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Abstract—In this paper, we propose a multi-layer ar-
tificial neural network (ANN) that is trained with the
Levenberg-Marquardt algorithm for use in signal detection
over multiple-input multiple-output orthogonal frequency-
division multiplexing (MIMO-OFDM) systems, particularly
those with low-resolution analog-to-digital converters (LR-
ADCs). We consider a blind detection scheme where
data symbol estimation is carried out without knowing
the channel state information at the receiver (CSIR)—in
contrast to classical algorithms. The main power of the
proposed ANN-based detector (ANND) lies in its versatile
use with any modulation scheme, blindly, yet without a
change in its structure. We compare by simulations this
new receiver with conventional ones, namely, the maximum
likelihood (ML), minimum mean square error (MMSE),
and zero-forcing (ZF), in terms of symbol error rate (SER)
performance. Results suggest that ANND approaches ML
at much lower complexity, outperforms ZF over the entire
range of assessed signal-to-noise ratio (SNR) values, and so
does it also, though, with the MMSE over different SNR
ranges.

Index Terms—Artificial neural networks; MIMO-
OFDM; Analog-to-digital converters; Signal detection.

I. INTRODUCTION

Most MIMO detection techniques developed so far

requir are based on having perfect CSIR to perform

detection. Therefore, channel estimation for such tech-

niques is inevitable [1], [2]. In fact, the more accurate is

the CSIR, the better would be the detection performance.

The most popular channel estimation algorithms are ML,

least-square (LS), MMSE. [3] uses an LS algorithm

to perform MIMO channel estimation. [4] considers

performing ML-based channel estimation to predict the

CSIR. The drawback of such techniques is that they

need to perform computationally-complex and time-

consuming matrix manipulations [5], [6]. Hence, such

classical algorithms are suitable for small-scale (i.e.,the

few antennas) CSIR estimation in wireless communica-

tion systems. On the other hand, future wireless systems

like mmWave systems are aimed to provide communica-

tion links with high data rates by using wide bandwidths.
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As the system bandwidth increases, the sampling rate

of an analog-to-digital converter (ADC) should linearly

increase too. Unfortunately, higher sampling rates lead

to larger power consumption of ADCs. Using LR-ADCs

has been considered as a cost-effective solution to reduce

power consumption of systems requiring high-speed

ADCs [7]. By deploying LR-ADCs in a system, the

accurate CSIR cannot be obtained from pilot signals

because of the excess error in quantization. To solve

this problem, several channel estimation methods have

been developed. One common problem in all of such

algorithms is that they require a huge amount of pilot

signals to overcome the excess error.

Blind detection in MIMO communication sys-

tems have been studied extensively. For instance, a

completely-blind MIMO detection technique has been

developed in [8], and the K-means clustering algorithm

was proposed in [9] for blind detection. The main

drawback of such algorithms for blind detection is that

they have high implementation complexity in order to

produce accurate CSIR, which may not be affordable

in practical communication systems. Further, semi-blind

MIMO detection methods, which perform data detection

and channel estimation jointly, have been developed and

shown to outperform coherent detection methods. How-

ever, the key problem in related to these blind techniques

is that they are only available for some particular types

of modulations like space-shift-keying or phase-shift-

keying (PSK).

Recently, many researchers started looking for inno-

vative solution based on machine learning (ML). For

example, for the main issue of blind detection discussed

above the authors in [10] have rethought the detection

operation from scratch without requiring CSIR by apply-

ing ML algorithms. They have used a K-nearest neigh-

bors (KNN) classifier for symbol detection over MIMO

systems. Therein, it is shown that KNN is comparable

in performance to the conventional detection algorithms.

However, its accuracy may decrease in multi-user MIMO

systems because of its inherent limitations compared to



other learning algorithms like ANN.

