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Abstract—In this paper, we propose a new code-aided
(CA) maximum likelihood (ML) approach for time synchro-
nization in turbo-coded systems. The time delay estimate is
refined at each turbo iteration owing to the increasingly ac-
curate estimates for the log-likelihood ratios (LLRs) of the
coded bits. The refined time delay estimate is then used by
the matched filter (MF) in order to provide the soft-input
soft-output (SISO) decoders with more reliable symbol-rate
samples for the next turbo iteration. Simulation results
show the remarkable performance improvements of CA
estimation against the traditional non-data-aided (NDA)
estimation scheme. Moreover, the new CA ML estimator
(MLE) enjoys significant advantage in computational com-
plexity over existing ML CA solutions.

Keywords—Time synchronization, turbo codes, soft de-
coding, maximum likelihood.

I. INTRODUCTION

Turbo codes along with high-order quadrature am-

plitude modulations (QAMs) play a crucial role in

the current and future wireless communications. The

widespread adoption of turbo codes is in part sustained

by their ability to operate in the near-Shannon limit

even under adverse SNR conditions [2]. Yet, the perfor-

mance of these powerful error-correcting codes is prone

to severe degradations if the system is not accurately

synchronized in time, phase or frequency. Notably, time

synchronization aims to estimate and compensate for the

unknown time delay introduced by the channel so as to

provide the decision device with symbol-rate samples

of the lowest possible inter-symbol interference (ISI)

corruption [3].

The problem of timing recovery for linearly-

modulated transmissions has been heavily investigated in

the literature and the vast majority of existing time delay

estimators (TDEs) operate with complete unawareness of

the code structure (see [4-9] and references therein). The

Work supported by the Discovery Grants Program and a Discovery
Accelerator Supplement Award of NSERC and the NSERC CREATE
PERSWADE Research Training Program on Wireless <www.create-
perswade.ca>. Most recent results in this line of work, disclosed herein
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latters, referred to as NDA TDEs, suffer from severe per-

formance degradations under harsh SNR conditions since

no a priori knowledge about the transmitted symbols

is exploited during the estimation process. Alternatively,

data-aided (DA) methods are more accurate and entail

reduced computational burden. However, they require the

transmission of a known pilot sequences which in turn

limits the whole throughput of the system.

CA estimation lends itself as a middle ground scheme

between NDA and DA estimations wherein the soft

information extracted from the decoder is exploited

during the estimation process at each turbo iteration. In

fact, the two SISO decoders provide increasingly reliable

information about the transmitted data from one turbo

iteration to another; namely a posteriori LLRs of the

code bits and their extrinsic information. According to

the turbo principle, the latter are exchanged between the

two SISO decoders until achieving a steady state wherein

the a posteriori LLRs are used as decision metrics for

data detection. In a nutshell, CA estimation consists in

leveraging those soft outputs, by embedding the timing

recovery task into the decoding process, in an attempt

to improve the performance of the estimator and vice

versa.

A number of CA timing recovery algorithms have

been proposed over the last decade [10-15] and, to the

best of the authors’ knowledge, only two approaches are

based on the ML criterion. The first ML solution [11]

relies on the expectation-maximization (EM) algorithm

and the second one [13] is a combined sum-product (SP)

and EM algorithm approach. The SP-EM ML estimator

offers indeed significant performance improvements over

the original EM-based estimator but at the cost of

increased computational complexity. In the SP-EM ML

approach, an EM iteration loop is required under each

turbo iteration wherein the algorithm switches between

the so-called expectation step (E-STEP) and maximiza-

tion step (M-STEP).

In this paper, we propose a new ML approach for CA

timing recovery in turbo-coded systems. The new ML-

based technique eliminates completely the need for the

EM iteration loop under each turbo iteration. In other978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



words, the new LF needs to be maximized only once

per-turbo iteration after being updated by the associated

a priori LLRs that are acquired from the output of the

SISO decoders1. Consequently, the proposed CA timing

recovery algorithm offers significant improvements in

computational complexity over existing ML CA solu-

tions.

