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An Information-Theoretic View of Array Processing

Jacek Dmochowski, Jacob Benesty, and Sofiène Affes

Abstract—The removal of noise and interference from an array of re-
ceived signals is a most fundamental problem in signal processing research.
To date, many well-known solutions based on second-order statistics (SOS)
have been proposed. This paper views the signal enhancement problem as
one of maximizing the mutual information between the source signal and
array output. It is shown that if the signal and noise are Gaussian, the
maximum mutual information estimation (MMIE) solution is not unique
but consists of an infinite set of solutions which encompass the SOS-based
optimal filters. The application of the MMIE principle to Laplacian sig-
nals is then examined by considering the important problem of estimating
a speech signal from a set of noisy observations. It is revealed that while
speech (well modeled by a Laplacian distribution) possesses higher order
statistics (HOS), the well-known SOS-based optimal filters maximize the
Laplacian mutual information as well; that is, the Laplacian mutual in-
formation differs from the Gaussian mutual information by a single term
whose dependence on the beamforming weights is negligible. Simulation
results verify these findings.

Index Terms—Array signal processing, beamforming, information en-
tropy, mutual information.

I. INTRODUCTION

One of the most fundamental problems in signal processing is that of
removing noise and interference from a received sensor signal. There
are two general approaches. Single-sensor methods such as the cele-
brated Wiener filter [1] enhance the signal by emphasizing frequencies
with a high signal-to-noise ratio (SNR) while attenuating those with a
low SNR. On the other hand, multichannel techniques employ an array
of sensors that perform spatial discrimination (or beamforming) to aid
in removing the unwanted noise [2], [3]. This correspondence focuses
on the latter of the two categories: array processing with particular em-
phasis on microphone-array processing for speech enhancement.

We propose a framework for array processing based on Shannon’s
concept of entropy and mutual information [4]. The goal of the pro-
posed maximum mutual information estimation (MMIE) is to maxi-
mize the mutual information between the source signal and the beam-
former output—that is, to filter the received signals in such a way that
the resulting output conveys as much information about the source
signal as possible.

Recently, a paper based on minimizing the mutual information be-
tween two beamformer outputs has been proposed for microphone ar-
rays [5]. Indeed, it is well-known from independent components anal-
ysis (ICA) and blind source separation (BSS) that one way of defining
the independence between component signals is through the idea of
mutual information. In this case, we seek to minimize the mutual in-
formation between the multiple output signals so as to maximize their
independence [6]. ICA and BSS are concerned with separating multiple
signals and say nothing about the removal of noise from a single source
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signal. In many applications, one does not need to resort to BSS tech-
niques since one has prior information about the array geometry and
source location. For example, estimates of relative delays [7] allow for
nonblind beamforming techniques. To that end, the concept of infor-
mation entropy has been applied to the time delay estimation (TDE)
problem in [8]. In the following, we present a treatment of sensor array
beamforming from an information theory point-of-view.

This correspondence is structured as follows: Section II
presents the signal model used throughout the paper. The clas-
sical second-order-statistics (SOS)-based optimal beamformers are
reviewed in Section III. Section IV reviews the basics of information
theory and develops the MMIE solutions for Gaussian and Laplacian
signals. Simulation results are presented in Section V; concluding
remarks are made in Section VI.

II. ARRAY MODEL

Consider the conventional signal model in which the � -element
sensor array captures a convolved desired signal in some noise field

����� � �� � ���� � ������ � � �� �� � � � � � (1)

where ����� is the received signal at sensor � and discrete time sample
�, ���� is the desired source signal, �� is the impulse response from
the source to sensor �, � denotes the linear convolution operation,
and ����� is the additive noise at sensor � which is uncorrelated
with the source signal. All signals are assumed to have zero-mean. In
most cases, the impulse responses to the array are unknown. It is thus
common to model each impulse response by a single attenuated and
delayed direct-path component

����� � 	���� � 
�� � ����� (2)

where 	� and 
� denote the attenuation and propagation time of the
direct-path from the source to sensor �. Transposing to the frequency-
domain leads to

���� � �������� � ���� (3)

where ���� is the discrete-time Fourier transform of ����, and

���� � � ����� ����� � � � �� ��� 	�

���� � � ����� ����� � � � ����� 	�

���� � � 	��
���� 	��

����
� � � 	������ 	� 

where � denotes matrix transposition.
The array processing, or beamforming, is then performed by ap-

plying a complex weight to each sensor and summing across the aper-
ture

���� � �
�������� � �

���� ��������� � ����	 (4)

where ���� is the beamformer output and � denotes conjugate trans-
position. From this point on, the dependence on frequency is dropped
and the beamformer output is written as � � ��� � �� ���� ��.
It should be noted that if the impulse responses are in fact known a
priori or estimated, then ���� may replace ���� in (3) and (4).

