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A New Receiver Structure for Asynchronous CDMA:
STAR—The Spatio-Temporal Array-Receiver

Sofiène Affes,Member, IEEE,and Paul Mermelstein,Fellow, IEEE

Abstract—We propose a spatio-temporal array-receiver (STAR)
for asynchronous code division multiple access (CDMA), using a
new space/time structural approach. First, STAR performs blind
identification and equalization of the propagation channel from
each mobile transmitter. Second, it provides fast and accurate
estimates of the number, relative magnitude, and delay of the
multipath components. From this space/time separation, STAR
reconstructs the identified channel with respect to a partially
revealed space/time structure and reduces identification errors by
the order of the ratio of the processing gain and the number of
paths. Therefore, STAR offers a high potential for increasing ca-
pacity, with relatively low computational complexity. Simulations
confirm the good multipath acquisition and tracking properties
of STAR in the presence of strong interference and fast Doppler.

Index Terms—Array signal processing, blind identification,
eigensubspace tracking, equalization and beamforming, local-
ization and tracking, source separation, space–time processing,
time-delay synchronization and tracking.

NOMENCLATURE

Scalar.
Vector in the time domain.
Matrix in the time domain.
Vector reshaping column-wise.
Vector in the frequency domain.
Matrix in the frequency domain.
Complex conjugate of A.
Transpose of A.
Conjugate transpose of A.

Acronyms:

STAR Spatio-temporal array-receiver.
PCM Postcorrelation model.
DFI Decision feedback identification.
STS Space/time separation.

I. INTRODUCTION

SMART antennas have been recently applied to improve the
capacity and the performance of wireless mobile commu-

nication systems [1], [2]. They permit the development and
the integration of new and powerful array signal processing
tools to wireless communications technology. These initial
promising results suggest further exploitation of antenna array
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processing in spread spectrum techniques [3] and motivate
the development of new multiuser access methods in asyn-
chronous CDMA [4]–[7]. Most of these techniques (e.g., [4]
and [5]) efficiently address processing in space for combining
multipath and antenna diversity. However, they use processing
in time, for synchronization and sampling, following the
classical RAKE structure [3]. As will be seen below, the time-
acquisition performance is significantly improved with the new
approach.

Indeed, time synchronization and tracking are important
issues in cellular CDMA. The performance of the RAKE re-
ceiver depends strongly on correct timing. Acquisition of syn-
chronization with a RAKE has generally required hypothesis-
testing of likely rough values of a fixed number of multipath
time-delays. Once this approximate synchronization has been
achieved, the estimates are refined to the required accuracy
by means of a closed-loop tracking technique. Therefore,
the processing time can be very large, resulting in high
complexity since, in the RAKE, both are proportional to the
time resolution [3].

Blind multichannel identification, or equalization methods
which propose joint space-time processing, offer a good al-
ternative to the RAKE, but usually they have been applied
to time division multiple access (TDMA) (see the survey
and references in [8]). Recently, some blind multichannel
equalization schemes were proposed for code division mul-
tiple access (CDMA) (e.g., [9]). These techniques implicitly
perform synchronization and array combining by channel
equalization in space and time. They process the received sig-
nals before correlation, however, and do not exploit effectively
the structure of the despread data in CDMA.

Unlike [9], we consider a blind multichannel approach
over the despread dataand develop a block-data formulation,
denoted as the postcorrelation model (PCM). The idea of
exploiting the data structure after despreading has been already
explored in [10] through a simple model for user-localization
in spread spectrum techniques. Recently, a more elaborate
model of the despread data was developed in [11] in order
to implement a blind space-time CDMA receiver, assuming
an approximate synchronization of the data. More recently,
this model was exploited in [12] to achieve synchronization
as well. In this paper, we propose a similar data model which
we independently derived previously [13], [14]. This PCM
model characterizes the structure of the channel in space and
time and can be interpreted as an instantaneous mixture in
a one-dimensional spatio-temporal signal subspace. It permits
the use of low complexity narrowband array processors and
efficient multidimensional signal processing tools.
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Based upon this PCM model, we propose the use of a
spatio-temporal array-receiver (STAR). First, by means of an
adaptive subspace-tracking procedure, STAR achieves blind
identification and equalization of the channel and implic-
itly performs integrated and efficient multipath capture and
combining in one step. Second, contrary to [9], it exploits
the time structure of the identified channel derived from
the PCM model and proposes new localization and tracking
procedures for estimating the number of paths and their time-
delays. Such time characterization was recently considered
in [15]–[18] for applications other than CDMA following
different approaches. Here, this time characterization achieves
a space/time separation (STS) of the identified channel. Chan-
nel reconstruction from this space/time decomposition reduces
identification errors by the order of the ratio of the processing
gain and the number of multipaths and significantly improves
the performance of the algorithm.

In analogy with direction of arrival (DOA) estimation
techniques, in order to achieve this time characterization of
the channel, STAR permits consideration of two multipath
time-delay localization options [13]. The first, STAR-SS, per-
forms localization by source-structure analysis. It is very fast
and more efficient for slow Doppler. The second, STAR-
ES, performs localization by eigenstructure analysis. It is
slower and more complex, but more accurate and efficient
for fast Doppler. Once localization (i.e., synchronization) has
been achieved by either technique, this step is replaced by
continuous tracking of the multipath time-delays and their
number [14].

