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Abstract— This paper presents a new adaptive antenna-array
beamforming receiver for multipath correlated signals in hostile
environments, such as indoor confined or underground areas,
where intersymbol interference (ISI) and intrasymbol interfer-
ence (isi) are predominant. The proposed receiver uses a new
synchronization approach for multipath propagation and is based
on sequential blind CMA and nested LMS beamformings with
adaptive fractional-time-delay estimation. This approach uses on
one hand CMA and LMS to recover any time path arrival
(TPA) that is an integer multiple of the sampling interval,
and nested adaptive fractional time delay estimation with LMS
on the other hand to recover any TPA that is a non-integer
multiple of the sampling interval. Coherent Maximum Ratio
Combining (MRC) with hard Decision Feedback Identification
(DFI) is also proposed for optimal and constructive combination
of these different extracted paths. Analysis and results show
the promising performance of the new adaptive antenna-array
structure for different operating conditions and modulation
schemes.

Index Terms— Adaptive arrays, constant modulus algorithm
(CMA), Least mean square methods, fractional delay filter,
intersymbol interference, diversity system.

I. INTRODUCTION

THE main cause of degradation of communication quality
in harsh confined environments, such as underground

mines, is multipath fading as it is typically more severe than
co-channel interference (CCI) [1, 2]. Usually underground
communication systems are based on IEEE 802.11 standard
using carrier sense multiple access with collision avoidance
(CSMA-CA) that minimizes the CCI problem and leaves
multipath fading as the main source of errors. This multi-
path phenomenon arises when a transmitted signal undergoes
reflection from various obstacles in the propagation environ-
ment. This gives rise to multiple waves arriving at the receiver
from different directions with different amplitudes, phases
and time delays, which inflicts intersymbol interference (ISI)
and intrasymbol interference (isi) on the received signal and
consequently time dispersion and fading [3, 4]. To provide
a remedy, adaptive equalizers [4], error-correcting codes [5],
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diversity [6], RAKE receivers for code division multiple
access (CDMA) [7, 18, 26], Coded Orthogonal Frequency
Division Multiplexing [8], and adaptive antenna arrays (AAA)
[9-11] have been proposed. Among these, AAA techniques
exploit spatial diversity by using multiple antennas. They
have the potential of achieving high data rates and increasing
the capacity of mobile services by effectively reducing the
multipath effect and CCI.

Adaptive antenna beamforming has been shown to be an
effective mean for combating CCI and multipath propagation.
Recently many different types of antenna beamforming have
been developed [12, 13], and their design employs some
information about the desired signal such as using a training
sequence. Their use not only reduces the capacity of the
system but also requires synchronization between the incident
desired signal and the reference (sequence) one. Therefore,
there is a strong demand for blind algorithms. For instance,
the constant modulus algorithm (CMA) [14], applied in a blind
AAA, is considered as a promising method in mobile com-
munications for mitigating multipath fading and suppressing
CCI signals. Unlike the least-mean-square (LMS) algorithm
[15], CMA-AAA does not need synchronization between the
incident desired signal and the reference signal. It improves
the received signal by suppressing not only the CCI signals,
but also the delayed paths of the desired signal [14]. However,
suppressing the multipath rays of the desired signal wastes a
part of the available power and requires additional degrees of
freedom, i.e., more array elements. In addition, since these
arriving paths are delayed replicas of an identical source, it is
desirable to separate and combine the delayed paths instead
of suppressing them for received power maximization.

Several methods have been proposed to separate and com-
bine the delayed paths. Among them, we mention the spatial-
domain path-diversity methods [16- 17] for time division
multiple access systems, based on spatial processing for effi-
cient exploitation of the propagated energy. In these methods,
multiple beams are formed to separate the direct path and the
delayed paths by using training sequences. Paths with various
time delay differences are separately extracted at the receiver
to produce each of the multiple paths in the spatial domain.
Then, the time delay difference is corrected, and the waves
are combined.

These aforementioned approaches have certain advantages
and limitations, some of them require training sequences and
all of them aim to solve the problem of ISI in multipath
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propagation environments, when the time path arrival (TPA)
is an integer multiple of the sampling interval. Regarding the
isi problem, when the TPA is non-integer multiple of the
sampling interval, other approaches are used such as Rake
receiver, applied in CDMA systems, to treat the path arrivals
at the chip interval [7, 18, 26] or straightforwardly, over-
sampling [4, 19] is employed. However, over-sampling will
complicate the structure of the analog-to-digital converter, and
also may not synchronize correctly within the actual time path
arrival τ .

