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Abstract—In this paper, we develop a new dynamic
utility for wireless access virtualization (WAV) optimization
embodying highly-dimensional time-varying multi-criteria
metrics (i.e., CAPEX and OPEX costs, QoS or QoE, multi-
tier and/or multi-RAT HetNets, etc.) that gauge the best
deployment and viability scenarios of cloud (C)- and fog
(F)-RANs within legacy networks. Exploiting the powerful
tool of graph theory, we devise a progressive greyfield WAV
strategy that optimizes our dynamic utility through an effi-
cient combination of C- and F-RANs. This strategy is able
to readjust very quickly to any changes in existing or new
constraints as they evolve or occur in time, respectively. The
resulting optimized hybrid RAN deployment outperforms
both the greenfield and the pre-planed greyfield ”turnkey”
WAV strategies.

Index Terms—Wireless access virtualization, radio access
network (RAN), cloud-RAN (C-RAN), fog-RAN (F-RAN),
hybrid-RAN (H-RAN), dynamic utility, progressive deploy-
ment, graph theory.

I. INTRODUCTION

Wireless access virtualization (WAV) emerges as a

promising solution that enables sufficient flexibility and

elasticity to cope at low cost with the unprecedented data

rates and traffic demand envisioned in 5G networks [1]-

[4]. Indeed, in a virtual topology, independent virtual

networks (VN)s are built on a one or more physical

network substrates in which the VNs are isolated and

transparent to each other. Each VN’s resources could be

then scaled up or down according to its traffic demand,

thereby resulting not only in an enhanced perceived

quality-of-service (QoS), but also in an efficient use of

the available resources.

Significant research endeavors have been devoted to

virtualizing the wireless access at different layers. [5]

and [6] have focused on spectrum virtualization while

[7] and [8] have studied the virtualization of differ-

ent radio access technologies (RAT)s. [9]- [14] have

investigated the integration of cloud computing into the

radio access networks (RAN)s. In these cloud-RANs (C-

RAN)s, a central computing unit (CCU) is connected

to a large number of randomly deployed remote radio

heads (RRHs). Since the latter are usually much closer

to the user equipments (UE)s than the traditional base

stations (BS)s, dramatic performance improvements both

in spectral and power efficiencies may be achieved.

Furthermore, pooling the network resources into a CCU

not only allows an efficient use of the latter, but also

paves the way towards the use of power-efficient cen-

tralized large-scale signal processing techniques aiming

to enhance the UEs QoS. A C-RAN offers also an

important cost gain due to its low-cost RRHs and the

fact that it does not require any dimensioning of the tra-

ditional BSs’ resources based on individual peak loads.

Nevertheless, despite its benefits, the C-RAN technology

is limited by its high latency mainly due to the often

large distances between the RRHs and CCU and their

time-delay constrained connections [9].

In order to overcome such drawbacks, a locally virtual

network (LVN) was introduced, for the first time, in [15]

as an alternative solution to C-RAN that capitalizes, in

contrast to the latter, on the locally available resources at

the vicinity of each access point (AP). LVN is actually

nothing but a costly migration of cloud computing to

the network edges (i.e., APs) to substantially reduce the

latency and offer user-centric services [15] [16]. It is

for this reason that Cisco coined it when introducing it

shortly later as fog-RAN (F-RAN), widely adopted since

by the research community. Due to its advantages, F-

RAN has attracted intense research interest both from

academia and industry [17]-[22]. [20] compared the

C- and F-RAN technologies and identified the major

challenges and open issues that should be coped with

to ensure their successful rollout. [16] analyzed the cost

and throughput performances of these technologies and

proposed a new hybrid-RAN (H-RAN) framework that

combines both C- and F-RANs while [21] investigated

the benefits of cooperation among the latter within H-

RAN. [22] developed a new software defined architec-

ture for H-RANs and proved its feasibility.

All the above works and references therein have

agreed that F-RANs will not completely substitute C-978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



RANs. They will rather act in complementarity with

one another in order to provide the sufficient flexibility

and elasticity required to cope with the unprecedented

data rates and traffic demand envisioned in 5G networks.