III. SECOND-ORDER STATISTICAL METHODS

A. Multichannel Wiener Filter

In loose terms, the fundamental goal of array beamforming is to pro-
duce an array output � which matches the desired signal �. An obvious
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criterion to measure the “similarity” is the mean-squared error (MSE).
The error signal is

���� � ���
�
�� (5)

The MSE follows as

������� �� �������

��
�

� � �� �
�
��� ��

�
���� (6)

where ���� denotes mathematical expectation, ���� denotes “real
part of,” ��� � � ���� is the variance of the source signal,
��� � � ����� � ����, and ��� � � ��� . The weight vector
which minimizes (6) is the well-known minimum-MSE (MMSE)
solution [1]

����� � �
�

��
��

�� �� (7)

B. Minimum Variance Distortionless Response Filter

It is interesting to compare the MMSE solution to that of minimum
variance, distortionless response (MVDR) beamformer, which solves
the constrained optimization problem given by [9]

����� � ���	
�
�

�
�
���� subject to ��

� � �� (8)

The constraint ��� � � (or ��� � � in the general reverberant
case [10]) performs dereverberation and ensures a unity-gain response
to the desired signal, while the remaining degrees of freedom in � are
utilized to minimize the contribution of noise and interference to the
array output. The MVDR solution is well-known and given by

����� �
����� �

������� �
(9)

where ��� may replace��� in (9). The MVDR solution is equivalent
to the MMSE solution up to a scaling factor, and is generalized by the
linearly constrained minimum variance method (LCMV) [11].

C. Maximum SNR Filter

The maximum SNR filter attempts to maximize the ratio of the en-
ergy of the signal to that of the noise [12]

�	
���� � ���	�
�

������

������
(10)

where ��� � �����
� and ��� � � ��� , with ��� � ��� �

��� .
Differentiating (10) with respect to �� and setting the gradient to

zero results in the generalized eigenvalue problem

�
��

������	
���� � �	
��	
���� (11)

where �	
� is the maximum eigenvalue of�������� and also the value
of the maximum attainable SNR. Since ��� is rank-one, �������� is
also rank-one and has only one nonzero eigenvalue. The lone eigen-
vector of��� is �; it is then easy to show that the principal eigenvector
of �������� is indeed ����� �. As a result

�	
���� �
����� �

����� �
(12)

where the eigenvector is normalized to unit-norm. Thus, the maximum
SNR filter is also a scaled version of the MMSE solution.

IV. MAXIMUM MUTUAL INFORMATION ESTIMATION

All of the classical methods outlined above employ a SOS criterion
as the similarity measure between the beamformer output and desired
signal. However, the beamformer output and source signal are random
variables, and a more complete measure would compare the probability
density functions (pdfs) of the respective random variables. By doing
so, higher order statistics (HOS) are implicitly taken into account.

A. Information-Theoretic Concepts

The quantification of the “difference” between two random variables
is not well defined. Closely related to one of such measures is informa-
tion entropy, which for a continuous random variable � is given by

	��� � �
�

��


��� �� 
����� (13)

where 
��� is the pdf of �. The joint differential entropy between two
random variables �� and �� follows intuitively as

	���� ��� � �
�

��

�

��


���� ��� �� 
���� ��������� (14)

where 
���� ��� is the joint pdf of �� and ��.
One way of quantifying the difference between the random variables

�� and �� is through the information theoretic construct of mutual in-
formation between two random variables �� and ��

���� ��� �
�

��

�

��


 ���� ��� ��

 ���� ���


����
����
������� (15)

The mutual information is equal to the Kullback–Leibler divergence
between the joint pdf 
 ���� ��� and the product of the marginal pdfs