Generally speaking, when the TPA is a non-integer multiple
of the sampling interval, the power available in these paths
is wasted and the fractional time delay estimation (FTDE)
is called for to overrule the over-sampling solution. FTDE
filters are employed in several signal processing applications
such as the estimation of the time delay difference between
signals received at two spatially separated array antennas [20].
They consist in using a first-order or linear interpolator to
implement a Fractional Delay Filter (FDF) [20]. An FDF is
a type of digital filter designed for band-limited interpolation,
which can be implemented using a Finite Impulse Response
(FIR) filter based on the truncated sinc-interpolation method
[21].

In this paper, we present a new approach using sequential
blind spatial-domain path-diversity beamforming (SBB) to
remedy both the ISI and isi problems using jointly CMA,
LMS and adaptive FTDE filtering. This approach is designed
to sequentially recover multipath rays by using multiple beam-
formings for received power maximization. First, the strongest
path is extracted using the Modified-CMA (MCMA) [22-24].
Second, the paths coming with delays that are multiple integers
of the sampling interval are estimated using Integer Delay-
CMA (ID-CMA) filters adapted using LMS with the CMA
delayed output as a reference signal [23]. Finally, the paths
coming with fractional delays are estimated using Fractional
Delay-CMA (FD-CMA) filters [24] adapted using LMS and
FTDE, the latter is implemented by an FIR sinc-interpolation
filter [20]. Furthermore, by relying on the common phase
ambiguity characteristic presented in these extracted paths,
additional enhancement is obtained by using a modified
coherent Maximum Ratio Combining (MRC) detector with
hard Decision Feedback Identification (DFI) [18, 25, 26] to
constructively combine the different received paths for signal-
to-noise ratio (SNR) maximization.

The paper is organized as follows. Section 2 presents the
signal model. The proposed SBB algorithm and its mathemat-
ical formulations are described in Section 3. The performance
of the SBB by computer simulation results is presented in
Section 4. Concluding remarks are given in Section 5.

II. SIGNAL MODEL

Consider a uniform linear array1 of N omni-directional-
antenna elements receiving L multipath signals. The received

1The proposed algorithm does not have any constraint on the choice of
such antenna array configuration. For the sake of simplicity, we used this
configuration.

signal xm(k) at the m-th antenna can be expressed as:

xm(k) =
L∑

i=1

αi(k)s(k − τi)e−jπ(m−1)sin(DoAi)e−2πfDk

+ ηm(k),
(1)

where, αi(k) are the complex gains of the Rayleigh fading
rays (with uniformly distributed phases ϕi between 0 and 2π)
of the i-th path; αi(k)e−2πfDk are of Jakes’ model with fD

as maximum Doppler spread2, s(k) is the desired source se-
quence, drawn from alphabet members AM = {a1, . . . , aM},
L is the number of multipath signals, τi is the path delay for
the i-th path, DoAi is the direction of arrival of the i-th path
and ηm(k) are additive white Gaussian noise processes with
variance σ2

n at the m-th receive antenna. For convenience, the
array is assumed to be uniform and linear with inter-element
spacing d = λ/2, where λ is the wavelength at the operating
frequency.
The received signal vector representation is given by:

x(k) = As(k) · s(k) + η(k), (2)

where As is an N × L matrix whose columns as(θk) for
k = 1, . . . , L are determined by the propagation vector and
s(k) = [α1s(k − τ1) . . . αLs(k − τL)]T . For simplicity, the
first path is assumed the strongest one.

III. PROPOSED SEQUENTIAL BLIND BEAMFORMING

(SBB) METHOD

A. Background

According to statistical modeling in [27] of the studied un-
derground channel, we were able to characterize, among many
other channel parameters, the maximum number of paths at a
given operation frequency and a given path resolution. Thus,
we can assume for a given transmission rate and modulation
type that the maximum number of paths arriving with delays
that are a multiple integer of the sampling interval as well as
the maximum number of paths arriving with fractional-time
delays are both predicted accurately. Consequently, we assume
n paths causing ISI and p paths causing isi. To simplify, the
following study is performed using a three-path channel model
for illustration purposes where the TPAs are given by τ1 = 0
(the strongest path), τ2 = τ < Ts, and τ3 = Ts.