In this paper, we propose a blind signal detection

approach based on ANN for MIMO-OFDM systems with

perfect ADCs and with LR-ADCs when explicit CSIR is

not known to the receiver. Neural networks have offered

the state-of-the-art solutions in many domains other

than classifications. Since we can view the detection

as an act of classification, we choose this technique as

a classifier. Training a neural network involves many

hyper-parameters controlling the size and structure of the

network and the optimization procedure which can help

achieve better detection over large-scale systems. The

proposed approach consists of two phases. In the first

one, the transmitter sends a sequence of data symbols

so that the receiver learns a nonlinear function that

describes input-output relations of the system. In the

second phase, using the trained neural network, the

receiver detects the data symbols. This new approach

can be regarded as a classification problem in supervised

learning. The classifier maps the received signal to one of

the possible symbol vectors.The main advantage of our

ANN-based detector is that its operation is independent

of the modulation scheme adopted by the system—

contrary to conventional detection techniques where the

receiver structure should be adapted to the modulation

scheme. The rest of the paper is arranged as follows. In

Section II, the MIMO-OFDM system model is explained.

Section III describes the multi-layered percepteron neu-

ral network and the training algorithm. In Section IV,

the ANND algorithm is presented. Simulation and per-

formance results are presented and discussed in section

V. Section VI concludes the paper.

II. MIMO-OFDM SYSTEM MODEL

By combining multiple-input multiple-output and or-

thogonal frequency-division multiplexing technologies,

wireless systems succeeded in obtaining high data rates

and high spectral efficiency, which are not attainable for

conventional SISO systems. These data rate and spectral

efficiency enhancements with the MIMO and OFDM

schemes stem from the parallel transmission technolo-

gies they offer in the space and frequency domains

[11]. Another benefit of combining OFDM with MIMO

is their joint robustness to frequensy-selective fading

channels.

We consider here a MIMO-OFDM system with N
transmit antennas and M receive antennas—thus having

an M × N channel matrix and Ns subcarriers. The

structure of the transceiver is shown in Fig. 1. The

transmitted signal is formed into OFDM symbols by

applying the inverse fast Fourier transform as follows

xn(l) =

Ns−1∑

k=0

Xn(k)e
j2πkl/Ns , l = 0, 1, . . . , Ns − 1,

(1)
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Fig. 1. MIMO-OFDM system model.

where Xn(k) is the transmitted signal of nth transmit

antenna on kth subcarrier. Also, to avoid inter-symbol

interference (ISI), a cyclic prefix (CP) is inserted. After

CP insertion, OFDM signals are ready to be transmitted.

At the receiver, just after the ADC, fast Fourier transform

(FFT) operates as a way of OFDM demodulation. Thus

the input-output relation of the MIMO-OFDM system

model can be expressed in a matrix form as follows

y = Hx+ n, (2)

where y = [y1, ..., yM ]T and x = [x1, ..., xN ]T , are the

received and transmit signal vectors; H is the M × N
channel matrix; n is the M × 1 additive white Gaussian

noise (AWGN) vector whose elements are zero mean and

with variance of σ2; and T denotes transpose operation.

After ADC, the FFT operates on the received OFDM

symbols and the symbol on the mth antenna over the kth

sub-carrier with k = 0, 1, ..., Ns − 1 is written as

Ym(k) =
1

Ns

Ns−1∑

l=0

ym(l)e−j2πkl/Ns . (3)

Hereafter, if conventional detectors were deployed, the

pilot symbols could be extracted. However, detection

with these methods is not very effective at low-SNR

values or poor CSIR, which means applying those algo-

rithms is not an optimum choice. Thus, we seek a new

method to achieve better detection performance. We pro-

pose a new ANN-based detector based on classification

technique with the Levenberg-Marquardt technique [12].

III. ARTIFICIAL NEURAL NETWORK

An artificial neural network is a computing system

which is inspired by a biological neural network. An



ANN is formed of a collection of units called ar-

tificial neurons inter-connected, by synaptic weights.