����
����, which leads to zero mutual information if the two random
variables are independent. A well-known property of the mutual infor-
mation which follows by substituting (13) and (14) into (15) is

���� ��� � 	���� �	�����	���� ���� (16)

The MMIE weights the sensors such that the mutual information be-
tween the desired signal and the beamformer output is maximized. As
the quantities in the frequency-domain model are complex, the concept
of mutual information must have meaning in the complex domain. In
the following, the MMIE is derived as the weight vector which maxi-
mizes the sum of the mutual informations between the real and imag-
inary parts

���� � ���	�
�

 ���������
�� � ���������

��

(17)
where ���� denotes “imaginary part of.” In order to apply the MMIE,
it is required to model the marginal distributions of the desired signal
and the beamformer output, as well as their joint density.

B. Gaussian Signals

The pdf of a Gaussian-distributed zero-mean random variable � with
variance ��� is given by


��� �
��
�����

�
�� ���

� (18)

The entropy of Gaussian random variable � then follows as

	��� � �� ������� (19)
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The zero-mean random vector � is said to be jointly Gaussian dis-
tributed if the joint pdf of � is equal to

���� �
�

������� ����������
������ ��� � (20)

where ����� � � ��� is the covariance matrix, ��� denotes the de-
terminant of a matrix, and � ��� � �. The joint entropy of a jointly
Gaussian distributed random vector � is then

���� � �� ������ �������� (21)

We begin with the case of a zero-mean Gaussian source signal cor-
rupted by zero-mean Gaussian noise

�� ���� � � �	� 	��� �� ���� � � �	� 	���

�� ���� � � ���������� �� ���� � � ���������

where 	�� � 
���� is the variance of the real and imaginary parts of the
source signal, and ����� is the covariance matrix of the real and imagi-
nary components of the noise field, where it has been assumed that the
real and imaginary parts of the source and noise are independent and
identically distributed.

From the array model (4), it follows that

�� ���� � ��� 
 ��� 
�
�
��� 
�

�
� �� (22)

�� ���� � ��� 	 ��� 
�
�
��� 	��

� �� (23)

where  � � 
 �� � ���, �� ����, �� ����, and
� ���� � � ���� � 	. The variance of the real and imaginary com-
ponents of � is given by

�� ���� � �� ���� �
�

�
�
�
���� (24)

where �� denotes “variance of.” The covariance between �� and ��
is easily found as

� ������ � � ������ � �

�
����

��
�� � (25)

The mutual information between the real (or imaginary) parts of the
source and array output may be written as

� ���� ��� � ����� 
� ����	����� ��� � � ���� ��� � (26)

From direct substitution, the mutual information between the desired
signal and array output is given by (27), as shown at the bottom of the
page. Taking the gradient of (27) with respect to �� results in



�

�� ���� ��� 
 � ���� ����

� �
����

������
	 ����	 
���������

������	 
���������
� (28)

Setting (28) to zero and simplifying leads to

� ���

������
���� � �� (29)

Fig. 1. Mutual information surface for Gaussian signals.

It easily follows from (29) that� ��� � ���, and thus the MMIE
solution is given by the set

������	�	
���	� � � � �� ��� � � (30)

where � ��� � ������������������. It can easily be checked
that one solution to (29) is indeed the Wiener filter

����� � ������	�	
���	� � (31)

Moreover, it is evident that if � ��� � �, then � ���� � �, where �
is a complex constant. Thus, the MVDR and maximum SNR solutions
are also MMIE solutions. We see that the mutual information crite-
rion seems to unify the various SOS-based optimal beamformers into
a common framework.

To illustrate, Fig. 1 shows the mutual information surface for a
two-element array with an inter-element spacing of half the oper-
ating wavelength. The source is located at array broadside (far-field
anechoic propagation), meaning that � � � � � �� without loss
of generality. The sensors are corrupted with spatially diffuse
Gaussian noise. The SNR is 0 dB. To enable visualization, the
plot is shown for all weight vectors of the form � � �� (the
imaginary parts are all zero). Since the signals are already aligned,
this is a reasonable space of weights, which includes the MMSE
����� � � ��� ��� �� , MVDR ����� � � ��� ��� �� ,

and maximum SNR ��	���� � � ��
�
� ��

�
� �� solutions. It is

clear from the plot that the maxima of the mutual information surface
lie on the line �� � ��, which contains the SOS-based optimal
beamformers.

