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Abstract—In this paper, we investigate maximum likelihood
(ML) time delay (TD) and carrier frequency offset (CFO) syn-
chronization in multi-node decode-and-forward (DF) cooperative
relaying systems operating over time-varying channels (TVCs).
This new synchronization scheme is embedded into a distributed
multiple input multiple output (MIMO)-relay beamforming
transceiver structure to avoid the drawbacks of multidimensional
ML estimation at the destination and to minimize the overhead
cost. The new technique can be jointly implemented with any
Doppler spread estimator in an iterative scheme using a time-
constant channel (TCC) based synchronization method at the
initialization step. The resulting TD and CFO estimates along
with the channel estimates are then fed into a distributed MIMO-
relay beamforming transceiver of K single-antenna nodes, for
pre-compensation at each node of the transmitted signals, to
ensure constructive maximum ratio combining (MRC) at the
destination. Simulation results show significant synchronization
accuracy improvement over previous distributed multi-node syn-
chronization techniques assuming TCCs. The latter translates
into noticeable gains in terms of useful link-level throughput,
more so at higher Doppler or with more relaying nodes.

Index Terms—Carrier Frequency Offset (CFO), Time Delay
(TD), Time-Varying Channel (TVC), Doppler Spread, Distributed
MIMO Relay Beamforming, Cooperation, Collaboration, Decode-
and-Forward (DF), Multi-Node Synchronization, Maximum Like-
lihood (ML).

I. INTRODUCTION

Spatial diversity is a well-known concept allowing to com-

bat the channel fading and increase the overall throughput

of communication systems. Such attracting advantage can be

achieved through multiple solutions. Cooperative networks

provide a distributed solution that avoids some of the dif-

ficulties related to traditional multiple input multiple output

(MIMO) systems [2]. However, some challenges need to

be addressed to ensure constructive cooperation between the

relays. One major problem in cooperative relaying systems

is multi-node synchronization, both in time and frequency.

The latter is crucial for the proper implementation of energy-,

spectrum-, and area-efficient distributed MIMO-relay beam-

forming between a given source-destination link having cov-

erage limitations.

Multiple techniques exist in the open literature [3] provid-

ing solutions to alleviate the effect of time-varying channel

(TVC) distortions in time, frequency, phase, and amplitude.

Work supported by the NSERC/Huawei Canada/TELUS CRD Grant on
5G-WAVES (Wireless Access Virtualization Enabling Schemes), the DG and
CREATE PERSWADE <www.create-perswade.ca> Programs of NSERC, and
a Discovery Accelerator Supplement Award from NSERC. It was in part
disclosed in a journal version in [1].

On one hand, the works in [4,5] investigate time delay (TD)

synchronization while neglecting the carrier frequency offset’s

(CFO) effect. On the other hand, the solutions introduced in

[6,7] deal with multiple CFOs while neglecting the TD effect.

Other techniques perform joint estimation of all parameters

at the destination in closed-loop cooperative networks [8,9].

Although they could work well in practice, they suffer from

high computational complexity since they require solving a

multi-dimensional problem that increases with the number of

relaying nodes.

Alternative solutions can be considered by relying on dis-

tributed collaborative beamforming (DCBF) schemes [10].

Many of these techniques focus on the optimal design of the

beamformer’s weights while assuming perfect synchronization

that leave them extremely vulnerable in practice to phase,

frequency, and time offsets. Many other techniques focus

on the other hand on combating the misalignment effect at

the destination caused by such offsets. In [11], the authors

proposed a phase compensation solution based on an itera-

tive bit-feedback approach. In [12], a solution for frequency

synchronization in wireless sensor networks (WSN) using a

round trip synchronization method was proposed. In [13], a

distributed synchronization method was proposed for dense

wireless networks using a correlation-based joint TD and CFO

estimator. Yet, all the above-mentioned techniques rely on the

simplifying time-constant channel (TCC) assumption. In con-

trast, a broad range of applications require that the terminals

act as relaying nodes and, at the same time, fifth-generation

(5G) communication systems are expected to support reliable

communications at very high velocities reaching 500 Km/h

(e.g., in high-speed trains) [14]. For such systems, the con-

ventional TCC assumption leads to severe performance losses.

Recently, some other works on DCBF [15, 16] had tackled

the challenging problem of multi-node synchronization under

TVCs using enhanced versions of one-bit feedback technique.