We organize the rest of this paper as follows. In

section II, we present the system model. In section

III, we derive the closed-form expression of the log-

likelihood function (LLF). In section IV, we introduce

the new CA ML time delay estimator. In section V, we

assess its performance by computer simulations. Finally,

we draw out some concluding remarks in section VI.

Some of the common notations will be used through-

out this paper. Vectors and matrices are represented in

lower- and upper-case bold fonts, respectively. IN de-

note, the N ×N identity matrix. The shorthand notation

x ∼ N (m,R) is used to denote the fact that the vector

x follows a normal (i.e., Gaussian) distribution with

mean m and auto-covariance matrix R. In addition,

{.}H and {.}T refer to the Hermitian and transpose of

any vector or matrix, respectively. The operators ℜ{.}
and ℑ{.} denote, respectively, the real and imaginary

parts of any complex number. The operators {.}∗ and |.|
return its conjugate and its amplitude, respectively, and

j is the pure complex number that verifies j2 = −1.

The Kronecker and Dirac delta functions are denoted,

respectively, as δm,n and δ(t). We will also denote the

probability mass function (PMF) for discrete random

variables (RVs) by P [.] and the probability density

function (pdf) for continuous RVs by p[.]. The statistical

expectation is denoted as E{.} and the notation , is

used for definitions.

II. SYSTEM MODEL

Consider a turbo-coded system where a binary se-

quence of information bits is fed into a turbo encoder

with two identical recursive and systematic convolutional

codes (RSCs). The two RSCs are concatenated in parallel

via an inner interleaver Π1. The resulting code bits are

injected into a puncturer which selects an appropriate

combination of the parity bits in order to operate at the

desired code rate R. The entire code bit sequence is

scrambled with an outer interleaver, Π2, then divided into

K subgroups of 2p bits each (for some integer p ≥ 1).

The kth subgroup of code bits, bk1b
k
2 · · · b

k
l · · · b

k
2p, is

conveyed by a symbol a(k) that is selected from a fixed

alphabet, Cp = {c0, c1, · · · , cM−1}, of a M−ary (with

M = 22p) QAM constellation (i.e., square-QAM). Each

point, cm ∈ Cp, is mapped onto a unique sequence of

log2(M) = 2p bits denoted here as b̄m1 b̄m2 · · · b̄ml · · · b̄m2p,

1Note that the a priori LLRs can also be deduced from LDPC-
coded systems if they are decoded using turbo-like processing. There,
the check nodes (C-nodes) and variable nodes (V-nodes) [16] play the
very same role as SISO decoders in turbo-coded systems.

with respect to the Gray coding mechanism. The symbol

cm is selected to convey the kth code bits subgroup [i.e.,

a(k) = cm] if and only if bkl = b̄ml for l = 1, 2, · · · , 2p.

We also define the a priori LLR of the lth code bit, bkl ,

conveyed by a(k) as follows:

Ll(k) , ln

(
P [bkl = 1]

P [bkl = 0]

)
. (1)

Taking into account the fact that P [bkl = 0] + P [bkl =
1] = 1, it can be shown that:

P [bkl = b̄ml ]=
1

2 cosh
(
Ll(k)/2

)e(b̄
m

l
−1)

Ll(k)

2 , (2)

All the symbols, {a(k)}Kk=1, are then pulse-shaped lead-

ing to the following transmitted signal:

x(t) =

K∑

k=1

a(k) h(t− kT ), (3)

with T being the symbol duration and h(t) a unit-energy

square-root raised cosine filter. We define the Nyquist

pulse g(t) obtained from the filter h(t) as follows:

g(t) =

∫ +∞

−∞
h(x)h(t + x)dx, (4)

which satisfies, at the same time, the first Nyquist

criterion [3]:

g(nT ) =

{
0, for any integer n 6= 0,

1, otherwise.
(5)

