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Abstract—In this paper, we propose a novel low-cost local-
ization algorithm tailored for multi-hop heterogeneous wireless
sensor networks (HWSNs) where nodes’ transmission capabilities
are different. This characteristic, if not taken into account when
designing the localization algorithm, may severely hinder its
accuracy. Assuming different nodes’ transmission capabilities,
we develop a novel approach to derive the expected hop progress
(EHP). Exploiting the latter, we propose a localization algorithm
that is able to accurately locate the sensor nodes owing to a new
low-cost implementation. Furthermore, we develop a correction
mechanism which complies with the heterogeneous nature of
WSNs to further improve localization accuracy without incurring
any additional costs. Simulations results show that the proposed
algorithm, whether applied with or without correction, outper-
forms in accuracy the most representative WSN localization
algorithms.

Index Terms—Heterogeneous wireless sensor networks
(WSNs), multi-hop, localization, low cost, energy harvesting
(EH), EH-WSNs, expected hop progress (EHP).

I. INTRODUCTION

Recent advances in wireless communications and low-power

circuits technologies have led to proliferation of wireless

sensor networks (WSNs). A WSN is a set of small and low-

cost sensor nodes often equipped with small batteries. The

latter are often deployed in a random fashion to sense or collect

from the surrounding environments some physical phenomena

such as temperature, light, pressure, etc. [1]- [3]. Since power

is a scarce resource in such networks, sensor nodes usually

recur to multi-hop transmission in order to send their gathered

data to an access point (AP). However, the received data at the

latter are often fully or partially meaningless if the location

from where they have been measured is unknown [4], making

the nodes’ localization an essential task in multi-hop WSNs.

Owing to the low-cost requirements of WSNs, unconventional

paradigms in localization must yet be investigated. Many

interesting solutions exist in the literature [5]-[12]. To properly

localize each regular or position-unaware node, most of these

algorithms require the distance between the latter and at least

three position-aware nodes called hereafter anchors. Since it

is very likely in multi-hop WSNs that some regular nodes be

unable to directly communicate with all anchors, the distance

between each anchor-regular nodes pair is usually estimated

using their shortest path. The latter is obtained by summing

the distances between any consecutive intermediate nodes

located on the shortest path between the two nodes. Depending
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on the process used to estimate these distances, localization

algorithms may fall into three categories: measurement-based,

heuristic, and analytical [5]-[12].

Measurement-based algorithms exploit the measurements of

the received signals’ characteristics such as the received signal

strength (RSS) [5]. or the time of arrival (TOA) [6], etc. Using

the RSS measurement, the distance between any sensors’ pair

could be obtained by converting the power loss due to prop-

agation from a sensor to another based on some propagation

laws. Unfortunately, due to the probable presence of noise and

interference, the distance’s estimate would be far from being

accurate, thereby leading to unreliable localization accuracy.

Using the TOA measurement, nodes require high-resolution

clocks and extremely accurate synchronization between them.

While the first requirement may dramatically increase the

cost and the size of sensor nodes, the second results in

severe depletion of their power due to the additional overhead

required by such a process. Furthermore, in the presence of

noise and/or multipath, the TOA measurement is severely

affected thereby hindering nodes’ localization accuracy. As

far as heuristic algorithms [7] are concerned, they also have a

major drawback. Indeed, most of these algorithms are based

on variations of DV-HOP [7] whose implementation in multi-

hop WSNs requires a correction factor derived in a non-

localized manner and broadcasted in the network by each

anchor. This causes an undesired prohibitive overhead and

power consumption, thereby increasing the overall cost of the

network.

Popular alternatives, more suitable for multi-hop WSNs, are

the analytical algorithms [8]-[11] which evaluate theoretically

the distance between any two consecutive intermediate nodes.