However, they have only addressed phase compensation while

assuming perfect TD and CFO estimation. In [17], we recently

proposed first a distributed solution for time varying channels.

However, it assumes perfect estimation of the Doppler at

the destination. Besides, it does not address the need for

establishing a transmission protocol to properly schedule the

different processing and communication tasks between the

source, the relays, and the destination.

Motivated by these facts, we develop in this paper a

new decentralised maximum likelihood (ML) synchronization

2019 IEEE Wireless Communications and Networking Conference (WCNC)

978-1-5386-7646-2/19/$31.00 ©2019 IEEE



technique along with a distributed MIMO-relay beamforming

design that tackles the challenging TVC case over multi-node

relaying transmissions. We develop an iterative solution, re-

ferred to as ML TVC-DE (Doppler estimate), that accounts for

the practical need to estimate at each relay node the Doppler

spread and that develops a detailed protocol that properly

orchestrates all processing and communications tasks among

the source, the relays, and the destination. The proposed ML

TVC solution builds upon a very useful approximation of the

channel covariance matrix by a two-ray propagation model.

Simulation results show noticeable gains in terms of useful

link-level throughput, over previous distributed multi-node

synchronization techniques assuming TCCs, more so at higher

Doppler or with more distributed MIMO-relay beamforming

nodes.

The rest of the paper is organized as follows. In Section II,

we introduce the system model. In Section III, we derive the

new ML solution of the underlying estimation problem. The

distributed MIMO-relay design is presented in Section IV. In

Section V, we run exhaustive computer simulations to assess

the performance of the proposed distributed synchronization

and MIMO-relay beamforming solution both at the component

and link levels in terms of estimation accuracy and throughput,

respectively. Finally, we draw out some concluding remarks in

Section VI.

The notations adopted in this paper are as follows. Vectors

and matrices are represented in lower- and upper-case bold

fonts, respectively. The shorthand notation x ∼ CN (m,σ2)
denotes a complex normal (i.e., Gaussian) distribution with

mean m and variance σ2. Moreover, {.}T and {.}H denote the

conjugate and Hermitian (i.e., transpose conjugate) operators

and det{.} returns the determinant of any square matrix. The

Euclidean norm of any vector is denoted as ||.|| and IN denotes

the (N ×N) identity matrix. For any vector x, diag{x} refers

to the diagonal matrix whose elements are those of x. For

any matrix X, [X]q and [X]l,k denote its qth column and

(l, k)th entry, respectively. The element-wise product between

any two vectors x1 and x2 is denoted as x1 ⊙ x2. Moreover,

{.}∗, ∠{.}, and |.| return the conjugate, angle, and modulus of

any complex number, respectively. Finally, E{.} stands for the

statistical expectation, j is the imaginary unit (i.e., j2 = −1),

and the notation , is used for definitions.

II. SYSTEM MODEL

Consider a cooperative decode-and-forward (DF) communi-

cation system with a source, S, a destination, D, and a MIMO

relay of K randomly distributed nodes, R1, R2, . . . RK , as

shown in Fig. 1. The K relays are subject to CFOs and TDs

due to the presence of different local oscillators. We denote

the CFOs of the K relays by (ν̄1, ν̄2, · · · , ν̄K) ⊂ [0, νmax]
K

and their respective TDs by (τ̄1, τ̄2, · · · , τ̄K) ⊂ [0, τmax]
K .

The parameters, νmax and τmax, can be set as large as desired

within the vicinity of practical CFO and TD values. The

true unknown parameters will also carry the superscripts

(.)[sr] and (.)[rd] to indicate the communication link to which

they belong, i.e., S to Rk and Rk to D, respectively. Most
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Fig. 1. System model for the distributed MIMO-relay beamforming scheme
illustrated during the DT (data transmission) cycles.

importantly, in stark contrast to previous works on multi-node

synchronization which have only dealt so far with TCCs, all

the nodes and/or the destination are assumed in this work to be

mobile, possibly with different velocities. Hence the second-

hop’s communication link between each relay node Rk and

the destination has a TVC characterized by the Doppler σDk
.

During an initial synchronization period, the final destina-

tion starts by broadcasting a common training sequence of

L symbols, a
[dr] , [a[dr][1], a[dr][2], . . . , a[dr][L]]T , to all

the relays. Hence, every relay node will be able to estimate

its own synchronization parameters locally and independently

of all others. During this pilot transmission (PT) period, the

destination sends to all relays the following known signal:

s[dr](t) =

L−1∑

l=0

a
[dr][l + 1]g (t− lT ) , (1)

where g(t) is the shaping pulse and T is the symbol duration.

