive Gaussian noise. We
assume that each frame is composed of training and data period,
(see Fig. 1). The training period corresponds to the transmis-
sion of known symbols which are often referred to as pilots,
whereas the data period corresponds to the transmission of
data symbols.

The blind criterion is based on the statistical properties of the
received signal in the data period and can be put on the form

(2)

where is the channel parameter and is a matrix that depends
solely on the statistical properties of the received signal. On the
other hand, the training-based criterion can be expressed as

(3)

where is the received signal and is a matrix that depends
on the pilot symbols. In contrast to blind estimation methods,
training-based techniques are more sensitive to noise and en-

tail inefficient bandwidth utilization. However, blind methods
are more complex, estimate the channel only up to a scalar am-
biguity and are often nonrobust to modelization errors (e.g.,
channel order overestimation errors) [11]). For these reasons,
it might be interesting to combine linearly both criteria so as to
resolve the drawbacks inherent to blind and training-based tech-
niques. Hence, the semi-blind estimate is the one that minimizes

(4)

where is the regularizing coefficient and is the length
of the information sequence. Note that the semi-blind approach
in (4) outperforms the blind approach in (2) and the nonblind
approach in (3) only if the regularizing scalar is chosen prop-
erly. In particular, this would be the case if is selected in such
a way the asymptotic estimation error variance is minimized.
Our result is also useful to derive a relation between the optimal

and the percentage of training symbols which can be ad-
justed to achieve a target MSE performance.

It has been proved in [7] that the trace of the asymptotic1

estimation mean-square error (MSE) is proportional to

where , and is a Hermitian matrix that has the same
row and column space as (meaning that if is
the eigenvalue decomposition of writes as

, where is a given Hermitian matrix.).
Using the eigenvalue decomposition of , it can be easily

verified that the is proportional to

(5)

where (resp. ) denote the diagonal elements of
(resp. the non zero diagonal elements of ).
Note that in [7] and [12], it was noticed by simulations that

the has a unique local (global) minimum with respect to
, but to the best to our knowledge, until now, this result has not

been proved in any previous work.

III. QUASI-CONVEXITY OF THE MEAN SQUARE ERROR

For the reader convenience, we recall hereafter the definition
and also some results about quasi-convex functions (we refer
the reader to [13] for further information).

Definition 1: A real valued function is said to be quasi-
convex if its domain of definition and all its sublevel sets:

for , are convex, where denotes the set over which
the function is defined.
Examples of quasi-convex functions To illustrate this concept,
we provide in Fig. 2 some examples of quasi-convex functions.
As we can see, we note that a concave and also a non convex
function can be also quasi-convex.

Like convex functions, quasi-convex functions satisfy a mod-
ified Jensen inequality which is given by the following theorem.

1Asymptotic refers to the case where ���� ��� and the ratio � � .
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Fig. 2. Examples of quasi-convex functions.

Theorem 1: A function is quasi-convex if and only if
is convex and for all and

Clearly, the quasi-convexity generalizes the notion of convexity
in the sense that the class of quasi-convex functions is larger
than and includes the class of convex functions. Also, in most
cases, quasi-convex functions inherit the nice properties of
convex functions including the absence of local minimum as
stated in the following theorem.

Theorem 2: Let be a quasi-convex function. Then every
local minimum is a global minimum or is constant in a neigh-
borhood of this local minimum.

Consequently, if a quasi-convex function is non constant
over any given interval (which is the case for the sum of
quadratic functions we consider), then each local minimum
is also a global minimum. Moreover, this global minimum
(whenever it exists) is unique for real valued functions. To
prove the non existence of local minima besides the global one,
we use often the following second-order condition.

Theorem 3: Let be a real function which is twice derivable.
If satisfies:

then, is quasi-convex, and each local minimum is a global
minimum.

Next we state our main result regarding the unimodality of
the asymptotic MSE then we prove it in the section after.

Theorem 4: Let be two sequences of strictly
positive reals. Then the derivative of

(6)

has a unique positive zero with . Consequently,
is a quasi-convex function when its domain of definition

is restricted to and hence has a unique local (global) min-
imum on the positive real axis. In the sequel, we will omit the
index for notational simplicity so that will be referred to
as .

To prove this theorem, we proceed in the following steps.
• First, we show that the number of positive real values of

is larger or equal than that of , where
denotes the -th derivative of .