The latter is in fact locally computable at each node, thereby

avoiding unnecessary costs incurred if it is fully or partially

computed at other nodes and then broadcasted in the network,

such as in heuristic algorithms. In spite of their valuable

contributions, the approaches developed so far in [8]-[11] to

derive that distance are based on the unrealistic assumption

that all nodes have the same transmission capabilities (i.e.,

the WSN is homogenous). However, due to the fact that

these sensor nodes are designed using various technologies to

achieve different tasks, their sensing as well as transmission

capabilities are very-often different. Furthermore, if an energy

harvesting (EH) technology is locally integrated at each node,

which is the case in the most recently developed WSNs

referred to hereafter as EH-WSNs, the available harvested

power at nodes would then be random. This phenomenon
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actually results in the randomization of the nodes’ transmission

capabilities, since the latters are closely related to the nodes’

available powers. During the localization process, it is then

very likely that nodes’ transmission capabilities be different.

As the approaches in [8]-[11] assume the same transmission

capability throughout the network, their localization accuracy

substantially deteriorates in the so-called heterogeneous WSNs

(HWSNs) making them unsuitable for such networks. To the

best of our knowledge, there is no analytical algorithm that

accounts so far for the heterogeneous nature of WSNs.

To bridge this gap, we propose in this paper a novel

analytical algorithm tailored for multi-hop HWSNs where

nodes have different transmission capabilities. Taking into

account this characteristic, a novel approach is developed to

accurately derive the distances between any consecutive nodes.

Using the so-obtained distances, the proposed algorithm is

able to accurately locate the nodes owing to a new low-

cost implementation. Furthermore, we develop a correction

mechanism which complies with the heterogeneous nature

of WSNs to further improve localization accuracy without

incurring any additional costs. Simulations results show that

the proposed algorithm, whether applied with or without

correction, outperforms in accuracy the most representative

multi-hop WSNs localization algorithms.

The rest of this paper is organized as follows: Section II

describes the system model and discusses the motivation of

this work. Section III derives the distance between consecutive

sensors using the novel proposed approach. A novel local-

ization algorithm for HWSNs is proposed in section IV. Its

implementation cost is discussed in Section VI. Simulation

results are discussed in Section VII and concluding remarks

are made in section VIII.

II. NETWORK MODEL AND OVERVIEW

The network model of our concern consists on N sensors

deployed in a 2-D square area S. The i-th node could directly

communicate with any node located in D (i, T ci), the disc

having this node as a center and its transmission capability Tci
as a radius. Due to the heterogonous nature of WSNs, nodes

are assumed here to have different transmission capabilities.

It is also assumed that only a few nodes commonly known

as anchors are aware of their positions. The other nodes,

called hereafter position-unaware or regular nodes for the

sake of simplicity, are oblivious to this information. Let Na

and Nu = N − Na denote the number of anchors and

regular nodes, respectively. Without loss of generality, let

(xi, yi) , i = 1, . . . , Na be the coordinates of the anchors

and (xi, yi) , i = Na + 1, . . . , N those of the regular nodes.

As a first step of any localization algorithm for multi-hop

WSNs aiming to estimate the regular nodes’ positions, the k-th

anchor broadcasts through the network a message containing

its position. If the (i−Na)-th regular node (or the i-th node)

is located outside the anchor coverage area, it receives this

message through multi-hop transmission. For simplicity, let

us assume that only one intermediate node j located over the

shortest path between the k-th anchor and the i-th node is

necessary (i.e., two-hop transmission). Assuming a high node

density in the network, the distance dk−i between the two

nodes can be accurately approximated as [8]-[11]

dk−i ≃ dk−j + dj−i, (1)

where d⋆−∗ is the effective distance between the ⋆-th and

the ∗-th node. Two approaches have been so far developed

to analytically estimate the distance dk−i exploiting the afore-

mentioned approximation [8]-[11].

In the first approach, the j-th node estimates the distance

dk−j using the number of common neighbors with the k-

th node. However, nkj cannot be accurately obtained since

some neighbors of the j-th and/or k-th sensor/s are not able

to communicate with the latters due to their weaker capabilities

and, therefore, this approach is not suitable for HWSNs.