The received signal at the kth relay is given by:

x
[dr]
k (t) = h

[dr]
k (t)s[dr]

(
t− τ̄

[dr]
k

)
ej2πν̄

[dr]
k

t + n
[dr]
k (t), (2)

where h
[dr]
k (t) is a flat-fading Rayleigh channel and n

[dr]
k (t)

is the additive Gaussian noise component assumed to be

temporally white. Using its received signal in (2), each relay

will find the estimates, τ̂
[dr]
k and ν̂

[dr]
k , for its channel TD

and CFO, τ̄
[dr]
k and ν̄

[dr]
k , respectively. The signal in (2)

is oversampled by a factor Q = T/Ts where Ts is the

sampling period. The observation sequence corresponding to

the sampling time instants, {nTs}QL−1
n=0 , is given by:

x
[dr]
k (n) = h

[dr]
k (n)

L−1∑

l=0

a
[dr][l+1]g

(
nTs−lT− τ̄

[dr]
k

)
ej2πν̄

[dr]
k

n
Q

+ n
[dr]
k (n), (3)

where the additive white Gaussian noise is denoted by

n
[dr]
k (n) ∼ CN (0, σ2

nk
). Notice in (3) that we keep using the

same notation, ν̄
[dr]
k , as in (2) for the normalized (by Ts) CFO

between Rk and D, that is for the sake of simplicity.

In order to rewrite (3) in a matrix/vector form, we

denote by x
[dr]
k , [x

[dr]
k (0),x

[dr]
k (1), . . . , x

[dr]
k (QL − 1)]T ,

h
[dr]
k , [h

[dr]
k (0), h

[dr]
k (1), . . . , h

[dr]
k (QL − 1)]T , and n

[dr]
k ,

[n
[dr]
k (0), n

[dr]
k (1), . . . , n

[dr]
k (QL − 1)]T the vectors that con-

tain, respectively, the received samples, the channel coef-
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ficients, and the noise components. We also introduce the

following matrix parametrized by the generic TD:

G(τ),




g(0− T − τ) . . . g(0− LT − τ)
g(Ts − T − τ) . . . g(Ts − LT − τ)

...
...

...
g
(
(QL−1

)
Ts−T−τ) . . . g

(
(QL−1)Ts−LT−τ

)


.

Starting from (3) and resorting to straightforward algebraic

manipulations, we show for k = 1, 2, . . . , K that we have:

x
[dr]
k = Λ

(
ν̄
[dr]
k

)
Ω

(
τ̄
[dr]
k

)
h
[dr]
k + n

[dr]
k , (4)

where:

Ω (τ) , diag
{
G (τ) a[dr]

}
, (5)

Λ(ν) , diag
{[

0, ej2πν , . . . , ej2πν(QL−1)/Q
]T }

, (6)

For the sake of clarity, we will only focus on the second hop

and assume the first hop’s estimation and transmission tasks

to be ideal. Indeed, the proposed synchronization algorithm

can also be applied at each relay node to obtain the matched

filtered samples required to decode the data locally during the

data transmission (DT) period. As such, we will drop in (4)

and in all the equations of the next section the [dr] superscript

thereby leading to:

xk = Λ (ν̄k)Ω (τ̄k)hk + nk. (7)

III. JOINT TD AND CFO ML ESTIMATOR

A. TCC Case

Under the assumption of static channels, all nodes are

stationary and as such the Doppler spread is equal to zero.

In this case, the system model in (7) reduces to:

xk = hkΛ (ν̄k)G (τ̄k)a + nk, (8)

where hk is the channel gain of the communication link

between D and Rk. It can be shown that the log-likelihood

function (LLF) can be expressed as follows:

L
(
νk, τk, hk, σ

2
nk

)

= − 1

σ2
nk

||xk−hkΨ(νk, τk)a||2−QL ln(πσ2
nk
), (9)

where

Ψ(νk, τk) = Λ(νk)G(τk). (10)

First, we maximize L
(
ν, τ, h, σ2

nk

)
with respect to the noise

variance. The partial derivative of (9) with respect to σ2
nk

is

given by:

∂
∂σ2

nk

L
(
νk, τk, hk, σ

2
nk

)
= 1

σ4
nk

∣∣∣∣xk−hkΨ(νk, τk)a
∣∣∣∣2− QL

σ2
nk

.