At the receiver side, we obtain the following (delayed)

continuous-time received signal before matched filtering:

y(t) =
√
Es x(t− τ) + w(t), (6)

where Es refers to the transmit signal energy and τ is the

unknown time delay parameter that needs to be estimated

in this paper. In addition, w(t) is a complex additive

white Gaussian noise (AWGN) whose real and imaginary

parts are independent and each having variance σ2. The

SNR of the channel is given by:

ρ ,
Es

N0
=

Es

2σ2
. (7)

When devising ML-type approaches, finding the LLF of

the system is mandatory. This requires marginalizing the

conditional LF over the constellation alphabet. For NDA

estimators, the a priori information about the transmitted

symbols is not available. Therefore, the latter are usually

assumed to have equal a priori probabilities (APPs), i.e.,

∀ cm ∈ Cp, we have:

P [a(k) = cm] =
1

M
for k = 1, 2, · · · , K. (8)



III. DERIVATION OF THE LLF

As widely known, the set of finite-energy signals:

L2
R
=

{
s(t) such that

∫

R

|s(t)|2dt < +∞

}
,

form an infinite-dimension Hilbert subspace [17] for

which one can find an orthonormal basis {ϕn(t)}n and

an inner product as follows:

〈s1(t), s2(t)〉=

∫

R

s1(t)s2(t)
∗dt, ∀ s1(t), s2(t) ∈ L2

R
.

Therefore, an exact discrete representation for any

continuous-time signal s(t) ∈ L2
R

requires an infinite-

dimensional vector, s, that contains its expansion coef-

ficients,
{
sn = 〈s(t), ϕn(t)〉

}
n

, in the basis {ϕn(t)}n.

To avoid this problem, we first consider the truncated

N -dimensional representation vectors:

yN = [y1, y2, . . . , yN ]
T
, (9)

wN = [w1, w2, . . . , wN ]T, (10)

xN (τ) = [x1(τ), x2(τ), . . . , xN (τ)]T. (11)

Those vectors contain the orthogonal projection coeffi-

cients of y(t), w(t), and x(t− τ), respectively, over the

first N basis functions {ϕn(t)}Nn=1 (for any N ≥ 1),

i.e.:

yn =
〈
y(t), ϕn(t)

〉
=

∫

R

y(t)ϕn(t)
∗dt, (12)

wn =
〈
w(t), ϕn(t)

〉
=

∫

R

w(t)ϕn(t)
∗dt, (13)

xn(τ) =
〈
x(t− τ), ϕn(t)

〉
=

∫

R

x(t− τ)ϕn(t)
∗dt,(14)

Plugging (6) and (12) in (14), it follows that:

yN =
√
Es xN(τ) +wN . (15)

It can be shown that the noise coefficients, {wn}Nn=1,

are Gaussian-distributed and that wN ∼ N (0N , 2σ2IN ).
Therefore, the pdf of the vector yN in (15) condi-

tioned on the sequence of transmitted symbols, a =
[a(1), a(2), . . . , a(K)]T and parametrized by τ is given

by:

p(yN |a; τ)=
N∏

n=1

1
2πσ2 exp

{
− 1

2σ2

∣∣yn−√
Esxn(τ)

∣∣2
}
.(16)

Note here that, the transmitted symbols are indeed in-

volved in (16) via the coefficients {xn(τ)}n. By neglect-

ing the terms that do not depend on τ in (16), we obtain

the following truncated LF:

Λ(yN |a; τ)

= exp

{
√
Es

σ2

N∑

n=1

ℜ{ynxn(τ)
∗}− Es

2σ2

N∑

n=1

∣∣xn(τ)
∣∣2
}
.(17)

The conditional LF which incorporates all the infor-

mation contained in the non-truncated vector y
[
or

equivalently the received continuous-time signal y(t)
]
, is

obtained by making N tend to infinity in (17). By doing

so and using the Plancherel equality, the conditional LF

can written as:

Λ(y|a; τ)

=exp

{√
Es

σ2

∫

R

ℜ
{
y(t)x(t−τ)∗

}
dt− Es

2σ2

∫

R

|x(t−τ)|2dt

}
.