STAR provides an attractive and simple receiver structure
with relatively low computational complexity. Simulations
confirm its effectiveness and its multipath acquisition capa-
bility at high interference levels and over a wide range of
Doppler.

II. NEW BLOCK FORMULATION

AND SPATIO-TEMPORAL MODELING

We consider a cellular CDMA system where each base-
station is equipped with a receiving antenna of sensors.
We are mainly interested in the uplink, but we shall show later
that STAR is applicable to the downlink as well. The binary
phase shift keying (BPSK) bit sequence of the desired user
is first differentially encoded at the rate , where is the
bit duration [see Fig. 1(a)]. The resulting differential binary
phase-shift keying (DBPSK) sequence is then spread by
a periodic personal code at a rate , where is
the chip pulse duration [see Fig. 1(b)]. The period of is
assumed to be equal to the bit duration, although the results
can be generalized to code periods that are multiples of.
The processing gain is given by . We also assume
a multipath fading environment where the number of paths

is unknown and where the time-delay spread is small
compared to [see Fig. 1(d) and (e)].

At time , the observation vector received by the antenna
array can be written as follows:

(1)

Fig. 1. Data processing steps. (a) DBPSK sequence. (b) Spread sequence
(a square pulse is used here for simple illustration). (c) Template of cor-
relation function. (d) Received multipaths. (e) Correlator output containing
delayed replicas of the template and interference. (f) Sampling at1=Tc and
approximation of the correlation peaks with the main lobes of sinc functions.

where are the propagation time-delays along the
paths, and are the propagation vectors

with equal norms, their value to be fixed later. are the

fractions along each path [i.e., ] of the total
power received from the desired user. Estimation of
the received power includes the effects of path loss, Rayleigh
fading, and shadowing. We assume the time-variations of

, and to be very slow and locally constant,
relative to the bit duration . The noise term includes
the thermal noise received at the antenna elements as well as
the self-, in-cell, and out-cell interference. In order to keep the
discussion simple, for the moment we assume that the time-
delays are constant. The tracking of time-varying multipath
delays is specifically addressed in Section IV.

At successive frames of period , we now define the
postcorrelated observation vector of the frame numberover
the time-interval by

(2)

This is actually a general definition of the postcorrelation
vector. The classical definition considers at some par-
ticular time-instant , after synchronization by the
RAKE receiver (see simplified version of STAR in [19]).
This amounts to delaying the postcorrelated data over each
path, then sampling it at the bit rate. Here, we consider a
continuous stream of the data after despreading and segment
it into frames of bit duration . Since the bit framing is
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not aligned across paths received with different delays [see
Fig. 1(d)], methods that process the data before correlation
(e.g., [9]) result in outputs whose values near the frame
boundary reflect contributions from two source bits (as in
blind multichannel approaches [8]). In contrast, methods that
carry out correlation on separate paths allow location of a
frame boundary that is well separated from the correlation
peaks, resulting in a composite correlation output in each frame
influenced by only a single source bit [see Fig. 1(e)]. As long
as the frame boundary lies outside the delay spread interval1

[see Fig. 1(e)], of (2) can be developed into

(3)
where is the correlation function of the chip pulse
and is the postcorrelation noise of frame number.
Since the chip pulse is almost time-limited to , its
autocorrelation function is time-limited to
(i.e., main lobe) and almost null for [see Fig. 1(c)].
Due to its peaky behavior, can be viewed as a
time-delayed impulse response2 observed with a frequency
resolution for an interval of the th path
[see Fig. 1(e)].

For each frame, we sample at the chip rate over
the interval and form the block data matrix
denoted by as the
post-correlated observation matrix. Therefore, our approach
amounts to sampling the data at the chip rate, as usually made,
then stacking it into blocks of length and of duration
[see Fig. 1(f)]. Oversampling above the chip rate, as in [11]
and [12], is not necessary. Notice that, indeed, if the time-
delays were integer multiples of the chip duration, then
unknown columns of would correspond to the classical
postcorrelation vectors, while the remaining columns would
correspond to simple interference. In contrast, our method
assigns continuous values to the time-delays over the interval

, but the number of paths that can be resolved is still
limited by the processing gain. Each path corresponds to one
or, at most, two adjacent columns of that can be reasonably
approximated by the main lobe of a sinc function sampled at
the chip rate3 [see Fig. 1(f)].

Using (3), can be explicitly written as follows:

(4)
where and are equal to

and , respectively; is
the propagation matrix; and diag is
the diagonal matrix of power partition over multipaths. Finally,

1The opposite event could be detected from the localization results. To
avoid it, we either run a parallel version or restart the algorithm with the data
delayed byT=2. The case of a delay spread larger thanT=2 is under study.

2It may be necessary to design pulses whose correlation is very close to a
sinc function, but the approximation holds in general.

3Intuitively, we approximate the number of resolvable coefficients of an
impulse response by fewer sinc functions parameterized by time-delays with
continuous values in[0; T ).

is the noise
matrix, and is the time response matrix,
where
is the time-delay impulse response of pathsampled at

. Its column-by-column fast Fourier transform (FFT) is
and its columns belong to a time manifold,

say 4

for (5)

For the sake of simplicity, we may equivalently say that
or belongs to the time manifold without distinction.
Later, we shall use this feature to implement the time-delay
acquisition step.