Setting this result to zero and solving for σ2
nk

yields the ML

estimate for the noise variance:

σ̂2
nk,ML =

1

QL

∣∣∣∣xk − hkΨ(νk, τk)a
∣∣∣∣2, (11)

which is substituted back in (9) to obtain the following ML

estimates for the remaining parameters at each relay node:
[
ν̂k, τ̂k, ĥk

]
= argmin

ν,τ,h
L
(
ν, τ, h

)
, (12)

where:

L
(
ν, τ, h

)
=

∣∣∣∣xk − hΨ(ν, τ)a
∣∣∣∣2. (13)

For any given couple of values for ν and τ , the LLF optimiza-

tion over hk reduces to a linear least squares (LS) problem

whose solution is given by:

ĥk =
1∣∣∣∣Ψ(ν, τ)a

∣∣∣∣2 a
H
Ψ(ν, τ)Hxk. (14)

By substituting ĥk for hk back in (13) and after some

algebraic manipulations, we obtain the so-called compressed

LLF (CLLF) which depends solely on ν and τ :

Lc

(
ν, τ

)
=

1∣∣∣∣Ψ(ν, τ)a
∣∣∣∣2x

H
k Ψ(ν, τ)a a

H
Ψ(ν, τ)Hxk.(15)

Hence, the joint ML estimates of νk and τk become the

solution of the following optimization problem:

[ν̂k, τ̂k] = argmax
ν,τ

Lc

(
ν, τ

)
. (16)

B. TVC Case

We start by deriving the LLF that depends on all the

unknown parameters observed separately at each relay, i.e.,

νk, τk, hk, σ2
nk

. Since the noise components are assumed

to be temporally white and Gaussian distributed, i.e., nk ∽

CN (0, σ2
nk
IQL), each vector xk in (7) is also Gaussian

distributed. Hence, it can be shown that the actual LLF at

each relay Rk, after dropping the constant terms, is given by:

L
(
νk, τk, hk, σ

2
nk

)
= −ln (det{Rxkxk

})−x
H
k R

−1
xkxk

xk, (17)

where Rxkxk
= E

{
xkx

H
k

}
is the covariance of the zero-mean

observation xk whose expression follows from (7) as:

Rxkxk
=Λ (νk)Ω (τk)Rhkhk

Ω (τk)
H
Λ (νk)

H
+σ2

IQL,(18)

where Rhkhk
= E

{
hkh

H
k

}
. It is obvious that maximiz-

ing L
(
νk, τk, hk, σ

2
nk

)
requires the inversion of a large-size

(QL × QL) covariance matrix and the computation of its

determinant. In the following, we develop a new solution that

avoids these costly calculations. Actually, the new solution

relies on the two-ray channel approximation1 of the covariance

matrix of the channel, as described in [18,19] (please refer to

the Appendix in [18] for more details about the underlying

second-order Taylor series approximation), which leads to:

Rhkhk
≈ σ2

hk

2
WW

H , (19)

where σ2
hk

is channel variance and W is defined as follows:

W = [w w
∗]. (20)

1The two-ray channel approximation holds only when LFDk
T ≪ 1.
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The vector w in (20) is given by:

w =
[
1 e−jσDk

Ts . . . e−j (QL−1)σDk
Ts

]T
.

Injecting (19) in (18) leads to the following overall covariance

matrix approximation:

Rxkxk
=

σ2
hk

2 Λ (νk)C(τk)C
H(τk)Λ (νk)

H
+σ2

nk
IQL, (21)

in which the matrix C(τk) is defined as follows:

C(τk) , [c1(τk) c2(τk)] = Ω (τk)W. (22)

To find the inverse of Rxkxk
and its determinant, we start

by finding the analytical expressions for the eigenvalues of

C(τk)C
H(τk) and their corresponding eigenvectors. Clearly,

the matrix C(τk)C
H(τk) is of rank two and has the same

non-zero eigenvalues values as CH(τk)C(τk). Since the latter

is a 2×2 matrix, its eigenvalues can be computed analytically.