From the surface of Fig. 1, it is evident that in the case of a Gaussian
source signal corrupted by additive Gaussian noise, the well-known
MVDR filter (and its equivalents) maximizes the mutual information
between the source signal and array output. This is intuitively satis-
fying, as it is well known that the Gaussian distribution is specified
completely by its SOS.

� ���� ��� 
 � ���� ��� � � �� ��
�� 
 �� ��������	 �� ����� �
��������	 
���������� (27)
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C. Laplacian Signals

A Laplacian random variable � with zero-mean and variance ��� has
a pdf given by

���� �

�
�

���
��
�
������ � (32)

The resulting entropy is given by

���� � � � ��
�
��� � (33)

The elements of the zero-mean random vector � are said to be jointly
Laplacian if their joint pdf is given by [13]

� ��� �
� �

�
�
���

��

�
��

��	�� �			���
(34)

where � � �
�			�����, 
 � �����, and �� ��� is the modified Bessel

function of the second kind. It easily follows that the expression for
joint Laplacian entropy is given by [8]

���� �
�

�
��

��	��



�			���

�


�
 ��

�

�
� � ����

�
�� (35)

where the expectation terms are evaluated with respect to ���� but lack
closed forms.

Following the development of the previous section, we assume that
the source and array output follow a joint Laplacian density. As a result,
the source and array output are also marginally Laplacian. Speech has
been shown to follow a Laplacian distribution [14]. However, since
noise is typically Gaussian, the array output is a mixture of Laplacian
and Gaussian random variables. Assuming a Laplacian distribution for
the array output is questionable, particularly for low SNRs. However,
it has been shown that assuming a Laplacian distribution for Gaussian
noise-corrupted signals is valid [8]. As a result, we proceed with the
Laplacian assumption.

We are now ready to define the mutual information between the
source and beamformer output for jointly Laplacian signals. By sub-
stituting the SOS of the source signal and array output into the expres-
sions (33) and (35), the mutual information between the source and
beamformer output is given by

� ���� ��� � � ���� ���

� 
 � ����� � ����
�		�� �� 	� �			�
 �

�
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	 �			�
 �
�
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�� ���			���
 �

� �� �� ���			���
 � �� (36)

where
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�
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�
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�
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�
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�
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�

�
�
�
�		�

� (37)

Notice that the gradient of the first four terms in (36) is equivalent
up to scale to the gradient of the Gaussian mutual information (28)

�
�


 � ����� � ����
�		�� �� 	� �			�
 �

�
�		�

���		�
� �		�� �������

���

���		�� ����������
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Thus, the last term in (36) is the term which distinguishes the Laplacian
MMIE from the Gaussian MMIE.

The gradient of this last term in (36) is difficult to derive in closed-
form. In fact, symbolic mathematical packages are unable to yield a
simplification. In this correspondence, we study the dependence of this
last term on the beamforming weight vector� and investigate the pos-
sibility of selecting filter coefficients taking into account this term.

As an initial example, Fig. 2 illustrates the mutual information sur-
face for Laplacian signals using the parameters described in the pre-
vious section, which specify an anechoic environment with additive
diffuse noise. Fig. 2 (a) and (b) displays the surfaces pertaining to the
first four and last terms, respectively, of the Laplacian mutual informa-
tion (36). Fig. 2(c) displays the total mutual information surface. It is
evident that there is a lack of dependence of the last term on the weight
vector; note also the similarity of the Laplacian mutual information sur-
face to that of the Gaussian case.

It appears that in the fundamental case of anechoic propagation
and additive diffuse noise, the Laplacian MMIE is equivalent to the
Gaussian MMIE. Note, however, that when considering weight vectors
with nonzero imaginary components, the last term in (36) may vary
with �; however, it is not possible to visualize such behavior. This
will be investigated in the simulation section.

D. Dependence of Real and Imaginary Parts

It has been suggested in [15] that the real and imaginary parts of a
speech signal’s discrete Fourier coefficient are uncorrelated but not in-
dependent. In the development of Section IV-B, it was stated that we
assume independence for �� and ��; for Gaussian signals, this is equiv-
alent to assuming that the real and imaginary parts are uncorrelated.