We now rewrite (4) in the following compact form:

(6)

where is the spatio-temporal
propagation matrix and is the signal component.
Notice here that, while the columns of the time response matrix

are defined in the manifold , the spatial response matrix
is not modeled5 and corresponds to the unknown

part of the spatio-temporal structure of .
Equation (6) provides a new instantaneous-mixture model

at the bit rate where the signal subspace is one-dimensional in
the matrix space. The matrixes , , and are
transformed into -dimensional vectors by arranging
their columns as one spatio-temporal column vector to yield

(7)

where , , and , respectively, denote the resulting
vectors. To avoid the ambiguity due to a multiplicative factor
between and , we fix the norm of to . As
mentioned earlier, the norms of the propagation vectors
are implicitly fixed to the same value, say , in such a way
that . We will explicitly give its expression later.

What is original about the new data block model in (6) or
(7) is that the signal component is a scalar and the spatio-
temporal signal subspace generated by the space-time propaga-
tion vector is one dimensional. It is the correlation step that
almost cancels intersymbol interference (ISI) and allows for
such a model, contrary to recent blind methods in CDMA (e.g.,
[9]), which process the data before correlation [see Fig. 1(d)
and (e)] following blind multichannel approaches (see the
survey in [8]). This model we refer to as the PCM permits any
low-complexity narrowband array-processing technique to be

4In [17] and [18], the pulse function which modulates the symbols is
included in the time manifold. Similarly, it is the exact correlation function of
the chip code�c(t) that should be included here as in [11] and [12], but the
approximation made with simple delays is satisfying in the CDMA context.
In any case, we avoid the zero-entries problem reported in [18], since no
inversion (i.e., deconvolution) is involved in our approach.

5We may characterizeGn in a space manifold parameterized by angles of
arrivals as in [16]–[18]. However, a space characterization is often much more
restrictive than a time characterization. Besides, it requires perfect antenna
calibration and adequate sensor positioning.
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Fig. 2. Block diagram of STAR operations. The eigensubspace tracking procedures of (15) that provide^Vn+1 for localization with STAR-ES and the
tracking procedure of (33) that provides�H

n+1 for the detection of appearing paths are not shown.

used. In particular, either eigensubspace tracking or principal-
component analysis methods could be used to identifyin
a blind approach. Narrowband array beamformers could be
used to estimate from such estimates of in a blind
space-time-equalization-like step.

Next, using (7), we first propose a spatio-temporal iden-
tification and equalization procedure adapted from [19] for
simultaneously estimating and , as shown in Fig. 2. Sec-
ond, using (6), we derive a structural STS and reconstruction of
the identified channel after convergence (i.e., ).
This step captures multipath delays, reduces identification
errors by a factor of , and improves the performance
of STAR, as shown later by simulations. Finally, the two
steps can be integrated for multipath tracking, as explained
in Section IV.

III. T HE PROPOSEDSTRUCTURE OF STAR

A. Spatio-Temporal Identification and Equalization

We first assume that an estimate of, say , is available
at each block iteration [19]. From this estimate (see Fig. 2),
we can extract the signal component by any distortionless
beamformer (i.e., ). It is reasonable to assume
N to be an uncorrelated white noise vector, in which case a
delay-sum (DS) beamformer (i.e., ) is optimal

for source extraction [19]. This beamformer achieves a spatio-
temporal blind equalization by matched filtering in an
dimensional space and estimatesby

Real Real (8)

where the Real function extracts the real signal component
sequence and further reduces the noise by half
[19]. The total power received from the desired user is
estimated for power control by

(9)

where is a smoothing factor (see [19] for more details),
while the bit sequence is estimated from the sign of .
Finally, we track in a blind identification scheme by
the following simple and fast least mean square (LMS)-type
eigensubspace tracking procedure [19]

(10)

where is an adaptation step-size, possibly normalized.
Notice that can be used instead of . This equation
converges to , with norm within a sign ambiguity
(i.e., when ) [19]. Since is a DBPSK
sequence, this ambiguity has no consequences other than
changing the signs of and . For the sake of simplicity,
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and without loss of generality, we assume in the following
that converges to .

Other eigensubspace tracking techniques can be used to
estimate as well. The identification procedure we proposed
in (10), however, is original in that it combines eigensubspace
tracking with decision feedback through as a reference
signal. This decision feedback identification (DFI) feature
forces the convergence to within a sign ambiguity. It also
achieves the reduction of interference by half, by taking the
real part of the beamformer output in (8). This DFI feature
increases the capacity by a factor of almost two, as shown
in [19]. Other eigensubspace tracking techniques estimate
within a phase ambiguity and have no control over it. Thus,
they do not achieve this additional gain in capacity.

At this stage, STAR achieves all the required goals, as
shown by Fig. 2. It implicitly synchronizes the data through
channel equalization without time-delays acquisition, simulta-
neously estimates the bit sequence, and controls the transmitted
power, all at a low order of complexity of . Addi-
tionally, assigning to the identified channel a partially known
space/time structure, i.e., and to the
identified channel significantly reduces identification errors
and improves the performance of STAR. This idea which was,
to our knowledge, first explored in [20], relies on an algorithm
we refer to here as the adaptive source-subspace extraction and
tracking (ASSET) technique (see [21] and [22] and related
references therein). We next address this point.