Indeed, it can be shown that:

C
H(τk)C(τk) =

(
α(τk) ϕ(τk)
ϕ(τk)

∗ α(τk)

)
, (23)

where:

α(τk) =

QL−1∑

n=0

(
Ωn,n(τk)

)2
, (24)

ϕ(τk) =

QL−1∑

n=0

(
Ωn,n(τk)

)2
e2σDk

(n−1)Ts . (25)

From the roots of the characteristic polynomial of

C
H(τk)C(τk) in (23), we obtain the two eigenvalues

as:

λ1 = α(τk) + |ϕ(τk)| and λ2 = α(τk)− |ϕ(τk)|. (26)

Hence, the corresponding unit-norm eigenvectors are given by:

v1 =
1√
2

[
1

ϕ(τk)
∗

|ϕ(τk)|

]T
and v2 =

1√
2

[
1 − ϕ(τk)

∗

|ϕ(τk)|

]T
.

Since λ1 and λ2 are also the two non-zero eigen-values of

C(τk)C(τk)
H , the singular value decomposition (SVD) of the

matrix C(τk) is obtained as follows:

C(τk) = U(τk)Σ(τk)
1/2

V(τk)
H , (27)

where:

Σ(τk) , diag{λ1, λ2} and V(τk) , [v1 v2]. (28)

Moreover, since V(τk)
H
V(τk) = I2, then U(τk) = [u1 u2]

can be expressed as follows:

U(τk) = C(τk)V(τk)
H
Σ(τk)

−1/2. (29)

Therefore, it follows that:

u1 =
1√
2λ1

(
c1(τk) +

ϕ(τk)
∗

|ϕ(τk)|

)
, (30)

u2 =
1√
2λ2

(
c2(τk)−

ϕ(τk)
∗

|ϕ(τk)|

)
. (31)

Now, by injecting (27) back into (21), it follows that:

Rxkxk
= σ2

nk

(
ρk

2 B (νk, τk)Σ(τk)B (νk, τk)
H
+ IQL

)
,(32)

where B (νk, τk) = Λ (νk)U(τk) and ρk = σ2
hk
/σ2

nk
is the

signal-to-noise ratio (SNR). Using the Woodburry identity [20]

and exploiting the fact that u1 and u2 are orthogonal with

unit norms, the inverse of the covariance matrix in (32) can

be written as follows:

R
−1
xkxk

=
1

σ2
nk

IQL − 1

σ2
nk

B (νk, τk) Γ(τk)B (νk, τk)
H
, (33)

where:

Γ(τk) = diag

{
ρkλ1

2 + ρkλ1
,

ρkλ2

2 + ρkλ2

}
. (34)

And from (32), the determinant of Rxkxk
can be obtained as:

det{Rxkxk
} =

(σ2
nk
)QL

4
(ρkλ1 + 2)(ρkλ2 + 2). (35)

By injecting (33) and (35) in (17), the LLF reduces to:

L
(
νk, τk, σ

2
nk

)
= − ln ((ρkλ1 + 2)(ρkλ2 + 2)) +

1

σ2
nk

×

2∑

i=1

ρkλi

2 + ρkλi

∣∣∣∣∣

QL−1∑

m=0

u
∗

i [m+ 1]e−j2πν m
Q xk[m+ 1]

∣∣∣∣∣

2

, (36)

The LLF in (36) depends on both the target TD and CFO,

but also on the Doppler spread. To reduce the complexity of

the tri-dimensional estimation problem, we adopt an approach

similar to the one in [8] to find the minimum of some cost

function. This approach separates Doppler estimation from

joint synchronization. We also use the TCC technique of

Subsection III-A to obtain initial TD and CFO estimates, i.e.,

τ̂
(0)
k and ν̂

(0)
k . The latter are then injected in the LLF of (36) to

obtain an initial Doppler estimate. This preliminary guess is in

its turn injected in the very same LLF function to jointly esti-

mate the TD and CFO. The TCC-based technique is suitable

for initialization since it provides good initial estimates for the

TVC-based technique. Hence, the latter converges quickly, in

few iterations only. The overall estimation technique at each

relay Rk is summarized in Algorithm 1. Note also that the

Algorithm 1 Joint estimator for the Doppler, TD, and CFO at

each relay RK

Initialization: Estimate τ̂
(0)
k and ν̂

(0)
k using (15)

for j = 1 to J do

Estimate σ̂
(j)
Dk

Estimate τ̂
(j)
k and ν̂

(j)
k using (36)

end for

estimates of the SNR, ρk, and the noise variance, σ2
nk

, are

obtained using the same approach adopted in [18].
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Fig. 2. Processing and data signaling structure of the two-hop MIMO-relay beamforming scheme assuming ideal (inactive) first-hop communication.