Figure 1 shows the new structure for spatial-domain path-
diversity to resolve multipath signals when TPAs are both
integer (0, Ts) and non-integer (τ ) multiples of the sampling
interval. This method is implemented using three sequential
beamformers. The first beamformer is used to estimate the
strongest path, and its weights (wMCMA(k)) are adapted
using the MCMA. The output of this filter (yMCMA(k)) is fed
into both the ID-CMA and FD-CMA beamformers to construct
the path arriving with an integer delay τ3 = Ts and the path
arriving with a fractional delay τ2 = τ , respectively, using
the LMS algorithm. However, to ensure that the FD-CMA

2We chose here the model of a point-source propagation with no angular
distribution to consider the worst-case scenario in terms of performance.
However, the proposed algorithm can be applied to any channel type or
angular distribution without limitation in principle.
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Fig. 1. Proposed Sequential Blind Beamforming (SBB) algorithm.

filter detect the path arriving with a fractional delay and not
the others, adaptive signal cancellers (ASC) [28] are used to
extract the other contributions from the received signal vector.
Finally, MRC with hard DFI is used to combine these extracted
paths. Detailed explanations of the entire blocks are given in
the following sections.

B. Modified -CMA Adaptive Antenna Array

The block diagram of an adaptive antenna array is shown
in Fig.1, where the signals received by a multiple-antenna
array are weighted and combined to generate the output signal.
Given a beamformer weight vector wCMA(k), the output of
the CMA-beamformer is given by:

yCMA(k) = wH
CMA(k) · x(k). (3)

The CMA-AAA aims to eliminate the amplitude fluctuation
of the array output signal due to interferences. Therefore, the
cost function to be minimized is represented as:

J(wCMA) = E[(|yCMA(k)|2 − RCMA)2], (4)

where E[.] denotes the ensemble mean, and RCMA is a
constant, which depends on the input symbols a. This constant
is defined by:

RCMA =
E[|a|4]
E[|a|2] , (5)

for a ∈ AM .
Since CMA is phase blind, the array output has an arbitrary

phase rotation at convergence. To address this problem, a
MCMA algorithm is used next where the cost function now
is divided into real and imaginary parts as follows:

J(wMCMA) =E[(|yMCMAR
(k)|2 − RR)2]

+ E[(|yMCMAI
(k)|2 − RI)2],

(6)

where RR and RI are real constants defined by:

RR =
E[|aR(n)|4]
E[|aR(n)|2] , (7)

RI =
E[|aI(n)|4]
E[|aI(n)|2] , (8)

aR(n) = real(a(n)), (9)

aI(n) = imag(a(n)), (10)

and

yMCMAR
(k) = real(yMCMA), (11)

yMCMAI
(k) = imag(yMCMA). (12)

A stochastic gradient search method is used to minimize
the MCMA cost function by adaptively adjusting the weight
vector wMCMA according to:

wMCMA(k + 1) = wMCMA(k) − μ · e∗(k) · x(k), (13)

where μ is a small positive step size and the error function is
given by:

e(k) = eR(k) + jeI(k), (14)

where,

eR(k) = yMCMAR
· (y2

MCMAR
(k) − RR), (15)

eI(k) = yMCMAI
· (y2

MCMAI
(k) − RI). (16)

In this case the output of this Modified-CMA filter is given
by:

yMCMA(k) = wH
MCMA(k) · x(k). (17)



632 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

C. ID-CMA Filter

The integer delay path is extracted sequentially by using a
delayed replica (yMCMA(k − 1)) from the estimated signal
(yMCMA(k)) as a reference signal for the LMS algorithm
to construct the 2nd beamformer [23] as illustrated in the
blowup of the block ID-CMA filter shown in Fig. 1. Given a
beamformer weight vector wID(k), the output of the ID-CMA
filter is obtained as:

yID(k) = wH
ID(k) · x(k). (18)

This weight vector wID(k) is adjusted using LMS as follows:

wID(k + 1) = wID(k) + μ1.e
∗
ID(k).x(k), (19)

where μ1 is a positive step size and the error signal is
calculated using the delayed replica of yMCMA(k) (i.e.
(yMCMA(k − 1)) as a reference signal, and it is given by:

eID(k) = yMCMA(k − 1) − yID(k). (20)

After estimating the paths coming with integer multiples of
the sampling interval (τ1 and τ3), the fractional path delay
estimation procedure will be explained below.