B. Structural Space/Time Separation (STS) and Reconstruction

In the following, we propose two time-delay acquisition
techniques (i.e., estimation of ) that can be applied
in complementary situations, covering a very wide range of
time-variations of the spatial matrix . As explained below
(see Fig. 2), these procedures achieve a space/time separation
of the spatio-temporal matrix (i.e., estimation of) and allow
its reconstruction (i.e., instead of ), with a
reduction of identification errors by a factor of .

1) STAR-SS—Source-Structure Time-Delay Acquisition Ap-
proach: Consider the situation where the time-variations of
the spatial matrix are slow enough, a case applicable to
the range of Rayleigh Doppler so far considered in cellular
CDMA, so that the spatio-temporal identification by (10) can
be made with an acceptable error. Indeed, the time-variations
of involve those of , which degrade identification as
they increase.

Once convergence of is reached (see Fig. 2), we can
redivide it into an matrix with respect to the PCM
model and obtain

(11)

where , the matrix of identification errors, is considered as
a small additive noise matrix. Let us then define the column-
by-column FFT of by

(12)

where denotes the column-by-column FFT of . From
this equation, the estimation of and , which amounts to

a space/time-like separation, can be achieved in a way similar
to source separation. Other techniques [17], [18] rely on a
space-time model of the channel similar to (11), but mainly
deal with a 2D localization problem. Here, we give a different
interpretation of the channel and address the issue of the STS
of its structure, to which we refer as the STS approach.

According to this view, the column vectors of constitute
observation vectors, as if received byantennas in parallel
spaces. On the other hand, the column vectors ofcan
be seen as signal vectors of sources that differ from one
space to another. However, all these sources propagate in
the different spaces along the same trajectories defined
by the common propagation matrix, where the multipath
time-delays correspond to DOA’s of plane-wave sources
[see (5)]. The time manifold contains (or ) and can be
viewed as an array manifold. Therefore, any narrowband array
processing technique for DOA estimation (i.e., localization,
tracking, etc., ) or for source separation applies by virtue of
the PCM model. DOA techniques (see [23] for more details)
can be used first to estimate and then to combine the time-
delays (i.e., or ) over each of the observation
spaces or columns of . Multisource beamforming can be
used subsequently to separate the spatial response matrix
as if it were a signal matrix.

Based on the above analogy,
can be viewed as a classical spectrum of DS beamforming
averaged over sensors. It measures the average energy of

that is present in the parallel source-subspaces
generated by , and its resolution to the chip pulse duration

is sufficient for time-delay localization. Hence, we define
the localization spectrum of STAR-SS in the frequency domain
as

(13)

This spectrum reveals peaks at the time-delay locations,
from which estimates of the number of paths and their
time-delays can be obtained.

By analogy to a reference algorithm for source localization,
MUSIC [24], [25], we avoid the prohibitive search over the
time-delay locations in and propose a solution that is
similar to Root-MUSIC [26]. We define the following -
degree polynomial

(14)

where . Let denote the
roots inside the unit circle of the equation . Then

reveal the extrema of
the spectrum and give and if the delays
are assigned in order of decreasing spectrum magnitude.
Then is the column-by-column inverse FFT of

.
2) STAR-ES—Eigenstructure Time-Delay Acquisition Ap-

proach: Consider now the situation in which the time-
variations of are very fast, so that the spatio-temporal
identification errors become very high. In this case we
apply an eigenstructure-based approach to the postcorrelated
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observation matrix in (6), instead of in (11). Here,
we exploit new adaptations of MUSIC [24], [25] and of Root-
MUSIC [26] for a better illustration, but other high resolution
techniques, such as ESPRIT [29] or the ML approach [27],
[28], can be used as well (see [15]–[18]).

In this approach, it is reasonable to assume uncorrelated
multipaths at the same antenna. Using the same analogy
developed earlier, the column vectors of can again be
regarded as signal vectors of uncorrelated sources in
parallel spaces, propagating from one space to another along
the same trajectories, but with different statistics. As the
time-variations of increase (e.g., very fast Doppler), the
variations of the short-term statistics gathered locally dur-
ing short observation time-intervals decrease and the source
signals (i.e., multipath components) become more stationary
over larger time-intervals. Note that (10) is still necessary for
power control. Contrary to STAR-SS, faster time-variations of

speed up the convergence, since STAR-ES involves the
statistics of , rather than its instantaneous realizations.

Over the th column vector of , denoted by , define
now the signal eigensubspace by the eigenmatrix ,
corresponding to the largest eigenvalues of the correlation
matrix of . Then for and

we have , where
denotes the column-by-column FFT of . Similar to the
previous approach, we shall use this high-resolution feature to
provide a localization spectrum and its root solutions, but first
we need to estimate the signal eigenmatrices.

We propose an adaptive eigensubspace tracking technique
similar to [21], which can be seen as an asymptotic version
of [30] after convergence, but other algorithms can be used
as well6 (see references in [30]). Remember that we need an
initial estimate of the dimension of the signal eigensubspace.
To show the robustness of STAR-ES with respect to this initial
rank estimation, we define here as the maximum
number of resolvable paths that may be present at the same
time (i.e., ) and track the eigenmatrix

for by

(15)

where is an adaptation step-size, possibly normalized,
and . This equation is a simple approxi-
mation of an LMS version of [30] and behaves nearly as well
as the exact solution. It converges to the eigenmatrix
of corresponding to its largest eigenvalues7 such
that .