Contributions have so far addressed many issues all

related to the co-existence between C- and F-RANs. But

to the best of our knowledge, none of them provided

insights on how, where, and in which proportions these

technologies would be deployed in future virtualized

5G networks, well except [16]. However, the latter

considered only greenfield (i.e., does not integrate legacy

RAN) and non-progressive hybrid deployment scenarios

that are relatively more suitable for new VNO (VN

operator) players. But such ”turnkey” or ”one-shot”

virtualization of all network areas simultaneously is to-

tally unrealistic and unsuitable for existing operators. In

contrast to greenfield WAV, the progressive deployment

of C- and F-RANs within legacy RANs that accounts

for their inevitable coexistence and viability periods

is undoubtedly much more compelling. Nevertheless,

any progressive greyfield (i.e., integrates legacy RAN)

strategy must be carefully implemented to optimize both

network performance and deployment cost.

This work is the first to develop optimized progressive

greyfield WAV deployment strategies that integrate both

C- and F-RAN frameworks in legacy RANs based on

a new dynamic utility embodying highly-dimensional

time-varying multi-criteria metrics (i.e., CAPEX and

OPEX costs, QoS or QoE, multi-tier and/or multi-RAT

HetNets, etc.). Exploiting the powerful tool of graph

theory, this strategy is able to readjust very quickly to

any changes in existing or new constraints as they evolve

or occur in time, respectively. The resulting optimized

hybrid RAN deployment outperforms both the greenfield

and the pre-planed greyfield ”turnkey” WAV strategies.

The rest of this paper is organized as follows. The

considered WAV frameworks are detailed in Section II.

Section III discusses the challenges of progressive WAV.

Our novel WAV strategy is proposed in Section IV and

its advantages are highlighted in Section V. Section VI

verifies its efficiency through computer simulations.

Concluding remarks are given in Section VII.

II. WAV FRAMEWORKS

In this work, we consider two WAV frameworks: i)

cloud RAN (C-RAN) where the network resources (i.e.,

computational, storage, etc.) are centralized to provide

on-demand processing, delay-aware storage, as well as

high ubiquitous network capacity; and ii) fog RAN (F-

RAN) that moves the computation tasks to the networks

edge to offer customized user-centric services.

A. Cloud-RAN (C-RAN)

As illustrated in Fig 1, in C-RAN, all network re-

sources are pooled in a CCU located in a centralized site

Fig. 1. C-RAN framework.

and connected through fiber to a large number of ran-

domly deployed RRHs. In contrast to traditional RANs,

this cloud-based virtualization or remotely-virtualized

network (RVN) as called in [16] dynamically adapts the

allocated resources to the user equipments (UE)s and

QoS requirements, providing thereby sufficient flexibility

and elasticity to cope with the mobile data deluge

foreseen in future 5G systems. Furthermore, a C-RAN

may achieve dramatic performance improvements in

both spectral and power efficiencies due to the likely

short distances between UEs and RRHs. As the latter

are much less expensive than traditional BSs and do not

require any resource dimensioning based on individual

peak loads, such a framework allows also important

cost gains. It can be shown that the required number

of macro-RRHs is given by [16]

Nm
r =nopmax

(

d2cpc
πd2m

, (νm(µmAcpc)Rmu)/Rm

)

,(1)

where nop is the number of operators, dccu and Accu

are the CCU size and coverage area, respectively, and

µm, νm, Rmu, and Rm are the user density, the HetNet

coefficient (i.e., the ratio of macro, micro and pico cells),

the average macro user data rate, and the data rate

capacity of a macro-RRH, respectively. Similarly, the

number of micro-RRHs and pico-RRHs are given by

Nmi
r = (νmi(µmiAcpc)Rmiu)/Rmi, (2)

and

Np
r = (νp(µpAcpc)Rpu)/Rp, (3)

respectively.

It was shown in [16] that C-RAN provides impor-

tant cost gains with respect to traditional RANs but

requires high-bandwidth and low-latency connections

between the CCU and its remote RRHs. In practice, such

connections are unfortunately capacity and time-delay

constrained and, hence, may significantly deteriorate

the average network throughput [9] [16] [20]. This has

motivated the development of the next framework.

B. Fog-RAN (F-RAN)

As illustrated in Fig. 2, in F-RAN or locally-

virtualized network (LVN) as called in [16], a number of

co-located access points (AP)s dynamically share their



hardware and radio resources to better serve the UEs.