The second approach uses the fact that the minimum square

error (MMSE) of the distance estimation is obtained if d̂ =
E (d) and, hence,

d̂k−i ≃ d̄k−j + d̄j−i, (2)

where d̄k−j = E {dk−i} is the expected hop progress (EHP)

and d̄j−i = E {dj−i} is the mean last hop (MLH). One

of the well-known analytical expressions of EHP is the one

developed in [8] as follows:

d̄k−j =
√
3λ

∫ Tck

0

x2e−
1
3λπ(Tc2k−x2)dx, (3)

where λ is the node density, and x is the distance between the

k-th and the i-th node. From (3), the EHP a priori depends only

on the k-th node transmission capability Tck and, therefore,

its computation does not supposedly require any knowledge

of the j-th node transmission capability Tcj . In what follows,

and in contrast to (3), we will prove the EHP expression to

be dependent on both Tck and Tcj thereby revealing the

expression derived in [8], as one example among too many

others whose approaches are similar to the above but not

discussed here for lack of space, to lack accuracy.

Let F be the potential forwarding area wherein the inter-

mediate node j could be located. Since this node should, at

the same time, be located in the k-th node coverage area and

communicate directly with the i-th node using its transmission

capability Tcj , F is given by

F = D(k, T ck) ∩D(i, T cj). (4)

It is noteworthy that the EHP is nothing but the mean of all

distances between the k-th node and all the potential interme-

diate nodes located in F and, hence, the EHP strongly depends

on F . As can be observed from Fig. 3, if the intermediate node

transmission capability Tcj increases, the potential forwarding

area F increases to include potential intermediate nodes closer

to the k-th anchor, thereby decreasing the EHP. Likewise, if

Tcj decreases, F decreases to exclude potential intermediate

nodes closer to the k-th anchor and, hence, the EHP increases.

Consequently, the EHP depends not only on Tck, but also on

Tcj . Let us now turn our attention to the MLH. It is obvious

that the transmission capability of the i-th node does not have

any effects on the last hop size dj−i. Therefore, in contrast
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Fig. 1. Effect of the intermediate sensor transmission capability.

with the EHP, the MLH depends only on the transmission

capability of the transmitting node j. In the next section, novel

approach is developed to accurately derive the expressions of

both the MLH and the EHP. These results will be exploited in

Section IV to propose a low-cost localization algorithm that

complies with the heterogeneous nature of WSNs.

III. ANALYTICAL EVALUATION OF THE MLH AND EHP

In this section, expressions of both the MLH and the EHP

are accurately derived. To this end, we consider the same

scenario described in Section II. For the sake of clarity, in

what follows, we denote by X , Y , and Z the random variables

that represent dk−i, dj−i, and dk−j , respectively.

A. MLH derivation

Since the i-th regular node could be located anywhere

in D(j, T cj) (the j-th node’s coverage area) with the same

probability, Y can be considered as a uniformly distributed

random variable on [0, T cj]. Therefore, the MLH denoted

hereafter by hlast(Tcj) is given by

hlast(Tcj) =

∫ Tcj

0

yfY (y)dy =

∫ Tcj

0

y

T cj
dy =

Tcj
2

, (5)

where fY (y) = 1/T cj is the probability density function (pdf)

of Y .

B. EHP derivation

In order to derive the EHP, one should first compute the con-

ditional cumulative distribution function (CDF) FZ|X (z) =
P (Z ≤ z|x) of Z with respect to the random variable X . As

can be shown from Fig. 2, Z ≤ z is guaranteed only if there

are no nodes in the dashed area A. Therefore, the conditional

CDF FZ|X(z) can be defined as

FZ|X (z) = P (Z ≤ z|x) = P (A0|F1) , (6)

where P (A0|F1) is the probability that the event A0 = {no

nodes in the dashed area A} given F1 = {at least one node

in the potential forwarding area } occurs. Since the nodes are

uniformly deployed in S, the probability of having K nodes

in F follows a Binomial distribution Bin (N, p) where p = F
S

.