Once convergence is reached (see Fig. 2), we define the
localization spectrum of STAR-ES by

(16)

6The use of these techniques is justified by the fact that each column of the
noise matrixNT

n can often be approximated as an uncorrelated white noise
vector.

7If RZ can be assumed identical form = 1; � � � ; M (e.g., ultra high
Doppler), we can take the average of (15) over sensors in a joint eigensubspace
tracking scheme.

where the matrix is the column-by-column
FFT8 of . Its root solutions are given
in a way similar to STAR-SS using the following polynomial:

(17)

and provide and as well as . contains
-dimensional noise eigensubspaces. The perfor-

mance in localization decreases as increases, but
still remains acceptable in practical situations.

3) Spatio-Temporal Separation and Reconstruction:As dis-
cussed at the beginning of Section III-B1, onceis estimated,
we resort to the STS approach and separateas a signal-
like matrix by multisource beamforming [21] and compute its
constituent elements and as follows:

(18)

(19)

diag (20)

where denotes the Frobenius norm of a matrix. Finally,
we reconstruct the spatio-temporal propagation matrix,
or equivalently (see Fig. 2), with respect to the spatio-
temporal structure of the channel in (4) by

(21)

The norms of the propagation vectors are equal to

such that .

Using (18) and (11) and assuming , we can write

(22)

The reconstruction projects the matrix of identification errors
onto the source-subspace defined by and reduces

its energy by a factor of . It significantly improves
the performance of STAR, as shown by the simulations of
Section V.

IV. TRACKING THE NUMBER OF

MULTIPATHS AND THEIR DELAYS

Up to this point we have considered constant multipath time-
delays for the sake of simplicity. In the following, we allow
them to vary with time and denote them by .
We also assume that as well as have been
previously estimated by either STAR-SS or STAR-ES. In
order to maintain the gain of in identification errors
achieved in Section III-B after localization, we need to update
the underlying space/time separation and reconstruction of
the channel to the time-variations of . At each
iteration, we therefore reestimate from .

The spatio-temporal identification and equalization of the
channel introduced in Section III-A can be modified as follows

8V̂n could be directly estimated using (15) in the frequency domain.
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(see Fig. 2). The LMS-type identification procedure of (10) is
replaced after convergence and initial localization by

(23)

while the equalization step by space/time narrowband beam-
forming of (8) is replaced by

Real (24)

Compared to the previous formulations, both equations take
advantage of a new and permanent gain in identification
errors over by a factor of . They further improve the
performance of the algorithm in terms of time-acquisition and
reception by incorporating DFI features over both the signal
and the channel (see discussion in Section III-A).

To estimate from of (24), we could apply
at each iteration the time-delays localization procedures de-
scribed earlier STAR-SS or STAR-ES. These procedures,
however, are computationally excessively complex relative to
the identification and equalization step. It is simpler to apply
them in a single iteration, in order to provide initial estimates
of the multipath time-delays. Once an initial time-acquisition
is made, either localization procedure can be replaced by a
time-delays tracking algorithm.

Indeed, we resort again to the STS approach and to the
same analogy established earlier (11) with DOA estimation
problems. We consider here the application of low-complexity
DOA tracking methods for the tracking of the number of
multipaths and their time-delays. We apply the ASSET al-
gorithm [21] to STAR, because it is very simple to implement
and it optimally exploits the space manifold structure for
DOA tracking (see a comparative evaluation with promising
methods in [31]). As explained next (see Fig. 2), we adapt it
here to time-delays tracking in a time-manifold,9 in order to
maintain a low computational cost for STAR without assuming
time-invariant localization.

A. Tracking the Multipath Delays

Using the estimate as an approximation of [21],
we modify (18) and compute the signal-like matrix as
the output of a multidimensional DS (delay-sum) beamformer

(25)
This beamformer is optimal if in (11) is an uncorrelated
white noise matrix. In most cases, such an assumption is

9We may characterizêGn in a space manifold, if assumed as in [16]–[18],
using the ASSET technique [21].

reasonable. Otherwise, we may apply the optimal beamformer
proposed in [22]. The computational complexity in (25) is
of , but it can be reduced to

with the iterative implementation of [22]. From
(25), the estimation of and follows by (19) and
(20).

We now update the time response matrix in a subspace-
tracking equation similar to (10). Although a single observa-
tion space is sufficient (i.e., ), the combination of the
estimates over the spaces (i.e., exploiting antenna diversity)
improves the tracking performance. Taking the average, the
tracking equation can be stated in the following compact form:

(26)

where is an adaptation step-size, possibly normalized. The
associated computational complexity is .

Note that if in (26) is replaced by , we obtain the
exact expression of the ASSET algorithm in [21], averaged
over sensors. Here, we have the advantage of reducing the
noise present in to simple identification errors in
[see (11)]. Thus, (26) allows for multipath tracking at a
higher interference level and more mobile transmitters can be
accommodated.

We now define , the column-by-column FFT of ,
and constrain its column vectors to lie in for

, as in [20] and [21]. This is done with the
aid of linear regressions of the phase variations between the
components of and over the frequency bins

. If we define these variations for
and for by

Im (27)

then , the slopes of the linear regressions, and
, the vectors of delay transforms, are given in (28) and

(29) shown at the bottom of the page where in (27)
denotes the imaginary part of a complex number (see [20] and
[21] for more details). The impulse response matrix
is estimated10 in the time domain as the column-by-column
inverse FFT of

The complexity of this step is .