Several classes exist in terms of neurons connection

types, activation functions, and learning approaches. In

this paper we adopt the multilayered perceptron neu-

ral networks (MLP) structure [12] and the Levenberg-

Marquardt learning method.

A. Multilayered Perceptron Neural Networks

Based on the type of connection between the neurons,

several types of ANN are defined. The most common

type of ANN is feed-forward multilayered perceptron

(FF-MLP). An MLP consists of several layers which

have, at least, an input layer, a hidden layer, and an

output layer. Each node is a neuron that uses a nonlinear

activation function [13]. In an FF-MLP, the input signal

is passed through an activation function to produce the

output of the neuron. There can be hidden neurons that

have an internal role in the network [12]. Fig. 2 shows

a simple model of an ANN which consists of input,

hidden, and output layers. Once a neural network is

.
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Fig. 2. MLP neural network .

trained for a specific task, its weights can be adopted

by another ANN for a similar task.

B. Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm is used

to solve non-linear least squares optimization problems

arising from the training phase. In order to adjust the

weights of the hidden and output layers, we define an

error function E(w) and minimize it during the training

phase as follows

E(w) =
1

2

R∑

r=1

(dr − xr)
2, (4)

where dr is rth desired output, xr is rth actual output

and R is the number of output points. At each iteration,

the weights should be updated according to

∆w = −(JTJ+ φI)−1JTE, (5)

where ∆w is the weight difference vector, J is the

Jacobian matrix containing the derivatives of the network

errors with respect to the weights and biases, φ is

the learning rate which determines the rate at which

the weights w are updated at each step. Choosing a

high learning rate leads to faster training, at the price,

however, of having longer convergence time. So there

is a trade-off between the learning and convergence

rates. While a too large value for φ accelerates the

training process, it may cause oscillation, can prevent the

algorithm from reaching converge. On the other hand,

a too small learning rate causes the algorithm to take

a long time to converge. We can wisely optimize it

during the learning phase based on the time taken by

our network to converge.

IV. ANN-BASED SIGNAL DETECTION

In this section, we propose a blind detection technique

for our MIMO-OFDM system model based on the clas-

sification approach in ANNs.

A. ANN-Based Detector

Our proposed ANND structure has two layers: one

hidden and one output layer. We consider a tangent

hyperbolic function as the activation function in each

neuron of the hidden layer with seven neurons and hard-

limit activation function in the output layer. The neural

structure with four inputs and two outputs is used to

adapt OFDM signals to the neural network. The received

symbols consist of complex signals whereas the neural

network uses real signals. In order to adapt the neural

network to the system, each complex signal is separated

into real and imaginary parts. The mathematical oper-

ations in the layers of the network during the working

and training phases are as follows:

net1j =

l1∑

i=1

(yi.waji), j = 1, 2, . . . , 7,

o1j = f(net1j ) = (e2net
1

j − 1)/(e2net
1

j + 1),

net2r =

l2∑

j=1

(o1j .wbrj), r = 1, 2,

xr = f(net2r) = net2r,

(6)

where waji is the weight of the hidden layer’s input at

jth node, l1 is the number of input nodes set here to 4,

wbrj is the weight of hidden to output layer at rth node,

and l2 is the number of hidden-layer neurons set to 7

here.

B. ANN Training Phase

The training algorithm for a feed-forward neural net-

work is as shown below:

1) Initialize the weights vector w and learning rate φ;



2) Take the received signal as an input and estimate

the transmitted signal using ML detector as a target

according to Fig. 3;

3) Compute error function as per (4);

4) Compute the weight difference ∆w as per (5);

5) Recompute the error function after using new

weights according to w +∆w;

6) If the error is smaller than the one computed in Step

3, then reduce the learning rate (φ) by 0.1 times;

otherwise, increase it 2 times and go to Step 2;

7) Finish the training phase if the error function is less

than the predefined value.
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V. RESULTS AND DISCUSSION

In this section, based on the extensive simulations,

we compare the performance of our proposed ANN-

based detector (ANND), in terms of SER, with the

conventional ML, MMSE, and ZF detection techniques

over a MIMO-OFDM system. We do such comparison

versus the SNR as shown in Figs. 4 and 5. We compare

in terms of computational time the complexities of these

detectors in Table III. The simulation parameters of our

MIMO-OFDM system and the multilayered percepteron

neural network are listed in Tables I and II.