In the case of Laplacian signals, it is easily seen that the results of
Section IV-C hold as long as �� and �� are uncorrelated. Even though
the joint pdf

� ���� ��� �� � ����� ���� (39)

need not factor into the product of the marginal pdfs, the uncorrelated
assumption (in addition to zero-mean for �� and ��) leads to

 	����
 � �

�
����

����� � ����
�� 	����
 (40)

�
�

�
����

����� (41)

meaning that the joint Laplacian entropy takes the form

����� ��� � �� 	 �			�
���� � �

	 �			�
�
�

�

��
�� ���			���
 �

� �� �� ���			���
 � �� (42)

where 			�
 is specified by (37). Notice that the joint Laplacian entropy
is specified entirely by the second-order covariance matrix 			�
 .
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Fig. 2. Laplacian mutual information surfaces. (a) First four terms. (b) Last term. (c) Total mutual information.

V. SIMULATION STUDY

A. Simulation Model

A simulation study using the image method model [16] was con-
ducted. The simulations employ a three-element uniform linear array
(ULA) with an inter-element spacing of 17 cm. The first-element is
located at (152.4,19.05,101.6) cm; the second at: (169.4,19.05,101.6)
cm; the third at: (186.4,19.05,101.6) cm. In the simulations, we utilize
the ULA formed by elements 1 and 2 as a two-element ULA optimized
(half-wavelength spacing) for 1000 Hz. The ULA formed by elements
1 and 3 is employed as a ULA optimized for 500 Hz. The source is lo-
cated at (50.8,304.8,101.6) cm and consists of female English speech.
The room has dimensions 304.8-by-457.2-by-381 cm.

In the first simulation scenario, spatially white noise is added at the
microphones with a SNR of 20 dB. In the second scenario, an interfer-
ence source located at (254,304.8,101.6) cm plays temporally white
noise with a signal-to-interference ratio (SIR) of 0 dB (the additive
noise is still present). For both scenarios, an anechoic and reverberant
simulation is performed; for the reverberant simulations, the reflection
coefficients of the floors, ceiling, and walls are adjusted to achieve a
60 dB reverberation decay time of 300 ms. The layout of the experi-
mental room is shown in Fig. 3.

In the reverberant simulations, it is assumed that the impulse re-
sponses to the array are known a priori. Sample estimates of the cor-
relation matrices are computed every 8-ms frame and then averaged to

Fig. 3. Layout of experimental room.

arrive at the final SOS which are then used for computing the optimal
weight vectors: MVDR, MMSE, and maximum SNR.

The MMIE solutions for both Gaussian and Laplacian distributions
lack a closed-form solution; thus, to determine the MMIE solution, a
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Fig. 4. Beampatterns obtained in the anechoic case for scenario 1 (500 Hz). (a) MVDR. (b) MMSE. (c) maxSNR. (d) MMIE. (Gaussian). (e) MMIE (Laplacian).

comprehensive search of the space � � � � ��
� � � sampled

at 15 625 locations was performed. With a two-microphone ULA, this
corresponds to sampling the surface of a unit hypersphere [17] or three-
sphere of the form

�
�

��� � �
�

��� � �
�

��� � �
�

��� � �� (43)

Notice that the coordinates of a unit three-sphere may be expressed in
hyperspherical coordinates

���� � ����

���� � ���� ��� � ����

���� � ���� ��� � ����

���� � ��� � ����

where �, �, and � are the four-dimensional analogs of the spherical
azimuth and elevation, where � and � range over 	
� �� while � ranges
over 	
� ���. In order to create the search space, we sample each of �,
�, and � uniformly with 25 samples; by forming the outer product of
the three sets of samples, we arrive at the final 15 625-sample search
space. Moreover, the MVDR, MMSE, and maximum SNR weights are
added to the search space for completeness. In order to compute the
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Fig. 5. Beampatterns obtained in the reverberant case for scenario 1 (500 Hz). (a) MVDR. (b) MMSE. (c) maxSNR. (d) MMIE. (Gaussian). (e) MMIE (Laplacian).

Laplacian mutual information, we numerically compute the integral in
(36) using MATLAB’s dblquad function.