IV. DISTRIBUTED MIMO-RELAY BEAMFROMING

Very often, synchronization is performed at the destination

where the receiver estimates all parameters. Many techniques

opt for sub-optimal iterative implementations [8, 21] that

could become ineffective in the case of dense networks. In

such a case, open-loop synchronization architectures should

be adopted instead. Accordingly, the proposed synchronization

technique is run at each relay node. During a PT period, each

node estimates the channel parameters. During the DT period,

each relay will transmit the useful data to the destination

while ensuring that the signal is modified properly using the

TD, CFO, and channel estimates made available during the

PT period. Full details of the processing and data signaling

structure are shown in Fig. 2. Since the synchronization

parameters are expected to vary with time, but actually at a rate

much slower than the channel, the synchronization parameters

are refreshed as shown in Fig. 2 once each P consecutive DT

periods.

For more details about the proposed communication protocol,

we provide an example on how the processing time and data

signaling are organized in the time domain. In fact, during

the first period, i.e., step (1), the destination broadcasts a

training sequence,
{
a
[rd]
l

}Lsync

l=1
, to all K relaying nodes. Then,

the source node starts transmitting its own training sequence,{
a
[sr]
l

}Lsync

l=1
, to the relaying nodes during steps (2) and (3).

Each relay node estimates the channel parameters (τ̂
[rd]
k , ν̂

[rd]
k )

and (τ̂
[sr]
k , ν̂

[sr]
k ) during steps (4) and (5), respectively. At steps

(6) and (7), the destination node broadcasts another training

sequence,
{
a
[rd]
l

}Lch

l=1
, dedicated to channel estimation. At the

same time, the source node performs the same procedure by

sending the sequence {bp,l}Ldata

l=1 during steps (8) and (9). At

step (10), each relay node uses τ̂
[sr]
k and ν̂

[sr]
k along with ĥ

[sr]
k,p

to estimate
{
b̂
(k)
p,l

}Ldata

l=1
. The latter will be used along with

τ̂
[rd]
k , ν̂

[rd]
k , and ĥ

[rd]
k,p to generate the transmitted signal y

[rd]
k (t).

The signal y
[rd]
k (t) is transmitted during step (11). Finally, the

destination node performs a simple decoding procedure during

step (12). During the next P − 1 periods (i.e., 1 < p < P ),

steps (1) to (5) are ignored since the channel parameters

(τ̂
[rd]
k , ν̂

[rd]
k ) and (τ̂

[sr]
k , ν̂

[sr]
k ) are assumed to be the same over

P periods. At the P th period, however, we execute the same

steps (6) to (11) but slightly change the final step (12) and,

hence, denote it as (12’). In step (12’), once the destination

node completes the decoding process, it starts broadcasting

again the very same training sequence
{
a
[rd]
l

}Lsync

l=1
.

V. SIMULATION RESULTS

In the following, we discuss our simulation results at both

the component and link levels when all previous works would

stop short from moving to the more time consuming yet much

more insightful link-level throughout metric. In all our simula-

tions, we assume as would be expected in practice that the K
relays are co-located at about the same distance and moving at
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the same relative speed from the destination whether the latter

is stationary or also in motion itself. Under this assumption,

the average SNR and the Doppler frequency are assumed to

be the same over all R-D and D-R links. In the following, we

will investigate in different scenarios the estimation accuracy

of the tested synchronization parameter estimators in terms of

the normalized mean square error (NMSE) before assessing

their link-level throughput performance.

A. Component-Level Simulations

In all component-level simulations, we consider a training

sequence, a[dr], of Lsync = 128 QPSK symbols and a square

root raised-cosine shaping-pulse filter (SRRC) with a roll-off

factor ρ = 0.3. In Fig. 3, we compare the proposed technique

under its two variants with idealized and active Doppler

frequency estimation, i.e., ML TVC-PD (perfect Doppler)

and ML TVC-DE, against the space alternating generalized

expectation maximization (SAGE) algorithm in [8], the sole

benchmark available in the literature dealing with multi-node

TD and CFO synchronization, and the CRLBs in terms of

NMSE performance. We observe that all tested techniques
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Fig. 3. CRLB and NMSE vs SNR of the ML TVC, ML TCC, and SAGE
techniques vs the SNR with FDk