TABLE I
MIMO-OFDM SYSTEM PARAMETERS.

Parameter Value

Carrier frequency fc 5 GHz

Sampling frequency fs 3 MHz

FFT size 64

Modulation type BPSK, QPSK

Channel type flat Rayleigh channel

Number of antennas 2× 2 , 4× 4

SNR Range 0–30 dB

MIMO receiver equalizer ML , MMSE , ZF, ANND

ADCs perfect and imperfect

we compare in Fig. 4 the SER performance of the

ANND, ML, MMSE, and ZF detection techniques using

binary-PSK (BPSK) and quadrature-PSK (QPSK) mod-

ulation schemes when a perfect ADC (i.e. with infinite

resolution) is deployed in the receiver. Fig. 4a and Fig.

4b are related to a 2 × 2 and 4 × 4 MIMO system,

TABLE II
ANN PARAMETERS.

Parameter Value

Number of inputs 4

Number of outputs 2

Number of hidden layers 1

Number of neurons in hidden layer 7

Epoch number / Iteration 1000

Training function / Algorithm Levenberg-Marquardt

Performance metric Mean square error

Target error function E 10−3

Initial learning rate φ 0.35
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Fig. 4. SER performance of the proposed and conventional detection
techniques for MIMO-OFDM systems for BPSK and QPSK.

respectively. In Fig. 4a, ANND outperforms ZF at any

SNR value for both BPSK and QPSK Without, however,

surpassing the optimal detector ML. In comparison to

MMSE, the superiority of ANND depends both on the

the modulation scheme and the SNR value. While for

BPSK, ANND outperforms MMSE at low-SNR values,

it performs worse with QPSK at high-SNR values. The

difference in performance is due to limited training time

and number of hidden layers.

Figs. 5a and 5b illustrate the SER achieved by the
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Fig. 5. SER performance of the proposed and conventional detec-
tion techniques for various numbers of ADC bits for MIMO-OFDM
systems for QPSK.

proposed ANND, MMSE and ZF using different LR-

ADC resolutions against the SER obtained by ML with

perfect ADC taken as a lower band, when employing

QPSK modulation over 2×2 and 4×4 antennas size.It is

observed that the proposed detection technique provides

a SER reduction in system compare to MMSE algorithm

in all various numbers of ADC bits, specially in case

of 4 × 4 antennas size. From this it can be stated that

the neural detector has better performance than MMSE

and ZF algorithms for MIMO-OFDM systems with low-

resolution ADCs, especially in low SNR range, with not

only 4 × 4 MIMO structures, respectively. Obviously,

the proposed ANND outperforms both ZF and MMSE,

more so at lower SNR values, lower ADC resolutions,

and with a larger 4×4 MIMO structure. Besides, as can

be seen from Table III, the proposed ANND has a lower

complexity than ML in terms of computational time—

VI. CONCLUSION

We proposed a new signal detection method based on

artificial neural network. We considered a MIMO-OFDM

system with perfect and imperfect analog-to-digital con-

verters. We compared the proposed ANN-based detector

TABLE III
THE COMPUTATIONAL TIME COMPLEXITY

Algorithms Time complexity (/ML)

MLD 1.000

MMSED 0.0511

ZFD 0.0425

ANND 0.3429

a net advantage that further increases with large-scale

MIMO structures such as massive MIMO systems.

with the conventional of maximum-likelihood, minimum

mean square error, and zero-forcing detection methods in

both ADC cases with two different modulation schemes.

Extensive simulations suggest that ANND offers a very

promising alternative for applications requiring large

numbers of antennas, such as massive MIMO.
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