B. Discussion

The mutual information obtained using the SOS-based and MMIE
solutions in scenarios 1 and 2 is shown in Tables I and III, respectively.
Table II displays the input and output SNRs obtained by the various op-
timal beamformers in the first simulation scenario; similarly, Table IV
displays the input and output signal-to-noise-and-interference ratios
(SINRs) obtained in the second scenario. Figs. 4–7 display the beam-

patterns corresponding to the SOS-based optimal filters and MMIE so-
lutions for the various simulation parameters.

Consider the findings presented in Tables I and II: the SOS-based
beamformers attain the same level of mutual information as that of the
MMIE solution for both the Gaussian and Laplacian cases. Further-
more, the SNRs produced by both SOS-based filters and the MMIE
solutions are identical. From the beampatterns of Figs. 4 and 5, the di-
rectivities produced by the classical beamformers are very similar to
those corresponding to the MMIE filters—a beam is formed at approx-
imately 110� (measured counter-clockwise from the array axis), which
is the bearing of the desired signal source.
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Fig. 6. Beampatterns obtained in the anechoic case for scenario 2 (500 Hz). (a) MVDR. (b) MMSE. (c) maxSNR. (d) MMIE. (Gaussian). (e) MMIE (Laplacian).

From Tables III and IV, it is seen that for the case of a point inter-
ference source, the MMIE solution is again equivalent to the classical
SOS-based beamformers in terms of both the mutual information at-
tained and the output SINR. From the beampatterns of Fig. 6, we see
that both the conventional adaptive beamformers and MMIE solutions
steer a null in the vicinity of the interference (i.e., approximately 70�).
The beampatterns are virtually identical.

The findings of the experimental evaluation confirm those predicted
by Section IV: the MVDR, MMSE, and maximum SNR filters com-
prise the MMIE solution set in the case of Gaussian signals. More-
over, the results support the notion that the HOS of a speech signal

may not be exploited by a linear filter-and-sum beamformer to gen-
erate “cleaner” estimates (i.e., containing more mutual information) of
the source signal, assuming that the source signal and array output are
well-modeled by a joint Laplacian distribution. As witnessed in Fig. 2,
the fifth term of the Laplacian mutual information (36) does not appear
to be dependent on the beamforming weights. The MVDR filter (and
its equivalents) attains the maximum possible level of mutual informa-
tion between the source and beamformer output. Several conclusions
may be drawn from this finding: perhaps we have reached the limit
of linear filtering for noise and interference reduction. More sophisti-
cated and possibly nonlinear beamforming structures may do a better
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Fig. 7. Beampatterns obtained in the reverberant case for scenario 2 (500 Hz). (a) MVDR. (b) MMSE. (c) maxSNR. (d) MMIE. (Gaussian). (e) MMIE (Laplacian).

TABLE I
SIMULATION SCENARIO 1: OPTIMAL BEAMFORMERS AND THE RESULTING MUTUAL INFORMATION OBTAINED



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 2, FEBRUARY 2009 401

TABLE II
SIMULATION SCENARIO 1: OPTIMAL BEAMFORMERS AND THE RESULTING SNRS OBTAINED

TABLE III
SIMULATION SCENARIO 2: OPTIMAL BEAMFORMERS AND THE RESULTING MUTUAL INFORMATION OBTAINED

TABLE IV
SIMULATION SCENARIO 2: OPTIMAL BEAMFORMERS AND THE RESULTING SINRS OBTAINED

job at matching the array output to the desired source signal. The re-
sults of this correspondence call into question the importance of HOS
in array processing. From a spatial filtering standpoint, the MMIE fil-
ters operate in the same manner as the well-known SOS-based optimal
filters: a beam is steered to the source, while a null is steered to the in-
terference. If we are to truly combat the major problems in microphone
arrays, it seems that HOS will not have much to do with the solution.

VI. CONCLUSION

This correspondence has presented an information-theoretic view of
beamforming in which the criterion is the mutual information between
source and array output. It was shown that the optimal SOS-based
beamformers maximize this criterion under the assumption of Gaussian
signals. For jointly Laplacian signals, it turns out that classical adaptive
beamformers such as the MVDR filter also maximize the mutual infor-
mation between the source and beamformer output, and thus appear to
be optimal linear estimators of speech.
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