These fog-APs (F-AP)s form then a virtual-AP (V-AP)

close to the UEs that takes over the execution of all their

required computational tasks, thereby allowing real-time

low-latency constrained services which are practically

infeasible in a C-RAN. Fig. 3 illustrates the block

diagram of such V-AP where a fog-Orchestrator is re-

sponsible of the F-APs’ resources pooling and sharing. It

also slices the obtained pool into several virtual instances

associated with different VNOs. More or less resources

are then allocated to a VN according to its current traffic

demand and the service level agreement (SLA) between

its corresponding VNO and the infrastructure provider

(InP). It is noteworthy that a V-AP may support multiple

RATs (e.g., WiFi, OFDMA-based 4G systems, etc.) and

serve UEs belonging to different VNOs using one or

some if not all of its RATs. In such a multi-operator

context, this V-AP (or the F-APs which compose it)

may be substituted by a single physical entity called

super BS (SBS) in [16], thereby leading to a new

centralized flavor of F-RAN (CF-RAN). Actually, the

latter is appealing due to: i) the economies of scale

resulting from building a single entity that combines

the distributed F-APs resources in a unique site; ii) the

reduced latency from achieving processing locally very

close to UEs, in contrast to C-RAN. Accordingly, by

allowing the management of different VNOs from a

single physical entity, CF-RAN not only translates the

essence of virtualization but also moves it even closer

to the UEs. In what follows, we consider, for the sole

sake of simplicity, that both CF-RAN and its distributed

counterpart already commonly known as F-RAN, and

coined here as DF-RAN, have the same dimensioning

and achieve the same performance in terms of cost

and QoS. And again for simplicity, we will refer to

both of them as F-RAN. The findings of ongoing in-

depth performance comparisons between these two LVN

frameworks will be disclosed in a future work. Assuming

Fig. 2. F-RAN framework.

nop VNOs in an area A and nsl slices per V-AP, it could

be easily shown that the required number of V-APs in

this area is given by

Nvap =
nop

nsl

max

(
A

πd2vap
,
NueRue

Rvap

)

, (4)

where Rvap is the data rate capacity per V-AP, Rue is

the average data rate demand per UE, Nue is the average

number of active UEs, and dvap is coverage radius of the

VAP. The latter may actually be macro-, micro-, or pico-

AP depending on dvap.

Fig. 3. Block diagram of V-AP.

It was shown in [16] that F-RAN (i.e., LVN) provides

higher QoS than C-RAN (i.e., RVN) which is penalized

by its high latency. However, it is more expensive than

the latter due to the additional hardware required at

the F-APs to ensure the management of their combined

resources. It is this QoS/cost tradeoff that has motivated

the design of a hybrid-RAN (H-RAN), called hybrid VN

(HVN) in [16], which combines both aforementioned

frameworks and capitalizes on the benefits of both local

and remote virtualizations (i.e., higher QoS and lower

cost, respectively). In the sequel, we provide insights on

how to deploy progressively such H-RAN within existing

traditional networks and in what proportions of C- and

F-RANs and when so as to optimize both performance

and cost criteria.

III. PROGRESSIVE WAV DEPLOYMENT CHALLENGE

As illustrated in Fig. 4, any traditional network may

be seen as a set of subnetworks located in subareas

with often different subscriber densities. Let cd be the

duration of each virtualization cycle during which a

maximum budget cb could be spent by the InP. If cb
is unrealistically large, the greenfield ”turnkey” approach

may be adopted to simultaneously (i.e., during one cycle)

virtualize all the network subareas as has been done in

[16]. However, in practice, WAV will be always governed

by budget constraints and its return on investment and,

hence, must be achieved progressively during a number

of cycles. A viability period between the traditional and

virtualized RANs is then unavoidable and must be taken

into account to optimize the overall system performance.

In order to progressively virtualize the network of our

concern, we need to know, at each virtualization cycle,

which subareas to virtualize and also which WAV frame-

works to adopt during each virtualization cycle.
Fig. 4 shows an example of a progressive deployment

scenario of C-RANs (i.e., RVN) and F-RANs (i.e., LVN)

that consists of four cycles:



(a) 1st virtualization cycle (b) 2nd virtualization cycle

(c) 3rd virtualization cycle (d) 4th virtualization cycle

Fig. 4. Progressive WAV deployment challenge.

1) Virtualizing two subareas using F-RAN;

2) Virtualizing two subareas using different WAV

frameworks: F-RAN and C-RAN;

3) Virtualizing two subareas using C-RAN; and

4) Virtualizing only one subarea using F-RAN.