• We introduce the function which has the same number
of zeros as and prove that it converges uniformly to

, over a compact set that contains all the zeros of .
• Then we prove that has a unique positive zero in that

compact set.
• By applying Hurwitz theorem [14], we conclude that for

large values of is zero only once and that will be
also the case of .

• Finally, we prove that the second derivative of is strictly
positive when evaluated at the zero argument of . Fig. 3
illustrates the shape of function and its first and second
order derivatives, for .

The next section provides the details of all these steps and their
proofs.
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Fig. 3. Function F and its first and second-order derivatives.

IV. ANALYSIS AND PROPERTIES OF

A. Closed-Form Expressions for the Derivatives of

In this subsection, we provide a closed form expression for
the -th derivative of function . We also show that the number
of zeros of the -th derivative is increasing with .

Lemma 1: The -th derivative of can be put
on the following expression:

(7)

where and are sequences of positive reals given by

Proof: See Appendix A.

Given the previous expressions of , we are able to prove
our first step result concerning the increasing number of zeros
of . We have the following lemma.

Lemma 2: Let denote the number of zeros of the -th
derivative of given by (7). Then .

Proof: Let denote the zeros of the -th
derivative in . Therefore, using Rolle’s The-
orem [15], has at least zeros
where . Since

, there exist at least one zero of
in . Consequently, the number of zeros of
is at least equal to , i.e., .

B. Uniform Equivalence of

In this subsection, we introduce an alternative function
that has the same number of positive valued zeros as and
we provide its asymptotic equivalent expression. For that, let us
start by providing a useful approximation of coefficient that
will be used later to build the function .

The Stirling formulae [16] provides us an equivalent2 for

We can easily show that

(8)

We recall that the overall quasi-convexity proof is based
on studying the zeros of the function as goes to in-
finity. Actually, one can show3 that these zeros belong to
the interval , where and

. A lower bound for and an upper

bound for can be easily computed and are given by

(9)

(10)

2Equivalence here means that �

3Outside this interval, all the terms in the sum given by (7) have the same sign
and hence � cannot be zero.
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where and . The

difficulty that we face is that the zeros of are of order , thus
making the analysis of the asymptotic behavior of function
somehow delicate. To deal with this difficulty, another function,
which we denote by , and which brings back those zeros to a
given fixed interval is introduced. This function will be studied
over the interval of interest .

Function is defined as

(11)

One can easily note that over has the
same number of zeros as .

Clearly, the scaling of the variable by factor is introduced
to bring back the roots of from the interval
to the finite length interval . The multiplicative func-

tion in (11) (i.e., ) is introduced to normalize the
coefficient and and to approximate the denominator
terms in (7) by exponential functions.

Substituting by its expression in (7), writes as

where and

.
In the following, we extend the domain of the function to

the rectangle of given by

where is a constant real that will be specified later. Over this
domain, the asymptotic equivalent of is given by the fol-
lowing theorem: From the previously stated lemma, one can
prove easily the following result:

Theorem 5: In the rectangle converges uniformly to
given by

where .

Proof: See Appendix B.

C. Zeros of the Uniform Limit of

In this section, we prove that has a unique positive real
zero. This is a byproduct of the following theorem:

Theorem 6: Let and three sequences of strictly
positive real scalars. Let be the function given by:

(12)

Then admits a unique real positive zero.
Proof: See Appendix C.

By defining and applying Theorem 6, we
conclude that has a unique real positive zero.

D. Application of Hurwitz Theorem

To prove that from a certain range of is zero only once
at the real positive axis, we will rely on the following known
result in complex analysis, [14]:

Theorem 7: Let be a sequence of analytic functions in
a compact . Assume that converges uniformly to in .
Assume also that has no zeros on the frontier of . Then,
there exists such that and have the same
number of zeros in .

Applying this theorem, we can deduce that, will have a
unique zero value in as , where is chosen so that
has no zeros on the frontier of and has no complex zeros
besides its real positive zero. Since the number of zeros of is
increasing with respect to , we conclude that all and hence
all have only a unique positive zero.

Let be the unique positive zero argument of . Since
is negative in a neighborhood of zero, and has no zeros

for is negative in the interval . Therefore the
function is decreasing in .

Since is positive for large value of must change
its sign at , and hence it is positive in the interval .
Consequently, is increasing in .