10It is more accurate to directly define the columnsD̂p; n+1 of D̂n+1 as
replicas of�c(t), delayed bŷ�p; n+1, and sampled at the chip rate. It is even
advantageous to set their elements to zero outside the main lobe of�c(t) to
discard low SNR samples and select multipath fingers in a RAKE-like fashion
[19]. We follow here a general approach that is independent of the exact pulse
waveform.

(28)

(29)
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We find that this structure fitting step provides robustness
to correlated sources and colored noise when applied to
DOA tracking [20]–[22]. Similarly, by virtue of including this
feature in (28), STAR allows multipath tracking in the presence
of colored interference (i.e., near–far resistance) and corre-
lated multipath. Furthermore, an optimal beamformer for the
extraction of correlated sources in colored noise was proposed
in [22]. A similar beamformer can be implemented in STAR
in order to allow for optimal reception in correlated multipath
and colored interference in addition to robustness. These issues
will be addressed and reported in a later publication.

We finally reconstruct the spatio-temporal response matrix
as (see Fig. 2) such that

. The computational complexity of this step is of
. The total computational complexity required

for STAR for multipath tracking is of
, with a dominant term of .

We can further reduce the complexity of multipath tracking
after localization for large values of the processing gain by
truncating the data block to its columns that cover
the time-delay spread with a sufficient margin for the tracking
[i.e., the dominant term of complexity reduces to ].
Notice also that the above-noted formulation of STAR holds
in the limiting case where the number of antennasis one.
Hence, it can be applied to the downlink without a pilot signal
or a training sequence.

B. Tracking the Number of Paths

Now that we have established an adaptive procedure for
tracking the multipath delays, we consider tracking their
number , since may change with time due to paths
appearing and disappearing. The strategy we propose relies
on the observation in time of energy-based detection criteria
proposed in [21] for DOA tracking.

1) The Case of Vanishing Paths:The matrix
of power partition is useful for the de-

tection of vanishing paths. We decide that theth path has
vanished at block iteration if then, and for a number of
previous block iterations , its power is constantly
below a minimum threshold , i.e.,

for (30)

Instead of evaluating this condition over block iterations,
we may smooth the elements of to introduce a forgetting
factor. Both techniques can be combined, if necessary, to
avoid false detections. When the above condition is satisfied,
we eliminate the th path and the corresponding estimates,
decrement by 1 (i.e., ) and update the parameters
of the algorithm.

2) The Case of Merging Paths:Another case where the
number of paths should be decremented corresponds to
the situation when two time-delays get very close and their
paths appear to merge into a single one for more than say
block iterations. Although this case is unlikely to happen in
practice, its absence guarantees a full column-rank condition
of and provides for better stability of the algorithm. This
situation can be identified at the block iteration for the th

and th merging paths by the following condition:

for (31)

In this case, we eliminate either path, decrementby 1 (i.e.,
) and update the parameters of the algorithm.

Contrary to DOA tracking, no data association is required
when the two merged paths split again after less than
iterations as if the path-delays had crossed, since they both
belong to the same source.

3) The Case of Newly Appearing Paths:We now study the
case when a new path appears. Such an event would involve an
identification error on the spatio-temporal response matrix,
denoted by , whose energy can
be compared to a maximum threshold for the detection. This
error can be estimated in two ways. We can define the
noise estimate and directly identify the error
in a LMS-type tracking equation similar to (10) as follows:

(32)

where is an adaptation step-size and where and are
the vectors resulting from the aligned columns of
and , respectively. With respect to the sequencealready
estimated in (8), this equation is based on an almost exact
LMS implementation. We can also identify an unconstrained
estimate of the spatio-temporal response matrix, say, in
another almost exact LMS tracking equation given by

(33)

where is the vector resulting from the aligned
columns of . This estimate, without the structure fitting
constraint in the time manifold , tracks all the spatio-
temporal components of , including the unresolvable paths.
Here, is an alternative estimator of the
required error. Note that can be used instead of in (32)
and (33) with some appropriate modifications, in order to avoid
the effect of time-fluctuations in the power of [see (9)].

Given an estimate of the identification error, we may
decide that a new path has appeared at block iteration
if, after a given number of block iterations , the relative
distortion over given by consistently
exceeds a maximum threshold, say

for (34)

Again, a smoothing of the distortion instead of (34), or a
combination of both, can be used to avoid false detections.
Whenever we detect an excessive identification error, we can
apply the localization procedures STAR-SS or STAR-ES to
reestimate and the time-delays for and
update the parameters of the algorithm.

All the steps of the algorithm described in the current and
previous sections are finally illustrated by the block diagram
of STAR operations in Fig. 2.
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(a) (b)

(c) (d)

Fig. 3. �2I = 64 and Doppler of 1.76 Hz. (a) Identification error in dB with-
out spatio-temporal reconstruction (solid) and with tracking (semi-dashed). (b)
Localization spectrum (solid) and its root solutions (‘‘+’’) using STAR-SS.
(c) Localization gain. (d) Localization spectrum (solid) and its root solutions
(‘‘+’’) using STAR-ES.