Obviously such a scenario is far from optimal but

gives an unambiguous idea on how daunting and chal-

lenging is progressive deployment, more so when the

numbers of network subdivisions and WAV frameworks

are large. In such a case, huge possibilities exist, making

the selection of the proper subarea/framework pairs at

each cycle extremely tedious. Yet if not carried out

properly at any given cycle, it may hamper the viability

of the different RANs and, hence, degrade both the

network performance and cost. Additional virtualization

dimensions that certainly complicate this task are the

multi-tier cell/BS/TP types. Actually, one could also

virtualize different BS types belonging to the same

subarea using different frameworks (e.g. macro-BSs

with F-RAN and micro-BSs with C-RAN). This results

in an extremely heterogenous yet more efficient WAV

architecture along exponentially increased possibilities

at each cycle, making the selection of the progressive

deployment road-map even more complex. Defining a

new dynamic (i.e., time-varying) WAV utility embodying

multi-dimensional heterogenous metrics (i.e., CAPEX

and OPEX costs, QoS or QoE, etc.) is undoubtedly

another challenge that needs to be addressed. Choices of

which subareas or/and BS types to virtualize and which

frameworks to adopt at each cycle must actually be made

to optimize the latter.

IV. PROPOSED PROGRESSIVE WAV STRATEGY

Several techniques may be used to solve this multi-

dimensional optimization such as graph theory, hidden

Markov models (HMMs), time alignment techniques,

artificial intelligence (AI), and machine learning (ML).

Fig. 5. Initial, intermediate, and final graph states.

Due to its simplicity, we propose to exploit in what

follows the efficient tool of graph theory to devise a

new optimized greyfield WAV strategy which makes at

each cycle the proper decision on which subareas or/and

BS types to virtualize and which frameworks to adopt.

To this end, we need to identify the different states

(i.e., vertices) of our graph as well as a unique source

(i.e., initial state) and a unique destination (i.e., final

state). For the sole sake of simplicity, let us first consider

a traditional network with three subareas A1, A2, and

A3. We also consider that only macro-BSs and pico-

BSs exist in the latter. In such a case, each state within

our graph may be seen as six substates where each one

corresponds to the macro- or pico-BSs of a particular

subarea. As any virtual network will be deployed over

an existing traditional architecture, all the substates of

the initial state must obviously be set to ”Traditional

Network (TN)”. For instance, at the initial state, the

substate corresponding to the macro-BSs of the subarea

A1 is set to ”TN” since before virtualization these BSs

are part of TN. As far as the intermediate state is

concerned, its substate corresponding to BS-type of area

Ai, i = 1, . . . , 3 is set to ”F-RAN” or ”C-RAN” if the

latter is virtualized and to ”TN” otherwise. An example

of an intermediate state is shown in Fig. 5 where only

the macro-BSs of A1 and pico-BSs of A2 are virtualized

using F and C-RANs, respectively, whereas both BS

types of A3 are virtualized using a permutation of the

latter, respectively.

Now, let us turn our attention to the final state. At the

end of the virtualization period, any BS-type of any area

could be virtualized with either F-RAN or C-RAN which

results in several possible final states. Since a unique

final state is required for any graph, we choose the one

stemming from an x-year old fully-virtualized network..

Besides solving the unique final state issue, we will show

in what follows that the latter allows also accounting for

the cost and QoS of this fully-virtualized network when

optimizing the progressive WAV deployment.

After identifying the initial, final and intermediate

states, we need to compute the graph-state transition cost

to be able to optimize the progressive WAV deployment.

To this end, one must first design a new WAV metric that

quantifies the virtualization impacts in terms of both QoS

and cost as well as the InP virtualization policies (i.e.,

tradeoff between these performance measures).

A. New WAV metric: graph-state transitions cost

The graph-state transition cost should satisfy the fol-

lowing requirement: i) memoryless (i.e., independent of

the previous states and transitions) ii) specific to each



pair of ”departure” and ”arrival” states. In this work, we

propose to use the following graph-state transition cost:

Ui→j=

(
(1+δ)Cmax − Ci→j

(1+δ)Cmax

)wc

︸ ︷︷ ︸

Cost gain

×

(
Ti

Tmax

)(1−wc)