D. Adaptive Signal Canceller (ASC)

To ensure that the FD-CMA filter detect the fractional
path delay and not the others, the latter contributions are
removed from the received signal vector x(k). To perform this
extraction, two adaptive signal cancellers (ASC1 and ASC2)
are used successively, as depicted in the blowup of the block
ASC filters shown in Fig.1. The output vectors of the ASC1
and ASC2 filters are given as:

xASC1(k) = wH
ASC1(k).yMCMA(k)), (21)

xASC2(k) = wH
ASC2(k).yID(k). (22)

By using the received signal vector x(k) and the ASC1 error
signal vector xe1(k) as reference signals for the ASC1 and
ASC2 filters, respectively, the error signal vectors for ASC1
and ASC2 can be written as:

xe1(k) = x(k) − xASC1(k), (23)

xe2(k) = xe1(k) − xASC2(k). (24)

Therefore, the weight vectors for the ASC1 and ASC2 filters
are adapted with the LMS algorithm as follows:

wASC1(k + 1) = wASC1(k) + μ2 · xH
e1(k).yMCMA(k),

(25)
wASC2(k + 1) = wASC2(k) + μ3 · xH

e2(k).yID(k), (26)

where μ2 and μ3 are positive step sizes.

E. FD-CMA Filter

After this extraction, the received signals collected at points
A and D, as shown in Fig. 1, can be expressed, respectively,
by:
Point A

yMCMA(k)) = ŝ(k) + γ1(k), (27)

Point D
xe2(k) = β(k)s(k − τ) + γ

2
(k), (28)

where, ŝ(k) is an estimation of the transmitted symbol s(k),
β(k) is a multiplicative factor vector that represents the
impulse response vector of the path arriving with the fractional
delay τ at the antenna array, and γ1(k) and γ

2
(k) are additive

white Gaussian noises.
By summing the vector xe2(k) at point D, the points A and
E shown in Fig.2a can be regarded as two spatially separated
antenna elements. The received signal collected at point E can
be expressed by:

ye2(k) � β(k).s(k − τ) + γ(k), (29)

where, β(k) =
∑N

i=1 β
i
(k), γ(k) =

∑N
i=1 γ

2,i
(k) and

ye2(k) =
∑N

i=1 xe2,i(k).
Consequently, by analogy with the FDF proposed in [20], the
fractional delay between the signals s(k) and s(k − τ) can
be estimated as shown in Fig.2a. This FTDE filter consists of
a linear interpolator which can be implemented using an FIR
filter based on the truncated sinc-interpolation method.
However, instead of summing directly the signal xe2(k) at
point D (as shown in Fig.2a) to construct the reference signal
of the FTDE filter, the filter wFD(k) is inserted to construct
the FD-CMA filter and estimate the fractional delay path as
depicted in Fig.2b. The weight vector of this filter (wFD(k))
is adapted using LMS algorithm (LMS5 in Fig.2b), where
the first beamformer output yMCMA(k) is fed into the FTDE
filter to generate a reference signal. The weight adaptation
for both FTDE and wFD filters is nested in the sense that
the output of the wFD filter is used as a reference signal for
FTDE filter and vice-versa.

1) Fractional Time Delay Estimation:
Once the first path is estimated by MCMA filter, it is

delayed by an estimated value τ̂ using the fractional delay
filter H. This filtering is carried out by using the following
equation detailed in the Appendix:

yh(k) ∼= yMCMA(k − τ̂)

=
+∞∑

i=−∞
sinc(n − τ̂).yMCMA(k − n)

=
+P∑

i=−P

sinc(n − τ̂).yMCMA(k − n), (30)

where the infinity sign in the summation is replaced by an
integer P , which is chosen sufficiently large to minimize
the truncation error. τ̂ is the instantaneous estimated time
delay. This delayed signal yh(k) is the output of the FIR
filter H whose coefficients are sinc(n − τ̂) and input is
yMCMA(k). For this issue, a lookup table of the sinc function
is constructed that consists of a matrix H of dimension
K × (2.P + 1) with a generic element:

hij(k) = sinc(
i − 1
K

− j); 1 ≤ i ≤ K, − P ≤ j ≤ P, (31)

where K represents the inverse resolution over Ts of the
estimated delay τ̂ . The elements of the i-th row of the matrix
H are therefore identical to the samples of the truncated sinc
function with delay equal to:

τi = (i − 1)/K. (32)
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Thus, for a given τi, equation (30) can be written as:

yh(k) = hH
i · u(k), (33)

where hi is the i-th row of the matrix H and u(k) is given
by:

u(k) = [yMCMA(k), . . . , yMCMA(k − (2P + 1))]T . (34)

The estimated fractional time delay is obtained by using
the gradient descent of the instantaneous squared error |eh|2
surface to locate the global minimum, i.e., using LMS [20].
This method is extended in this work to be applied to complex
signals. The estimated gradient is equal to the derivative of
|eh(k)|2 with respect to τ̂ . The FTDE algorithm may be
summarized as follows. The complex error signal eh(k) is
given by:

eh(k) = yFD(k) − yh(k)

= yFD(k) −
P∑

i=−P

sinc(n − τ̂(k)).yMCMA(k − n),

(35)

where,

yFD(k) = wH
FD · xe2 D(k), (36)

xe2 D(k) = xe2(k − (P + 1)). (37)

xe2(k) is delayed by (P +1) ·Ts to be aligned with the output
of the filter H that has latency depending on its order value
M = 2P + 1 as shown in Fig.2b.
The estimated time delay can be adapted by minimizing the
cost function given by:

J(τ,wFD) = E[(eh(k))2] = E[(yFD(k) − yh(k))2]. (38)

The constrained LMS algorithm becomes:

τ̂(k + 1) = τ̂(k) − μ4 · ∇J(τ,wFD), (39)

where τ4 is a small positive step size.
By differentiating the instantaneous error surface, eh(k)2,

with respect to the estimated time delay, we have:

∂(eh(k)2)

∂τ̂(k)
=

∂eh(k)

∂τ̂(k)
.e∗h(k) +

∂e∗h(k)

∂τ̂(k)
.eh(k)

= −
+P�

i=−P

∂(sinc(n − τ̂(k)))

∂τ̂(k)
.yMCMA(k − n).e∗h(k)

−
+P�

i=−P

∂(sinc(n − τ̂(k)))

∂τ̂(k)
.y∗

MCMA(k − n).eh(k)

=

+P�

i=−P

f(n − τ̂(k)).yMCMA(k − n).e∗h(k)

+

+P�

i=−P

f(n − τ̂(k)).y∗
MCMA(k − n).eh(k),

(40)

where

f(υ) =
cos (πυ) − sinc(υ)

υ
. (41)
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Fig. 2. (a) FTDE between signals received at points A and E seen as two
spatially-separated antenna-array elements, (b) FD-CMA filter for fractional
delay and path extraction.

Finally, the estimated time delay τ̂ is given by:

τ̂(k + 1) =τ̂(k)

− μ4.[
P∑

n=−P

f(n − τ̂(k)).yMCMA(k − n).e∗h(k)

+
P∑

n=−P

f(n − τ̂(k)).y∗
MCMA(k − n).eh(k)].

(42)

In our simulations, lookup tables of cos and sinc functions
are constructed for different values of υ and used to calculate
f(n−τ̂(k)). At each iteration, the integer part of (τ̂(k)·K+1)
is used to locate the i-th row of the matrix H, i.e. hi that
is used to delay the signal yMCMA(k) using (33) (see the
Appendix).

2) Beamforming for fractional delay path extraction:
Now to extract the fractional delay path, the weight vector

of the FD-CMA filter is adapted using LMS by minimizing
the cost function given in (38) as follows:

wFD(k + 1) = wFD(k) + μ5 · e∗h(k) · xe2 D(k), (43)

where μ5 is a small step size.

F. Coherent MRC with hard Decision Feedback Identification

The paths yMCMA, yFD and yID, estimated by the fil-
ters MCMA, FD-CMA and ID-CMA, respectively, possess a
common phase ambiguity, since they are sequentially extracted
using yMCMA as a reference signal. As a result, a combination
based on a simple addition of the estimated paths can only be
constructive and it represents the output of a coherent Equal
Gain Combiner (EGC). After appropriate delay alignments,
the final estimated signal is given by EGC combining of the
extracted paths (cf. EGC block in Fig. 3) as follows:

y(k) = yMCMA(k) + yFD(k) + yID(k + 1). (44)
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For a Differential Binary Phase Shift Keying (DBPSK)
modulation scheme, where the common phase ambiguity is
actually a sign ambiguity, an EGC is equivalent to MRC.
However, for higher order modulations such as Differential
Quadrature Phase Shift Keying (DQPSK), where the com-
mon phase ambiguity is an unknown angular rotation, more
substantial improvement compared to EGC can be obtained
by implementing coherent MRC with hard DFI as shown
in MRC block in Fig. 3, which strives to force this com-
mon phase ambiguity to known quantized values that keep
the constellation invariant by rotation [26], thereby allowing
coherent demodulation and MRC detection. In the first step,
all the paths yMCMA(k), yFD(k) and yID(k) are aligned by
appropriate additional delays, and then scaled by an MRC
weighting vector g(k). The summation of these scaled paths,
s̃(k), is given by:

s̃(k) = gH(k) · yd(k), (45)

where,

yd(k) = [yMCMA(k) yFD(k) yID(k + 1)]T , (46)

g(k) = [g1(k) g2(k) g3(k)]T . (47)

In the next step, s̃(k) is quantized by making a hard decision to
match it to a tentative symbol ŝh(k). This coherent-detection
operation can be expressed as follows:

ŝh(k) = Hard{s̃(k)} = argak∈AM
min{|s̃(k)−ak|}, (48)

where AM represents the MPSK modulation constellation
defined by:

AM ={. . . , ak, . . .}
={. . . , e j((2k−1)−δ(M−2))π

M , . . .}; k ∈ {1, . . . , M}.
(49)

Since ŝh(k) provides a selected estimate of the desired signal,
it can be used as a feedback reference signal to update the
weight vector g(k) using LMS-type adaptation referred to as
Decision Feedback Identification (DFI):

g(k + 1) = g(k) + μ6 · (yd(k) − g(k) · ŝh(k)) · ŝ∗h(k), (50)

where μ6 is an adaptation step-size.
It is this DFI procedure that enables coherent MRC detec-

tion by forcing the common phase ambiguity of the extracted
paths to a value by which the constellation is invariant
by rotation [26]. Finally the desired output signal y(k) is

TABLE I

SIMULATION PARAMETERS

Modulation Modulation DBPSK or DQPSK

Antenna array type Linear uniform, with λ/2 element spacing

Antenna array size 2 elements or 4 elements

Max. Doppler frequency fd1 = 20 Hz and fd2 = 35 Hz

Channel model Type-A: Rayleigh fading with fd1

Type-B: Rayleigh fading with fd2

Adaptive algorithm CMA & LMS

Carrier Frequency fc = 2.4 GHz

Noise AWGN

Filter order M = 21

Path resolution K = 200, i.e. Tr = 0.005 Ts

Step sizes μ = 0.009; μ1 = 0.008; μ2 = 0.0095;
μ3 = 0.008; μ4 = 0.001; μ5 = 0.009

and μ6 = 0.001.

Number of symbol 10.000

estimated from ŝh(k) by differential decoding, as shown in
Fig.3, instead of differential demodulation needed previously
with simple EGC. This final decoding step is expressed by:

y(k) = ŝh(k) · ŝ∗h(k − 1). (51)

The proposed technique enabling MRC path diversity com-
bining offers an SNR gain of about 2 dB gain compared to
simple EGC implementation [25, 26].

IV. COMPUTER SIMULATION RESULTS

In this section, simulation results are presented to assess the
performance of the proposed SBB method and to compare it
with MCMA beamforming [22]. A two-element array with
half-wavelength spacing is considered. A desired signal is
propagated along four multipaths to the antenna array while
the interference and noise are simulated as additive white
Gaussian noise. The first path is direct with a path arrival-time
delay τ1 = 0. The second and third paths arrive, respectively,
with delays τ2 and τ3 lower than the sampling interval,
and the last path arrives with delay τ4 = Ts. Differential
encoding is employed to overcome the phase ambiguity in the
signal estimation. Performance study was carried out with two
channel models and for two kinds of modulation (DBPSK and
DQPSK). Type-A channel is Rayleigh fading with a Doppler
shift fd1 = 20 Hz. Type-B channel is Rayleigh fading with
a higher Doppler shift fd2 = 35 Hz. The use of these two
Doppler frequencies reflects the typical range of the vehicle
speed in underground environments3. The Bit Error Rate
(BER) performance for different Doppler frequencies (fd1

and fd2) was also studied. The figure of merit is the required
SNR to achieve a BER4 below 0.001. Table 1 summarizes
the system parameters for the computer simulations.