V. SIMULATION RESULTS

A. Localization (i.e., Synchronization) Results

We rely on simulations to illustrate the performance of
STAR under difficult localization and tracking conditions.
For the evaluation of multipath localization with STAR, we
consider the configuration of sensors, paths
with constant time-delays , , and

, a maximum number of resolvable paths ,
and a processing gain . We use Jakes’ model [32] of
Rayleigh fading to generate propagation data. We generate two
sets of uncorrelated Rayleigh fading paths at the
data bit rate of 9.6 kb/s, with Dopplers of almost 1.76 Hz and
440 Hz, respectively. Perfect power control is assumed (see
power control capacity in [19]) where the total received power
is . The power is assumed to be equally distributed
over the three paths11 (i.e., ). The estimate of
the total received power is initialized at 0.1, and in
(10), with norm as well as in (15), with columns
normalized to 1 are started with random values. The smoothing
factor is always set to 0.01 in (9).

In the first scenario, the interference in (1) has
(i.e., SINR 18 dB, or 3 dB after despreading) and the
Doppler is 1.76 Hz. We fix and in (10)
and (15), respectively. In Fig. 3(a), identification errors

(solid line) show that converges rapidly to the
spatio-temporal channel within about 200. In Fig. 3(b), the
localization spectrum of STAR-SS and its root solutions, given
after convergence, provide estimates of the number of paths
and their time-delays with an accuracy of roughly .

11It should be understood, however, that Rayleigh fading variations are still
present in the elements of propagation vectorsGp; n, despite normalization.
We select such an idealistic power fractions profile to allow the evaluation of
the detection of appearing or disappearing multipaths (see Section V-B).

(a) (b)

(c) (d)

Fig. 4. �2I = 64 and Doppler of 440 Hz. (a) Identification error in dB
without spatio-temporal reconstruction (solid) and with tracking (semidashed).
(b) Localization spectrum (solid) and its root solutions (‘‘+’’) using STAR-SS.
(c) Localization gain. (d) Localization spectrum (solid) and its root solutions
(‘‘+’’) using STAR-ES.

The spatio-temporal reconstruction from these estimates at
and the multipath tracking reduce identification

errors by almost dB
as expected [see Fig. 3(a), semidashed line], and decrease the
bit error rate (BER) in the considered scenario by almost a
factor of 50 down to 10 . In Fig. 3(c), the localization gain
tr shows that STAR-ES converges

at a slower rate, within about 400. Its localization spectrum
and its root solutions, in Fig. 3(d), show a performance in
localization comparable to STAR-SS. Notice here that the
double root solution of the second path is merged into a
single time-delay using a rule similar to (31). Despite the
high resolution capacity of STAR-ES, the noise present in the
signal eigensubspace, as well as the low Doppler, slow down
its convergence and reduce its performance. In such a case it
is better to use STAR-SS, whose complexity is lower.

In the second scenario, we increase the Doppler to 440 Hz
and fix and . In Fig. 4(a), identification errors
(solid line) show that fails to track the very high variations
of the spatio-temporal channel. In Fig. 4(b), the localization
spectrum of STAR-SS and its root solutions, estimated at

, reveal none of the time-delays. The advantages of
STAR-ES over STAR-SS are evident here. Fig. 4(c) shows that
STAR-ES still converges within 400, despite the presence of
a fast Doppler. Its localization spectrum and its root solutions,
in Fig. 4(d), show a performance comparable to the previous
scenario. The spatio-temporal reconstruction from the resulting
time-delay estimates is made at using instead
of in (18). The multipath tracking, following this step,
again reduces identification errors as shown in semi-dashed
line of Fig. 4(a), but the misadjustment increases with a faster
Doppler.

In the third example, we decrease the interference power to
(i.e., SINR dB, or 9 dB after despreading)
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(a) (b)

(c) (d)

Fig. 5. �2I = 16 and Doppler of 440 Hz. (a) Identification error in dB with-
out spatio-temporal reconstruction (solid) and with tracking (semi-dashed). (b)
Localization spectrum (solid) and its root solutions (‘‘+’’) using STAR-SS.
(c) Localization gain. (d) Localization spectrum (solid) and its root solutions
(‘‘+’’) using STAR-ES.

TABLE I

application convergence complexity accuracy
STAR-SS slow Doppler fast O(ML) fair

STAR-ES fast Doppler slow O(MPmaxL)
high

resolution

and fix and . In Fig. 5(a), the spatio-temporal
identification is seen to converge rapidly, but the misadjust-
ment is higher (solid line) than in Fig. 3(a). In Fig. 5(b), the
localization spectrum of STAR-SS and its root solutions almost
reveal the time-delays, but the estimation with STAR-SS is not
reliable in the presence of a fast Doppler, even at a lower
interference level. On the other hand, Fig. 5(c) shows that
STAR-ES has a better convergence behavior. Its performance
in localization improves significantly, as illustrated by the
localization spectrum and its root solutions of Fig. 5(d). The
spatio-temporal reconstruction is again made at , this
time using in (18) as usually defined. Again, multipath
tracking reduces the identification errors as shown by the
semi-dashed line of Fig. 5(a). Compared to Fig 4(a), the
misadjustment is seen to decrease with lower interference.

Table I compares the relevant performance features of
STAR-SS and STAR-ES.12

B. Tracking Results

For the evaluation of multipath time-delay tracking with
STAR, we consider the same configuration and the three
different conditions discussed above. However, the multipath
time-delays are no longer constant, but vary in time along
the trajectories of Fig. 6(a). We further assume that the first
path vanishes at and reappears at ,

12The complexity is given here for the temporary stage of localization. It
excludes the permanent tracking step whose dominant term is ofO(MPL).