For relatively large N and small p, it can be readily shown

that Bin (N, p) can be accurately approximated by a Poisson

distribution Pois(λF ). Using the Bayes’ theorem, and for a

large number of nodes N and small p, FZ|X (z) could be

rewritten as

FZ|X (z) =
P (F1|A0)P (A0)

P (F1)
=

e−λA
(

1− e−λB
)

(1− e−λF )
, (7)

where B = F −A. In the equation above, note that we use the

fact that P (F1|A0) is the probability that at least one node

is in B. As can be observed from (7), when z = α, we have

B = 0 and A = F and, therefore, FZ|X (z) = 0. This is

expected since all potential intermediate nodes are located in

the forwarding zone F where any node is at least at distance

α from the k-th node (i.e., P (Z ≤ α) = 0). Furthermore,

if z = Tck, it holds that B = F and A = 0 and, hence,

P (Z ≤ Tck) = 1. This is also expected since all potential

intermediate nodes are located in the k-th node’s coverage area

at distance Tck at most from the latter (i.e., P (Z ≤ Tck) = 1).

It should be noticed here that the properties above are not

satisfied by any previously developed CDF expressions such

as those in [8]-[9]. Exploiting some geometrical properties and

P

x
'

'zz

k i
B A

Fig. 2. EHP analysis.

trigonometric transformations, one can easily obtain F and B.

Using the latter, we derive the EHP h(Tck, T cj) between the

k-th and j-th nodes as

h(Tck, T cj) =

∫ Tck+Tcj

Tck

(

αHZ|X(α)+

∫ Tck

α

HZ|X(z)dz

)

fX(x) dx,

(8)
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where H(⋆) = 1−FZ|X(⋆) and α = x−Tcj and fX (x) is the

pdf of X . Note that the latter can be considered as a uniform

random variable over [Tck, T ck + Tcj] and, hence, fX(x) can

be substituted there by 1/T cj. To the best of our knowledge,

a closed-form expression for the EHP in (8) does not exist.

However, h(Tck, T cj) can be easily implemented since it

depends on finite integrals. As can be observed from (8),

the proposed EHP depends on both Tck and Tcj , in contrast

to the previously proposed EHPs, such as in (3), which are

only dependent on the sender node’s transmission capability.

It can be shown from Figs. 3(a) and 3(b) that the so-obtained
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Fig. 3. Effect of the transmission capabilities on the EHP.

EHP decreases if Tcj increases while it increases when Tck
increases. This collaborates the discussion made above. These

figures also show that the proposed EHP above increases with

the node density. This is expected since it is very likely that the

per-hop distance increases when the number of nodes located

in F increases if, of course, both Tck and Tcj are fixed.

IV. PROPOSED LOCALIZATION FOR HWSNS

In this section, we propose a novel three-step localization

algorithm for HWSNs.

A. Step 1: Initialization

In this step, the k-th anchor starts by broadcasting through

the network a packet which consists of a header followed

by a data payload. The packet header contains the anchor

position (xk, yk), while the data payload contains (Tck, d̂k),
where Tck is the transmission capability of the k-th anchor