Now, replacing the transmitted signal x(t) by its expres-

sion given in (3), and exploiting the fact that the shaping

pulse, g(t), in (4) verifies the first-order Nyquist criterion

(5), it can be shown that:

Λ(y|a; τ) =
K∏

k=1

Ωτ

(
a(k), y(t)

)
, (18)

where

Ωτ

(
a(k), y(t)

)
, exp

{
√
Es

σ2

∫

R

ℜ
{
y(t)a(k)∗

}
h(t−kT−τ)dt

− Es

2σ2

∣∣a(k)
∣∣2
}
.

The unconditional LF, Λ(y; τ), is obtained by averaging

(18) over all possible transmitted symbol sequences of

size K , i.e., Λ(y; τ) = Ea{Λ(y|a; τ)} leading to:

Λ(y; τ) =
∑

ci∈CK
p

P [a = ci]Λ(y|a = ci; τ). (19)

Under coded digital transmissions, a simplifying as-

sumption that is used in CA estimation practices pos-

tulates that the transmitted symbols are independent (cf.

[10-15] and references therein) in spite of the statistical

dependence between the coded bits, it follows that:

P
[
a = ci

]
=

K∏

k=1

P
[
a(k) = ci(k)

]
. (20)

Plugging (18) and (20) back into (19), it can be shown

that:

Λ(y; τ) =

K∏

k=1

∑

cm∈Cp

P
[
a(k) = cm

]
Ωτ

(
cm, y(t)

)
. (21)

Therefore, the unconditional log-likelihood function

(LLF), defined as L(y; τ) , ln
(
Λ(y; τ)

)
, is given by:

L(y; τ) =
K∑

k=1

ln
(
Ω̄k

(
τ, y(t)

))
, (22)

where Ω̄k

(
τ, y(t)

)
is the average value of Ωτ

(
a(k), y(t)

)

over the constellation alphabet, i.e.:

Ω̄k

(
τ, y(t)

)
,

∑

cm∈Cp

P
[
a(k) = cm

]
Ωτ

(
cm, y(t)

)
.(23)

For ease of notations, we will henceforth no longer show

the dependence of Ω̄k

(
τ, y(t)

)
on the received signal,



y(t), and denote it simply as Ω̄k(τ). Moreover, it is

shown in [1], that we obtain the following much useful

factorization for Ω̄k(τ):

Ω̄k(τ) = 4βkFk,2p

(
uk(τ)

)
Fk,2p−1

(
vk(τ)

)
, (24)

where

βk ,

2p∏

l=1

1

2 cosh
(
Ll(k)/2

) . (25)

The function Fk,q(.) involved in (24) is given by:

Fk,q(x)

=
2p−1∑

i=1

θk,q(i)e
−ρ[2i−1]2d2

pcosh

(√
Es[2i−1]dp

σ2 x+
Lq(k)

2

)
,(26)

in which the index q is either 2p or 2p − 1 depending

on the context and dp refers to half the minimum inter-

symbol distance whose expression is given in [19, 20].