= 15 Hz and uniform Jakes’ model for:
(a) the TDs and (b) the CFOs.

perform nearly the same at FDk
= 15 Hz with a small

advantage for both TVC-PD and TVC-DE at high SNR. On

the other hand, SAGE and ML TCC - which perform exactly

the same because they both rely on the TCC assumption - see

their performance slightly degrade at high SNR because the

channel is not totally constant (i.e., FDk
6= 0 Hz). Besides,

we observe that ML TVC-DE matches its idealized ML TVC-

PD counterpart in terms of TD estimation accuracy whereas it

exhibits slightly lower CFO estimation performance. In fact,

this degradation stems from the Doppler estimation errors that

increase at higher Doppler with more detrimental impact on

CFO estimation.

In Fig. 4, we tackle the more challenging case of a much

significantly higher Doppler FDk
= 100 Hz. Here again, we

can report the very same qualitative observations of Fig. 3,

yet with more prominent performance gaps this time in terms
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Fig. 4. CRLB and NMSE vs SNR of the ML TVC, ML TCC, and SAGE
techniques vs the SNR with FDk

= 100 Hz and uniform Jakes’ model for:
(a) the TDs and (b) the CFOs.

of CFO and TD estimation accuracies, more so at high SNR,

between on one hand ML TVC and the TCC-based techniques

(i.e., SAGE and ML TCC) and on the other hand between

ML TVC-PD and ML TVC-DE. This is hardly surprising

because on one hand SAGE and ML TCC fail to reach the

global maximum and exhibit poor performance since the TCC

assumption no longer holds at high Doppler. And because,

on the other hand, the Doppler estimator selected for joint

operation with the new ML TVC technique to illustrate its

applicability in real-world operating conditions is specifically

tailored to cope with the far more challenging estimation of

low Doppler frequencies. As such, the additional performance

losses resulting from the joint estimation of high Doppler can

be reduced to the same negligible gaps observed in Fig. 3 at

low Doppler; that is by the simple integration of alternative

Doppler estimators more easily tailored to be more accurate

at high Doppler.

B. Link-Level Simulations

Our link-level simulations were run using the key setup

parameters listed in Table I.

TABLE I
SIMULATION PARAMETERS

Parameters Symbol Values
Symbol period T 1/14 ms
Number of relays K {1, 2, 4, 8}
Maximum Doppler shift {FDk

}K
k=1

{15, 100, 200, 300} Hz
Oversampling factor Q 2

Roll-off factor ρ 0.3
TDs τk Uniformly random (i.i.d.)
CFOs νk Uniformly random (i.i.d.)
Rk − D channel hk Rayleigh random (i.i.d.)

Fig. 5 depicts the resulting throughput for three different

modulation orders (QPSK, 16-QAM and 64-QAM) and K
relays. We consider in Figs. 5 (a) and 5 (b) the case where all

K relay-destination links have the same maximum Doppler

frequency shift of 15 and 100 Hz, respectively. For a given
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modulation order M , the throughput is obtained from the

symbol error rate (SER) as follows:

Throughput =
1

T
log2(M)(1 − SER)(1−R), (37)

where R is the overhead ratio. Note here that the latter is

computed over a period that spans Lsync symbols for synchro-

nization and P periods each of which includes Lch = 2 pilot

symbols followed by Ldata = 12 information-bearing symbols.

As such, the overhead ratio is given by:

R =
Lsync + LchP

Lsync + (Lch + Ldata)P
. (38)

Our simulations were obtained for Lsync = 128 and P = 100.

Note here that the overhead ratio associated with the synchro-

nization period becomes negligible for such large value of P .

The latter cannot, however, be increased indefinitely as it is

dictated by the required refreshment rate P that better copes

with the time variations of the synchronization parameters.
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Fig. 5. Link-level throughput vs SNR for ML TVC-PD at K = 2 relays
and a refreshment rate P = 100 for: (a) {FDk

}K
k=1

= 15 Hz, and (b)

{FDk
}K
k=1

= 100 Hz.

We see from Fig. 5 (a) that QPSK transmissions, among the

different considered modulations, provide higher throughput

for SNR values below 11 dB. When the SNR ranges between

11 dB and 16 dB, 16-QAM becomes more suitable whereas

64-QAM dominates when the SNR exceeds 16 dB. The

resulting throughput curve assuming an adaptive (i.e., SNR-

dependent) modulation is depicted by the black curve.