and d̂k is the estimated distance initialized to zero. If the

packet is successfully received by a node, the latter estimates

the EHP using the above approach, adds it to d̂k, stores

the resulting value in its database and then, rebroadcasts the

resulting packet after substituting Tck by its own transmission

capability. Once this packet is received by another node, its

database information is checked. If the k-th anchor information

exists and the stored estimated distance is larger than that of

the received one, the node updates the k-th anchor’s infor-

mation, then broadcasts the resulting packet after substituting

the received transmission capability by its own. Otherwise,

the node discards the received packet. However, when the

node is oblivious to the k-th anchor position, it adds this

information to its database and forwards the received packet

after substituting the received transmission capability by its

own. This mechanism will continue until each regular node in

the network becomes aware of each anchor position as well

as the distance from the latter to the last intermediate node

before reaching that node. Note that the implementation of

the proposed algorithm requires that each node broadcasts the

anchor information not only with its estimated distance but

also its transmission capability to allow the EHP computation

at the next receiving node. In contrast, the implementation of

existing algorithms in HWSNs requires the broadcast of the

anchor information and the estimated distance only. Yet we

will prove next in Section VI that the additional power cost that

could be incurred a priori when broadcasting the transmission

capabilities can be easily avoided by the proposed algorithm.

B. Step 2: Positions’ computation

In this section, we will show how the so-received informa-

tion can be exploited to get an initial guess of each regular

node position. Using its available information, the (i−Na)-th
regular node (or the i-th node) computes an estimate of its

distance to the k-th anchor as

d̂k−i = d̂k + hlast(Tck+L), (9)

where d̂k =
∑k+L−1

l=k h (Tcl, T cl+1) , is the distance from the

k-th anchor to the last intermediate node. In (9) and (IV-B),

we assume for simplicity, yet without loss of generality, that

L intermediate nodes exist over the shortest path between

the k-th anchor and the (i − Na)-th regular node and that

the l-th intermediate node is the (k + l)-th node. Using

its estimated distances to the Na anchors as well as the

latters’ coordinates, the position of the i-th node could be

deduced by solving the following nonlinear equations system:

(xk − x̂i)
2+(yk − ŷi)

2 = d̂2k−i for k = 1, . . . , Na. After some

rearrangements that linearize the system above, we obtain

Υα̂i = −1

2
κi, (10)
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where α̂i = [x̂i, ŷi]
T

, Υ is a (Na−1)×2 matrix with [Υ]k1 =
xk−xNa

and [Υ]k2 = yk−yNa
, and κ is a (Na−1)×1 vector

with [κi]k = d2k−i−d2Na−i−x2
k+x2

Na
−y2k+y2Na

. Since Υ is

a non-invertible matrix, α̂ could be estimated with the pseudo-

inverse of Υ as α̂i = − 1
2Υ

T
(

ΥΥ
T
)−1

κi. Therefore, the

i-th regular node is able to obtain an initial guess of its coordi-

nates as x̂i = [α̂i]1, and ŷi = [α̂i]2. It is also noteworthy from

the definition of Υ and κ that x̂i and ŷi are solely dependant

on the anchors’ coordinates (xk, yk), k = 1, . . . , Na and the

estimated distances d̂k−i, , k = 1, . . . , Na which are all locally

available at the (Na− i)-th regular node. Unfortunately, errors

are expected to occur when estimating the distance between

each regular node-anchor pair, thereby hindering localization

accuracy. As a third step of our proposed algorithm, we

propose a correction mechanism aiming to reduce this error.

C. Step 3: Correction mechanism

Let ǫki denote the estimation error of the distance between

the k-th anchor and the i-th regular node as

ǫki = d̂k−i − dk−i, (11)

where dk−i is the true distance between the two nodes. As

discussed above, this error hinders localization accuracy. As

such, we have xi = x̂i + δxi
and yi = ŷi + δyi

, where δxi

and δyi
are the location coordinates’ errors to be determined.

Retaining the first two terms of the Taylor series expansion of

dk−i and rewriting the result in a matrix form yields

Γiδi = ζi − ǫi, (12)

where Γ is a Na × 2 matrix with [Γi]k1 = x̂i−xk

d̃k−i

and [Γi]k2 = ŷi−yk

d̃k−i

, ǫi = [ǫ1i, ǫ2i, . . . , ǫNai]
T , ζi =

(

d̂1−1 − d̃2−i, . . . d̂Na−i−d̃Na−i

)T

,, δi = [δxi
, δyi

]T , and

d̃k−i =

√

(x̂i − xk)
2 − (ŷi − yk)