Both θk,2p(i) and θk,2p−1(n) are given by:

θk,2p(i) ,

p−1∏

l=1

e
(2b̄

(i)
2l −1)

L2l(k)

2 , (27)

θk,2p−1(n) ,

p−1∏

l=1

e
(2b̄

(n)
2l−1−1)

L2l−1(k)

2 . (28)

The two variables uk(τ) and vk(τ), involved in (24),

denotes the matched-filtered real and imaginary parts of

the received signal, respectively, i.e.:

uk(τ) =

∫ +∞

−∞
ℜ
{
y(t)

}
h(t− kT − τ)dt, (29)

vk(τ) =

∫ +∞

−∞
ℑ
{
y(t)

}
h(t− kT − τ)dt. (30)

Now, by using (24) back into (22) and dropping the

constant term 4βk which does not depend on τ , the

useful LLF develops into:

L(y; τ)=
K∑

k=1

ln
(
Fk,2p

(
uk(τ)

))
+

K∑

k=1

ln
(
Fk,2p−1

(
vk(τ)

))
. (31)

IV. NEW TIME DELAY CA ML ESTIMATOR

As mentioned previously, the timing recovery task is

embedded into the turbo iteration loop. But in order to

initiate the turbo decoding process itself, some prelimi-

nary digital symbol-rate samples are required. The latter

can be obtained at the output of the MF
(
corrected with

τ̂ML-NDA

)
where τ̂ML-NDA is the NDA MLE for the TD

parameter obtained as:

τ̂ML-NDA = argmax
τ

L(0)(τ), (32)

with L(0)(.) being the NDA LLF deduced directly from

(31) by setting2 Ll(k) = 0 for all l and k, i.e.:

L(0)(τ) =

K−1∑

k=0

[
ln
(
F
(
uk(τ)

))
+ln

(
F
(
vk(τ)

))]
, (33)

Here, F (.) is expressed as follows:

F (x) =

2p−1∑

i=1

e−ρNad
2
p[2i−1]2 cosh

(
2S[2i−1]

√
Nadp

σ2 x
)
.

Note here that we adopt an iterative scheme to maximize

L(0)(τ) with respect to τ in (32). Further details about

the iterative technique will be provided at the end of this

section. Note also that uk(τ) and vk(τ) involved in (32)

are the real and imaginary components of a discrete-time

MF output that is obtained as follows. At the receiver

side, y(t) is upsampled using a sampling period Ts <
T/(1 + α) with α being the roll-off factor to yield:

yl , y(lTs) =
√
Es

K∑

k=1

a(k) h(lTs−kT−τ)+w(lTs).

These high-rate samples are then passed through a MF

to obtain the symbol-rate samples:

yk(τ) = yl ⋆ h(lTs−kT−τ)=
∑

l

yl h(lTs−kT−τ)dt,

from which we obtain uk(τ) = ℜ{yk(τ)} and vk(τ) =
ℑ{yk(τ)} which are then used in (33). Once τ̂ML-NDA

is acquired, the corresponding sequence of symbol-rate

samples:

y(̂τML-NDA)=
[
y1(̂τML-NDA), y2(̂τML-NDA), . . ., yK (̂τML-NDA)

]T
,

is passed to the soft demapper in order to find the so-

called bit likelihoods:

Λl(k) , ln

(
p
[
y(τ)

∣∣bkl = 1
]

p
[
y(τ)

∣∣bkl = 0
]
)
. (34)

By exchanging the extrinsic information between the two

SISO decoders, the a posteriori LLRs of the code bits:

Υl(k) = ln

(
P
[
bkl = 1

∣∣y(τ)
]

P
[
bkl = 0

∣∣y(τ)
]
)
, (35)

are updated iteratively according to the turbo principle.

We denote their values at the rth turbo iteration as

Υ
(r)
l (k). The convergence is achieved after R turbo

iterations wherein Υ
(R)
l (k) ≈ Υl(k), for every l and

k. In addition, the signs of those a posteriori LLRs are

used to detect the transmitted bits. Yet, owing to the

well-known Bayes’ formula, we have:

P
[
bkl = 1

∣∣y(τ)
]
=

p
[
y(τ)

∣∣bkl = 1
]
P
[
bkl = 1

]

p[y(τ)]
, (36)