︸ ︷︷ ︸

QoS gain

,

(5)

where Ui→j denotes the utility or the transition cost

between the i-th and j-th states consisting of two gains:

cost and QoS, Ci→j is the required virtualization cost

to make a transition between these two states, Cmax is

the maximum virtualization cost that could be incurred

during a transition in our graph, δ is a strictly positive

overestimation safety-margin factor aiming to avoid the

zero-utility case when Ci→j = Cmax, Ti and Tmax are

the average user throughputs provided by the network

configuration in the i-th state and the maximum through-

put, respectively, and wc is the cost weight that governs

the QoS/cost tradeoff to mirror the InP virtualization

policies. In order to derive Ci→j , we propose to exploit

the cumulated discounted cash flow (DCF) which is a

very commonly used valuation method to estimate the

attractiveness of an investment opportunity. Assuming a

discount rate d, Ci→j could be expressed as

Ci→j = Ccapex,i→j +

cd−1∑

y=0

Cy
opex,i

(1 + d)y
, (6)

where Ccapex,i→j is the CAPEX relative to the new

substates virtualized at the j-th state and Cy
opex,i is the

OPEX of all the substates within the i-th state. For

example, assuming that there is a direct link between the

initial and intermediate states in Fig. 5, the virtualization

cost incurred between these states is nothing but the

CAPEX relative to virtualizing the macro-BSs of A1 and

pico-BSs of A2 as well as all the BSs in A3 plus the

OPEX of TN.

Let us now take a closer look at Ui→j . An in-depth

inspection of (5) reveals that it is a dynamic (i.e.,

time-varying) utility that mirrors the cost/QoS balance

during the virtualization period. It may then integrate any

changes in constraints and/or parameters as they evolve

or happen in time. To ensure an optimal cost/QoS bal-

ance while accounting for time-varying constraints and

parameters during all the virtualization period, we need

to find the proper path (i.e., a number of consecutive

states from the initial to final ones) that maximizes the

total utility given by

UTotal =
∏

Ui→j . (7)

This is nothing but the shortest/longest path problem

that could be easily and efficiently solved using any

existing algorithm in the literature such as Dijkstra,

BellmanFord, FloydWarshall, and Viterbi algorithms. It

is noteworthy that the so-obtained WAV strategy readily

adapts, through the utility in (7), to all predictable

changes in constraints and parameters. Should unpre-

dictable changes happen, our proposed strategy could

also handle them by easily re-optimizing what is left

from the deployment path based on any new constraints

as they occur. All these will be further verified through

simulations in Section VI.

V. ADVANTAGES OF THE PROPOSED WAV STRATEGY

We summarize below the advantages of the proposed

progressive WAV deployment optimization strategy:

• Optimality: guarantees the overall optimal network

performance according to the InP virtualization

policies. It also provides the optimal portions of F-

and C-RANs within the fully-virtualized H-RAN.

Please note that F-RAN and C-RAN frameworks

are only taken as examples. The proposed strategy

may actually be exploited to optimize the deploy-

ment of any other WAV frameworks.

• Low complexity: exploits a simple graph model

where the optimum path may be found using any

low-cost shortest/longest path algorithm available in

the open literature.

• Flexibility: may handle more or less deployment

subareas with different characteristics (i.e., UE/BS

density, BS type, etc.), thereby mirroring the real-

world heterogeneity of the deployment area. For in-

stance, small ultra-dense subareas may be assumed

to emulate hotspots while larger areas with lower

UE density may be adopted for a classic urban

environment.

• Adaptive: adapts to area densities, their HetNet

configurations, cost weight, etc. Indeed, we will

show in Section VI that any variation in one of

these parameter values may result in a completely

different optimal deployment strategy and, hence,

a different fully virtualized network with different

allocations of C- and F-RANs.

• Operator-friendly: may integrate time-varying

budget constraints and cost weights in order to

comply with the operators’ policies and investment

plans as well as the actual and projected market

conditions. It may also integrate subscriber growth-

rate projections to provide the best fit with the

operators needs, thereby optimizing the return on

investment.

• Increasingly-heterogeneous multi-

dimensionality: able to handle at low-cost

multi-dimensional optimization problems that are

increasingly heterogeneous (greenfield/greyfield

sub-areas, multi-tier cell/BS/TP/ types, multi-RAT,

multi-operator, etc.). This is actually a very

important feature that makes optimized deployment

scenarios well-adapted to real-world environments.

• Scalability: besides cost and QoS, it may easily

incorporate other optimization criteria (power cost,
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Fig. 7. ρcran in [%] vs. wc for different scenarios.

degree of human exposure to RF, green power ratio,

etc.) by simply adapting the proposed WAV metric.

TABLE I
CONSIDERED SCENARIOS

Scenario Ai=1,2,3[km2] λ1 λ2 λ3

1 100 10
2

10
3

10
3

2 100 10
3

10
3

10
3

3 100 10
4

10
3

10
3

4 100 10
2

10
3

10
2

5 100 10
2

10
4

10
2

6 100 10
2

10
3

10
4

VI. SIMULATION RESULTS

This section provides numerical results aiming to

verify the efficiency of the proposed progressive WAV

deployment strategy. In all simulations, we consider that

the network is divided in three subareas A1 A2 and A3

of 100 km2 each. We also consider that only macro-

BSs and pico-BSs exist in the latter. Furthermore, we

assume that nop = 3, cd = 5 years, and cb allows to

virtualize at most two subsections during each cycle.