Figures 4 and 5 show the measured BER performance
versus SNR of SBB and MCMA for Type-A and -B channels,
with different values of τ2 and τ3 using a DBPSK modulated
signal. As expected, it can be noted that for both algorithms,

3For operations at a carrier frequency fc = 2.4 GHz and vehicle speeds
v1 = 10km/h, and v2 = 15km/h, we found approximately that fd1 =
20 Hz and fd2 = 35Hz.

4The BER is calculated after steady-state convergence to avoid biasing
the results.
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Fig. 4. BER performance versus SNR with τ2 = 0.4 Ts and τ3 = 0.8 Ts

for DBPSK modulation scheme using 2-antenna elements array.
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Fig. 5. BER performance versus SNR with τ2 = 0.3 Ts and τ3 = 0.7 Ts

for DBPSK modulation scheme using 2-antenna elements array.

the BER performance decreases with increasing Doppler fre-
quency values. Despite the speed increasing due to the Doppler
effect, the proposed algorithm SSB provides significant gains
and outperforms MCMA by approximately 5 dB for both
channel environments (A and B).

Let us now study the convergence rate of the proposed SBB
method compared to the MCMA algorithm for the Type-A
channel with τ2 = 0.4 Ts and τ3 = 0.8 Ts at 2.4 GHz and
for SNR = 4 dB. Figure 6 illustrates the average BER in
terms of the number of iterations for the first 8000 samples. A
benchmark comparison with AAA using the LMS algorithm
is also provided. From Fig. 6, it can be seen that the LMS
algorithm is the fastest one followed by the MCMA and than
the SBB algorithms. However, the proposed SBB algorithm
reaches a much lower steady-state BER after convergence
within a shorter delay compared to AAA and MCMA.

Here we discuss a trade-off between the hardware com-
plexity related to the delay resolution implementation and the
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Fig. 6. The real-time performance of the proposed system compared with
the MCMA and LMS algorithms at SNR = 4 dB for DBPSK modulation
scheme using 2-antenna elements array.

BER performance. As mentioned above, K, given in equation
(32), represents the number of the tap filter coefficients used to
implement the fractional delay resolution. For instance, when
K = 10, the delay resolution is equal to Tr = 1/(K.Ts) =
0.1 Ts. By increasing the value of K, we increase the FTDE
resolution and consequently the FTDE filter will be able to
estimate faithfully the fractional delay path which will in turn
improve the BER performance. On the other hand, increasing
K increases the hardware complexity needed to implement
the FTDE. To find an optimal trade-off between resolution
and hardware complexity, several simulations with different
values of K in terms of BER performance were conducted.

Figure 7 illustrates the simulated BER performance versus
SNR of the SBB for Type-A channel environment at different
values of Tr. From this figure, it can be seen that the resolution
of K impacts greatly the BER performance when K is less
than 50. For K greater than 50, the optimal performance is
attained and further increase of the K value is unnecessary.

For high order modulation using DQPSK, Figures 8 and 9
illustrate the BER performance versus SNR for SBB using
MRC or EGC in the combining step for Type-A and -B
channels with τ2 = 0.4 Ts and τ3 = 0.8 Ts, respectively,
at 2.4 GHz. A benchmark comparison with AAA using
MCMA is also provided. For the type-A channel, the results
show that SBB with MRC provides a good enhancement and
outperforms SBB with EGC and the AAA using MCMA by
approximately 2 dB and up to 7 dB at a required BER =
0.001, respectively (Fig. 8). For the type- B channel with
higher Doppler frequency, the measured results show that SBB
with MRC maintains its advantage compared to SBB with
EGC and to the AAA using MCMA where improvements of
approximately 2 dB and up to 7 dB at a required BER =
0.001 are obtained, respectively (Fig. 9).

Figure 10 shows the measured BER performance versus
SNR for SBB using MRC or EGC in the combining step
and with MCMA-AAA for Type-A channel using four antenna
elements (N = 4). Again, it is clear that the SBB using
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Fig. 7. BER performance versus SNR in Type -A Channel for τ2 = 0.4 Ts

and τ3 = 0.8 Ts when Tr is varied using 2-antenna elements array.
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Fig. 8. BER performance versus SNR for Type -A Channel with τ2 =
0.4 Ts and τ3 = 0.8 Ts for DQPSK modulation scheme using 2-antenna
elements array.

the proposed MRC is more efficient than both previous SBB
versions using EGC and conventional MCMA algorithm.