2In the NDA case, the has no a priori information about the bits is
available, i.e., P [bk

l
= 0] = P [bk

l
= 1] = 1/2 and thus Ll(k) = 0

for all l and k.
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Fig. 1. Flowchart of the new CA TD ML technique.

and

P
[
bkl = 0

∣∣y(τ)
]
=

p
[
y(τ)

∣∣bkl = 0
]
P
[
bkl = 0

]

p[y(τ)]
. (37)

Therefore, by applying the natural logarithm to the ratio

of (36) and (37), it follows:

Ll(k) = Υl(k)− Λl(k) ≈ Υ
(R)
l (k)− Λl(k). (38)

In other words, the required a priori LLRs of the code

bits can be easily extracted from their steady-state a

posteriori LLRs and Λl(k) already computed by the soft

demapper prior to data decoding. To exploit the output

of the decoder and better re-synchronize the system, we

modify (38) as follows:

L
(r)
l (k) = Υ

(r)
l (k)− Λ

(r−1)
l (k). (39)

By doing so, we obtain a more refined TD estimate,

τ̂
(r)
ML-CA at the end of each rth turbo iteration. Note here

that Λ
(r−1)
l (k) are the bit likelihoods that are obtained

after re-synchronizing the system with τ̂
(r−1)
ML-CA, i.e., the

TD estimate corresponding to the previous turbo itera-

tion. These bit likelihoods are fed to the SISO decoders

to obtain an updated version of the a posteriori LLRs,

Υ
(r)
l (k), at the rth iteration. The refined TD MLE is

thereof obtained as:

τ̂
(r)
ML-CA = argmax

τ
L(r)(τ). (40)

The CA LLF, L(r)(τ), involved in (40) is given by:

L(r)(τ) =

K∑

k=1

ln
(
F

(r)
k,2p

(
uk(τ)

))
+ ln

(
F

(r)
k,2p−1

(
vk(τ)

))
,

in which F
(r)
k,q (.) is given by:

F
(r)
k,q (x)

=

2p−1∑

i=1

θ
(r)
k,q(i)e

−ρd2
p[2i−1]2cosh

(√
Es[2i−1]dp

σ2 x+
L(r)

q (k)

2

)
,

with, θ̂
(r)
k,2p(i) and θ̂

(r)
k,2p−1(i) are also obtained by using

L
(r)
l (k) instead of Ll(k) in (27) and (28), respectively.

Note that we still have to provide details about the

maximization procedure of the NDA and CA LLFs. Ac-

tually, since these LLFs are expressed in a closed-form,

they can be maximized using any iterative technique such

as the Newton-Raphson algorithm:

τ̂
(r)
i = τ̂

(r)
i−1 −

[(
∂2L(r)(τ)

∂τ2

)−1
∂L(r)(τ)

∂τ

]

τ = τ̂
(r)
i−1

,(41)

with τ̂
(r)
i is the TD update related to the ith Newton-

Raphson iteration. The algorithm converge to the CA

TD MLE, τ̂
(r)
ML-CA, once the criterion |τ̂ (r)

i
−τ̂

(r)
i−1| ≤ ǫ is

met during the rth turbo loop. It is worth noting that the

Newton-Raphson algorithm itself is iterative in nature.

Consequently, it requires a reliable initial estimate, τ̂
(r)
0 ,

to ensure its convergence to the global maximum of

the underlying objective function. At each rth turbo

iteration, the algorithm is initialized by τ̂
(r)
0 = τ̂

(r−1)
ML-CA.

At the very first turbo iteration, however, we use the

NDA MLE, τ̂ML-NDA, obtained in (32) as initial guess.

The latter is the result of maximizing L(0)(τ) using the

Newton-Raphson algorithm with initial guess obtained

by broad line search over τ . For better illustration, Fig.

1 depicts the architecture of the newly proposed CA ML

timing recovery algorithm.