The considered scenarios are listed in Table I where λi

is the Ai’s density. Please note here that we exploit the

cost and throughput expressions developed in [16] and

the Dijkstra’s shortest path algorithm to find the optimal

path.

Fig. 6 illustrates the optimal deployment road-map for

different wc values and different subarea densities. For

wc = 0 (Fig. 6(a)) and wc = 1 (Fig. 6(c)), the whole

network is virtualized using either F-RAN or C-RAN

only, respectively. This is hardly surprising since either

the QoS or cost is entirely favored against the other,

respectively. Recall that F-RAN provides better QoS than

C-RAN while the latter is much less expensive. In the

most general cases, however, the optimal progressive de-

ployment road-map and its F-/C-RAN allocations depend

both on wc and the subareas densities. This very suitable

feature as it allows the InP to adapt its deployment

solutions to not only its business plans but also to the

number of subscribers its VNO customers serve. Please

note that our progressive WAV deployment strategy

may also easily handle time-varying cost weights and

densities.
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Figs. 7 plots the network percentage that exploits

C-RAN ρcran versus wc for different scenarios. As

expected, ρcran increases with wc. More weight is given

to cost when the latter increases and, hence, to the less

expensive C-RAN WAV framework. Indeed, for low wc

values (i.e., wc ≤ 0.2), the network is mainly F-RAN

(i.e., at most 20% of the network is C-RAN). Whereas

for high wc values (i.e., wc ≥ 0.8), at least 80% of

the network is C-RAN. Furthermore, we see that ρcran
varies with each scenario, thereby validating once again

the adaptive nature of the proposed solution.

Fig. 8 plots ρcran versus wc for different subscriber

growth-rate projection values Sp. The latter is involved

each virtualization cycle. For low wc values, ρcran de-

creases with Sp whereas it decreases with the latter

for large wc values. This is hardly surprising since

Sp 6= 0 translates in continuously and increasingly

denser subareas that directly affect the optimal progres-

sive WAV deployment road-map as already observed in

Fig. 6. This results proves that our strategy may handle

practical time-varying parameters, thereby allowing the

InP to optimize its virtualization based on its projected

subscriber growth-rate or even available budget.

Fig. 9 compares the total utility function UTotal

achieved by the proposed optimal progressive WAV

deployment strategy against two ”turnkey” strategies:

the green-field [16] and a non-optimized progressive

WAV. The latter is actually a ”pre-planned” deployment

consisting of virtualizing all macro-BSs then all pico-

BSs of the whole network during the first and second

virtualization cycles, respectively. Despite being pro-

gressive, this arbitrary ”pre-planned” approach is far

from being optimal. As far as green-field deployment

is concerned, it achieves much weaker utility (i.e., in

terms of both performance and cost criteria) than the

proposed strategy. This proves unequivocally its very

high efficiency and very large and strong benefits.

VII. CONCLUSION

This paper developed optimized progressive greyfield

WAV deployment strategies that integrate both C- and

F-RAN frameworks in legacy RANs based on a new

dynamic utility embodying highly-dimensional time-

varying multi-criteria metrics (i.e., CAPEX and OPEX



(a) wc = 0 and λ1 = 5102 (b) wc = 0.6 and λ1 = 5102 (c) wc = 1 and λ1 = 5102

(d) wc = 0.4 and λ1 = 102 (e) wc = 0.4 and λ1 = 103 (f) wc = 0.4 and λ1 = 104

Fig. 6. Optimal progressive WAV deployment road-map for different wc and λ1 values when λ2 = λ3 = 10
3.
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Fig. 9. UTotal vs. wc achieved by the proposed and two ”turnkey”
strategies (the greenfield [16] and a non-optimized pre-planned pro-
gressive WAV).

Costs, QoS or QoE, multi-tier and/or multi-RAT Het-

Nets, etc.). Exploiting the powerful tool of graph theory,

this strategy is able to readjust very quickly to any

changes in existing or new constraints as they evolve

or occur in time, respectively. The resulting optimized

hybrid RAN deployment outperform both the greenfield

and the pre-planed greyfield ”turnkey” WAV strategies.
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