(a) (b)

(c) (d)

Fig. 6. (a) True time-delays�p; n. (b)–(d) True power fractions"2p; n.

(a) (b)

(c) (d)

Fig. 7. �2I = 64 and Doppler of 1.76 Hz. (a) Estimated time-delays�̂p; n.
(b) Estimated number of pathŝP (solid). (c) Time-delay tracking error

P̂
p=1 j�p;n � �̂p;nj2=P̂ . (d) Identification errorj1� Ĥ

H

n Hn=M j2 in dB.

as shown in Fig. 7(b). Therefore, the power fractions of the
second and third paths in Fig. 6(c) and (d) increase equally
during that time interval to guarantee both
and (i.e., perfect power control situation).

In the first scenario corresponding to Fig. 3 (i.e.,
and Doppler of 1.76 Hz), we initialize STAR with the source-
structure localization option STAR-SS and start time-delay
tracking within 100 , even before steady state convergence
is reached. We fix and in (23) and (26),
respectively. In Fig. 7(a), we see that the time-delays are
properly tracked despite the disappearance and appearance of
the first path. Indeed, Fig. 7(b) shows that the number of paths
is correctly estimated. The disappearance and reappearance of
the first path are rapidly detected with estimation delays less
than 100 . In Fig. 7(c), we plot the time-delay tracking error
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(a) (b)

(c) (d)

Fig. 8. �2I = 64 and Doppler of 440 Hz. (a) Estimated time-delays�̂p; n.
(b) Estimated number of pathŝP (solid). (c) Time-delay tracking error

P̂
p=1 j�p;n � �̂p;nj2=P̂ . (d) Identification errorj1� Ĥ

H

n Hn=M j2 in dB.

and show that absolute errors are as
small as . Channel identification errors are also reduced
below 20 dB, as shown in Fig. 7(d). Notice, in Fig. 7(c),
that tracking refines localization results at initialization or at
the restart of STAR. When the first path vanishes without
completely disappearing, STAR stops tracking it and tracking
errors increase for a short interval until this event is detected.
The energy component of the first path becomes negligible
[see (30)] and has practically no effect on the identification
errors of Fig. 7(d). When the first path reappears, identification
errors increase for a short interval until this event is detected.
Notice, however, that the identification errors have no effect
on the tracking process, which can be seen in Fig. 7(c) to
be robust to abrupt changes in multipath number and power
distribution. The tracking errors decrease slightly with fewer
multipaths since each resolvable path component carries a
greater fraction of the total received power13 [see Fig. 6(c)
and (d)].

In the second example, corresponding to Fig. 4, we increase
the Doppler to 440 Hz and fix and . We
observe in Fig. 8 that STAR performs nearly as well in the
presence of very fast Doppler. However, the initialization or
restart of STAR is slower than in Fig. 7 and requires almost
500 with STAR-ES. The detection of the vanishing path is
also slower and requires almost 200. The tracking errors
remain in the same range but the identification errors show a
higher misadjustment, close to10 dB.

In the third scenario corresponding to Fig. 5, this time we
reduce the interference power to and fix and

. We observe, in Fig. 9, that STAR tracks faster with
lower interference. The initialization and restart with STAR-
ES require almost 200, while the detection of the vanishing

13Notice that the configuration is different from [14] where a perfect power
control situation is not considered and where the loss in received power is
compensated by power control when the first path vanishes.

(a) (b)

(c) (d)

Fig. 9. �2I = 16 and Doppler of 440 Hz. (a) Estimated time-delays�̂p; n.
(b) Estimated number of pathŝP (solid). (c) Time-delay tracking error

P̂
p=1 j�p;n � �̂p;nj2=P̂ . (d) Identification errorj1� Ĥ

H

n Hn=M j2 in dB.

path requires almost 100. The misadjustment of identification
errors also improves to almost15 dB. However, tracking
errors again remain in the same range of . Overall, the
results reveal a tracking behavior for STAR that is very robust
to different levels of interference and Doppler.

VI. CONCLUSIONS

The spatio-temporal array-receiver (STAR) we proposed for
asynchronous cellular CDMA offers many advantages when
compared to previous methods [3]–[9].

• Attractive Formulation: STAR derives from the block
despread data an attractive instantaneous mixture model
of a narrowband source with a one-dimensional spatio-
temporal channel and processes it at the bit rate. This
model called PCM allows for a structural approach to
blind channel equalization and time-delays acquisition.
It enables the application of efficient narrowband signal
processing techniques based on an STS approach of the
channel where multipath time-delay estimation can be
particularly treated by DOA localization and tracking
techniques.

• Very Low Complexity:STAR has a very simple structure
of narrowband processors, and requires only
and operations per bit for temporary local-
ization with STAR-SS and STAR-ES, respectively, and

for permanent tracking.
• High Performance:STAR manifests fast and accurate

time-delays acquisition and tracking in the presence of
strong interference and very fast Doppler. It adapts readily
to newly appearing or disappearing paths. These proper-
ties are essential for high performance in asynchronous
cellular CDMA. It also optimally reduces interference by
DFI and can potentially accommodate a larger number of
users per cell [19].
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