V. SIMULATION RESULTS

In this section, we provide some simulation results of

the new CA ML TDE performance. We also analyze

its computational complexity and compare it to that

of the existing NDA and CA approaches. We consider

an encoder with two identical RSCs concatenated in

parallel. Those RSCs are equipped with the generator

polynomials (1,0,1,1) and (1,1,0,1), and a systematic

rate R0 = 1
2 each. The output of the turbo encoder is



punctured in order to achieve the desired code rate R. For

the tailing bits, the size of the RSC encoders memory is

fixed to 4. We also consider a root-raised-cosine (RRC)

signal with a roll-off factors α = 0.2. The QPSK and

16-QAM, are adopted as two examples of square-QAM

constellations. We assess the performance of the new TD

CA ML estimator using the normalized (by T 2) mean

square error (NMSE) as a performance measure:

NMSE =
1

T 2

∑Mc

m=1

(
τ̂
[m]
ML-CA − τ̄

)2

Mc

, (42)

where τ̂
[m]
ML-CA is the estimate of τ generated from the

mth Monte-Carlo run for m = 1, 2, . . . ,Mc.
In Figs. 2 and 3, we plot the NMSE of the new

estimator obtained from Mc = 5000 Monte-Carlo tri-

als, and benchmark the resulting performance curves

against the corresponding CA Cramer-Rao lower bounds

(CRLBs) of [18]. We also compare the new CA ML

TDE against conventional NDA and CA techniques. In

the NDA scenario, we consider both non-ML [8] and ML

[9] benchmark solutions. In the CA scenario, however,

we gauge the proposed CA estimator against two existing

CA ML-type approaches, namely the Decision-Directed

ML estimator introduced in [11] and SP-EM of [13].
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Fig. 2. NMSE of the estimators vs. the SNR, QPSK, roll-off = 0.2,
for two different coding rates: (a) R = 1/2, and (b) R = 1/3.

As seen in Figs. 2 and 3, the performance of the

conventional NDA algorithms is lower bounded by the

NDA CRLB. Using the decoder output, however, the new

estimator breaks this barrier and almost reaches the CA

CRLB over the entire practical SNR range confirming

thereby its statistical efficiency in practice. More so,

it even coincides with the DA CRLB at high SNR

values. In spite of its clear superiority over the con-

ventional NDA techniques, the proposed CA estimator

exhibits almost the same performance as the existing

CA approaches at high SNRs, with a slight advantage

at small SNRs. However, it has a great advantage owing

to the huge computational savings it provides against the
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Fig. 3. NMSE of all the estimators vs. the SNR, 16-QAM, roll-off
= 0.2, for two different coding rates: (a) R = 1/2, and (b) R = 1/3.

existing CA approaches. Indeed, Fig. 4 depicts the com-

putational complexity of all the considered techniques

(both NDA and CA). Clearly, the proposed CA ML

estimator enjoys a remarkable computational advantage

against the existing CA estimators while featuring the

same if not better estimation performance as already

seen in Fig 3. As expected, the NDA estimators entail

smaller computational cost but they perform quite poorly

in terms of estimation accuracy when compared to the

CA schemes. From this perspective, we conclude that
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Fig. 4. Computational complexities of the estimators vs. the modula-
tion order (M ).

the proposed CA ML TDE provides the best trade-

off between estimation performance and computational

complexity as compared to state-of-the-art techniques.

VI. CONCLUSION

In this paper, we developed a new CA ML time

delay estimator that is able to achieve the potential

performance gains predictable by the CA CRLBs. Sim-

ulations results confirmed that the proposed algorithm is



statistically efficient since it almost coincides with the

CA CRLB. At high SNR values, it even reaches the DA

CRLB, the ultimate bound that could be obtained if all

the transmitted bits were perfectly known to the receiver

beforehand. The new estimator also exhibits a remark-

able advantage in terms of computational complexity as

compared to the most powerful CA ML-type algorithms

from the open literature.
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