In Fig. 5 (b), we show the performance of the proposed

distributed beamforming scheme at a higher Doppler FDk
=

100 Hz (i.e., fast TVCs). In this scenario, QPSK and 16-

QAM provide higher throughput over the same SNR ranges

reported above at low Doppler whereas 64-QAM dominates

when the SNR exceeds 21 dB. We also observe that 64-

QAM transmissions suffer from a noticeable performance

degradation. Indeed, at lower Doppler, the phase estimates

provide accurate values since the channel varies slowly during

the same period. Hence, the decoder at the destination is able

to accurately estimate the transmitted symbols. In the case

of high mobility, the channel varies rapidly during the same

period, leading to a more severe degradation of the channel

estimates. The latter affects the decoding process, especially at

higher modulations which are more sensitive to phase shifts.
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Fig. 6. Link-level throughput vs SNR for ML TVC-PD and ML TVC-DE at
at K = 2 relays, {FDk

}K
k=1

= 100 Hz, and a refreshment rate P = 100

for: (a) {FDk
}K
k=1

= 15 Hz, and (b) {FDk
}K
k=1

= 100 Hz.

In Fig. 6, we compare ML TVC-DE and ML TVC-PD in

terms of throughput. The former sees its performance deterio-

rate against the latter only at high SNR. Losses are negligible

at low Doppler, but become noticeable at high Doppler. Yet,

as reported previously when discussing the component-level

simulation results, such link-level throughput gap can be easily

bridged by the integration of an alternative high-range Doppler

estimator, thereby making ML TVC-PD equivalent to ML

TVC-DE and a meaningful version in what follows for further

comparisons with existing Doppler-independent TCC-based

benchmarks.

In Fig. 7, we compare the performance of ML TVC-PD, ML

TCC, and SAGE in terms of throughput for different numbers

of relays (i.e., K = 1, 2, 4, and 8) and four different Doppler

frequencies (i.e., {FDk
}Kk=1 = 15 Hz, 100 Hz, 200 Hz, and

300 Hz). We see under the TCC assumption (i.e., FDk
= 15

Hz) that all techniques perform nearly the same in terms of

link-level throughput. They do so the best with QPSK when

the SNR is below 11 dB whereas 16-QAM becomes more

suitable at SNR values ranging from 11 to 16 dB. When the

SNR exceeds 16 dB, 64-QAM ultimately becomes the best

choice. At higher Doppler (i.e., FDk
= 100 Hz), we can

always report noticeable and constantly increasing throughput

gains of ML TVC over TCC-based SAGE and ML TCC at

both medium and high SNR when increasing the number of

relays from 1 to 8. At lower SNR, all techniques exhibit

the same NMSE and consequently the same throughput. At

even higher Doppler (i.e., FDk
= 200, 300 Hz), the relative

throughput gains of ML TVC over SAGE and ML TCC

become even more significant, again more so when the number

of relays also increases. These key observations come as a

solid confirmation of the key performance benefits of the

proposed distributed MIMO-relay beamforming and multi-

node synchronization schemes.
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Fig. 7. Link-level throughput vs SNR for ML TVC-PD at a refreshment rate
P = 100 and different Doppler frequencies for: (a) K = 1, (b) K = 2, (c)
K = 4, and (d) K = 8.

VI. CONCLUSION

In this paper, we addressed the problem of time and fre-

quency synchronization in cooperative systems over TVCs.

We proposed two different estimation techniques. The first

operates under the TVC assumption while the second one

works with TCCs. In the first ML TVC-DE approach, we

exploit the second ML TCC technique as an initialization

scheme for preliminary synchronization. We also developed a

new distributed MIMO-relay beamforming design that embeds

the proposed synchronization technique at each relay node.

We showed under the TCC assumption that all techniques

exhibit approximately the same performance. However, when

the Doppler increases, the TCC-based techniques exhibit poor

performance while the new ML TVC continues to provide

accurate estimates. Link-level simulations confirm the net ad-

vantages of the proposed ML TVC multi-node synchronization

technique and the MIMO-relay beamforming scheme in terms

of throughput gains, especially at medium and high SNRs,

more so at relatively higher Doppler frequencies or with more

distributed MIMO-relay beamforming nodes.
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