V. CONCLUSION

In this paper, a new approach using sequential blind spatial-
domain path-diversity beamforming (SBB) to remedy the ISI
and isi problems has been proposed. Using jointly CMA,
LMS and adaptive FTDE filtering, this approach has been
designed to sequentially recover multipath rays to maximize
the received power by extracting all dominant multipaths.
MCMA is used to estimate the strongest path while the
integer path delay is estimated sequentially using adapted
LMS with the first beamformer output as a reference signal.
A new synchronization approach for multipath propagation,
based on combining a CMA-AAA and adaptive fractional time
delay estimation filtering, has been proposed to estimate the
fractional path delay. It should be noted that this proposed
SBB architecture can be generalized for an arbitrary number
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Fig. 9. BER performance versus SNR for Type -B Channel with τ2 =
0.4 Ts and τ3 = 0.8 Ts for DQPSK modulation scheme using 2-antenna
elements array.
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Fig. 10. BER performance versus SNR for Type -A Channel with τ2 =
0.2 Ts and τ3 = 0.8 Ts for DQPSK modulation scheme using 4-antenna
elements array.

of received paths causing ISI where several concurrent filters
(ID-CMA and FD-CMA) can be implemented to resolve the
different paths. Finally, to combine these extracted paths, an
enabling MRC path diversity combiner with hard DFI has also
been proposed. Simulation results show the effectiveness of
the proposed SBB receiver especially at high SNR, where
it is expected to operate in a typical underground wireless
environment [1].

APPENDIX I

Fractional-Delay filters are a type of digital filter designed
for band-limited interpolation. If a limited-band signal x(t)
is delayed by D, the signal y(t) = x(t − D) is obtained. By
sampling this signal at time instances t = k ·T , where T is the
sampling interval which is assumed without loss of generality
to be unity, the delayed version of the discrete-time signal
x(k) may be represented as [20]:

y(k) = x(k − D) =
+∞∑

i=−∞
hid(n).x(k − n), (52)
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where D is a positive real number that can be split into integer
and fractional parts as:

D = int(D) + τ. (53)

The impulse response in Equation (52) is an ideal impulse
response and so called an ideal fractional-delay filter whose
coefficients are given by [20]:

hid(n) = sinc(n − D), (54)

for n ∈ Z and D ∈ R.
If D is a fractional number, i.e. 0 < τ < 1, the impulse

response has non-zero values for all n:

0 < τ < 1 → hid(n) �= 0, ∀ n ∈ Z. (55)

Figure 11 shows the ideal impulse response when D = 3.0
and D = 3.4 samples. We notice that when the delay D
is an integer, only one sample is non-zero because the zero
crossings of the sinc function coincide with the other sampling
points. However, when the delay D is a fractional number, all
the samples (black circles) on the interval (−∞,+∞) are non-
zero. For this reason, the impulse response corresponds to an
infinite-length noncausal filter which cannot be made causal
by a finite shift in time. In addition, the filter is not stable
since the impulse response is not absolutely summable. The
ideal fractional delay filter is thus nonrealizable. To produce
a realizable fractional delay filter, some finite-length, causal
approximation for the sinc function has to be used.

For the time delay estimation process, only the estimated
time delay τ̂i(k) is adapted in this work, and it is used as
an index to obtain the vector hi from a lookup table. As
mentioned previously, this lookup table is a two-dimensional
matrix called H of size K×(2P +1) that contains samples of
the sinc function with delay ranging from 0 to (K − 1)/K.
For a given vector τ with theoretically delayed value elements,
τi is given by (32) and repeated here for convenience:

τi(theor) =
i − 1
K

, 1 ≤ i ≤ K. (56)

Then,
i = τi(theor) · K + 1. (57)

So, at each iteration, the integer part of (τ̂i(k) · K + 1) is
used to locate the i-th row of the matrix H, i.e. hi that is used
to delay the signal yMCMA(k) using (33).
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VTC’2006-Fall conference, Montréal, Canada, and currently acts as a member
of the Editorial Board of the Wiley Journal on Wireless Communications &
Mobile Computing and of the IEEE Transactions on Wireless Communica-
tions.

Charles L. Despins (S’93-M’94-SM’02) received
a Bachelor’s. degree in electrical engineering from
McGill University, Montréal, QC, Canada, in 1984,
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