2
. Many methods such as
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Fig. 4. Convergence of ‖δ‖ vs. the number of iterations.

the weighted least squares (WLS) might be used to properly

derive δi. Using WLS, the solution of (12) is given by :

δi =
(

Γ
T
i P

−1
i Γi

)−1
Γ
T
i P

−1
i ζi, (13)

where Pi is the covariance matrix of ǫi. Since ǫki k =
1, . . . , Na are independent random variables, Pi boils down

to diag
{

σ2
1i, . . . , σ

2
Nai

}

where σ2
ki is the variance of ǫki. A

straightforward inspection of (13) reveals that δi depends on

some locally available information as well as all σ2
ki, k =

1, . . . , Na. Yet we will show in what follows that the derivation

of σ2
ki, k = 1, . . . , Na requires a negligible additional power

cost that could be easily avoided. Once we get δi, the value

of (x̂i, ŷi) is updated as x̂i=x̂i + δxi
and ŷi = ŷi + δyi

. The

computations are repeated until ‖δi‖ approaches zero. In such

a case, we have xi ≃ x̂i and yi ≃ ŷi and, hence, more accurate

localization is performed. As can be observed from Fig. 4, the

proposed correction mechanism converges after 5 iterations

at most. Nevertheless, we will prove in Section VI that the

proposed algorithm perfectly tailored for HWSNs, and it does

not burden the overall cost of the WSN.

V. VARIANCE EVALUATION

This section aims to derive the expression of the variances

σ2
ki, k = 1, . . . , Na which are required for the proposed

algorithm’s implementation. As such, two different methods,

analytical and non-parametric, are proposed.

A. Analytical method

Assuming a high node density in the network, the dis-

tance dk−i between two nodes can be rewritten as dk−i ≃
∑k+L

l=k dl,l+1, where L is the number of intermediate nodes

over the shortest path and dl,l+1 the distance between the l-th
and (l + 1)-th intermediate node. It follows from (9) and (V-A)

that εki ≃
∑k+L−1

l=k el + elast, with el = h (Tcl, T cl+1) −
dl−(l+1) is the distance estimation error incurred during the

(l − k + 1)-th hop and elast = hlast(Tck+L) − d(k+L)−i is

the error incurred at the last hop. It can be readily shown

that σ2
ki =

∑k+L−1
l=k σ2

l + σlast
2 where σ2

l and σlast
2 are

the variances of el and elast, respectively. Using the results

developed in Section III, we obtain σlast
2 =

Tc2(k+L))

12 , and

σl
2 =

∫ Tcl+Tcl+1

Tcl

(

α2H(α)+ 2

∫ Tcl

α

zH(z)dz

)

fX(x)dx−
(

∫ Tcl+Tcl+1

Tcl

(

αH(α)+

∫ Tcl

α

H(z)dz

)

fX(x)dx

)2

. (14)

Note that σl
2 could be obtained using any of the CDFs

developed in Section III-B. As can be observed from the

latter results, σlast
2 is locally computable by the i-th node

while σl
2 should be computed at the (l + 1)-th intermediate

node, added to the term
∑l−1

m=k σ
2
m, then forwarded to the

next intermediate node. This results in an additional few bits

that must be transmitted by each node in the network. In what

follows, we will prove that the additional power cost that could

be incurred a priori when transmitting σl can be easily avoided

by the proposed algorithm.
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B. Non-parametric method