To sum up, we have established that in is decreasing
and in is increasing. This guarantees that is a min-
imum for and hence . In fact, is strictly
positive, since and means that

there exists such that and hence
(because has a unique zero).

V. CONCLUSION

In this paper, we have provided a rigorous proof for the quasi-
convexity of the asymptotic MSE of the regularized semi-blind
channel estimate.

More generally, we have proved that any function given by a
finite sum of quadratic fractions is a unimodal
function over .

For our considered channel estimation problem, the previous
result guarantees the absence of nondesired local minima of the
MSE function when optimized with respect to the weighting
coefficient.



KAMMOUN et al.: QUASI-CONVEXITY OF THE ASYMPTOTIC CHANNEL MSE IN REGULARIZED SEMI BLIND ESTIMATION 4737

APPENDIX A
PROOF OF LEMMA 1

Proof: Lemma 1 can be proved easily by induction on .
For , we have

Let . Assume that the result is true until order . Hence,
can be written as

Therefore, we get the first equation shown at the bottom of the
page, where and

. Since , we get
.

Also, we get the second equation shown at the bottom of the
page.

APPENDIX B
PROOF OF THEOREM 5

In this lemma, we propose to find the uniform-limit function
for the function in the rectangle . For
that, we will first begin by finding the uniform limit functions
of and .

Lemma 3: In the rectangle , the sequence of functions
converges uniformly to given by:

Also, the sequence of functions converges uniformly
to given by

where .

Proof: The uniform convergence of to is a
by-product of the following known result:

Lemma 4: Over a compact set the sequence function
converges uniformly to .
The uniform convergence of to is obtained by using
the asymptotic equivalent of given in (8).

The uniform convergence of to and of to
does not ensure the uniform convergence of to .

Other extra conditions are needed as it will be noticed in the
following lemma:

Lemma 5: Let and denote sequences of continuous
functions over a compact . Assume that is bounded over
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away from zero uniformly in and in , i.e., there exists a
constant such that

Assume also that and converge uniformly to and
. Then, converges uniformly to over the compact .

Proof: Since and are continuous, their uniform limits
and are also continuous. Therefore, there exists constant

reals such that

Since for all , we have
To prove the uniform convergence of towards , it is suf-

ficient to prove that converges to zero as tends

to infinity. We have f

which proves that converges uniformly to .

Since over satisfies the condition of
Lemma 5. Applying this lemma on the functions and

, we prove that converges uniformly to . Conse-

quently, converges uniformly over to

.

APPENDIX C
PROOF OF THEOREM 6

The proof is performed by induction on . For , the
result is straightforward. Let be a given integer, and
assume that the result holds true for all , and all functions

of the form given by (12). Assume that there exists and

three sequences of strictly positive real scalars such
that the function

admits more than one positive zero. Let be the first smallest
zero of on ,

Without loss of generality, we can assume that all the are
two by two different and that . Since is

strictly negative in zero and is positive for large values of
should change its sign at at least one zero. In the following we
will consider only the case when changes its sign at . The
other case coule be treated in the same way. Let be the second
smallest zero of on . Under this condition, we distinuish the
following cases:

• changes its sign at and at .
• changes its sign only at .

For the both cases, we can prove that the second derivative of

has three zeros. More particularly, we have the following:
Case 1: changes its sign at and at

Since for . Therefore, for
and in the vicinity of for . Since
for large enough, should have a third zero .

For all integers , we note that and have the same
number of zeros. Using Rolles theorem, it can be proved that
the derivative of which we denote and which is given
by (13)–(15), as shown at the bottom of the page, has at least
three zeros, since tends to zero as tends to infinity.

Also again by using the Rolle’s theorem, we conclude that
the second derivative of denoted by has at least two
zeros.

Case 2: changes its sign at only one zero In this case, we
can also prove that the first derivative of has three zeros.
Actually, at , the first derivative of must be also zero, since

is a local minimum for and hence for . As tends to
zero when tends to infinity, has two zeros between
and . Consequently, in total, has at least three zeros,
and therefore, the second derivative of denoted has at least
two zeros.

(13)

(14)

(15)
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Taking the derivative of (15), writes as

Extending the definition domain of to
, we note that for every compact in con-

verges uniformly to given by

Let be the contour corresponding to the rectangle

is chosen such that is bounded above zero in and has
no complex valued zeros. Then referring to Hurwitz theorem,

and will have the same number of zeros in for large
enough values of , which is in contradiction with the induction
assumption.
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