In the previous section, the analytical expression of σ2
ki was

derived using the approximation in (V-A) which holds only

for highly dense networks. However, if this assumption is not

satisfied (i.e., lowly dense network), (V-A) would no longer be

valid and, hence, σ2
ki’s expression would no longer be accurate

enough. In such a case, to properly derive σ2
ki, we propose to

exploit the PDF of the distance estimation error εki denoted

by f (ε). Unfortunately, to the best of our knowledge, there

is no closed form solution for such a PDF. In this work, we

propose to use a non-parametric technique to estimate it owing

to some potential observations available at anchors. So far,

many non-parametric techniques have been proposed in the

literature such as the histogram and the well-known kernel

density estimation (KDE) techniques. In this paper, we are

only concerned by the latter which can estimate an arbitrary

distribution without much observations. Such observations can

in fact be easily obtained at the k-th anchor. Indeed, since this

anchor is aware of all other anchor positions, it is able to derive

the actual distances between it and the latters. Using (9), the

k-th anchor could also obtain the estimated distances between

it and the other anchors and, therefore, derive εki. Hence, if

Na anchors exist in the network, the total number of available

observations is no = Na (Na − 1). Let ε1, ε2, . . . , εno
denote

such observations. Using the KDE technique, f (ε) can be then

approximated by

f̂ (ε) =
1

psε

no
∑

t=1

K

(

ε− εt
sε

)

, (15)

where sε is a smoothing parameter determined using the

method in [13] and K(ε) is the Gaussian kernel given by

K (ε) =
1√
2π

exp(−1

2
ε2). (16)

As can be noticed from (15) and (16), the estimated PDF is

computed by averaging the Gaussian density over all observa-

tions. Substituting (16) in (15) and using the resulting PDF to

compute σ2
ki yields

σ2
ki =

∑no

t=1

(

XtGt − Y 2
t

)

∑no

t=1 G
2
t

, (17)

where Xt=
(

s2ε+ε2i
)

Gt− s2ε

(

(εt+1) e
−

(1−εt)
2

2s2ε +(εt−1) e
−

(1+εt)
2

2s2ε

)

,

Gt = sε
√
2π
(

Q
(

εt−1
sε

)

−Q
(

εt+1
sε

))

, and Yt = εtGt −

s2ε

(

e
−

(1−εt)
2

2s2ε − e
−

(1+εt)
2

2s2ε

)

with Q(x) being the Q-function.

Fig. 5(a) plots the empirical f (ε) as well as f̂ (ε) for different

numbers of anchors. We see there that only a few anchors

(i.e., few observations) are required to accurately estimate

the localization errors’ PDF. Furthermore, from Fig. 5(a), the

estimated PDF approaches the empirical one, as Na increases.

This gives a sanity check for the proposed nonparametric

method.

Nevertheless, in order to derive σ2
ki using this approach,

each regular node needs to be aware of all observations. If
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Fig. 5. Distance estimation error (DER).

this is not properly done, it will be very expensive in terms

of power consumption, since each anchor would recur to a

second broadcast to share its observations with the regular

nodes. In order to circumvent this problem, we propose in

what follows a power-efficient observation sharing protocol

where anchors periodically broadcast their information. In fact,

during the first time slot, only the first anchor should broadcast

its own information while the (Na − 1) other anchors only

execute the tasks described in Section IV-A. At the second time

slot, the second anchor derives an estimation error observation

using the information received from the first anchor, adds it to

its packet and broadcasts the resulting packet in the network.

Upon reception of this information, the rest of anchors derive

and store a second observation. Two observations are then

available at the third anchor which also broadcasts them in

the network. This process will continue until each regular node

becomes aware of a sufficient number of observations. Note

that if Na is large enough so that (Na − 1) observations are

sufficient to accurately derive the PDF, only two time slots are

required. Indeed, after the first time slot, (Na−1) observations

are available and can be simultaneously broadcasted by the

(Na − 1) anchors in the network. In the next section, we will

prove that each anchor could transmit few observations without

incurring any power cost.

Fig. 5(b) plots the error variance for different node densities.
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It shows, as expected, that the variance decreases when the

node density increases. Beyond a node density threshold of

less than 0.1, both the analytical and the non-parametric

methods start to yield about the same variance as the empirical

one. Furthermore, when Na increases, more so at large enough

values, the efficiency of the non-parametric method increases

even at low node densities. Note that increasing the number of

anchors Na does not only result in a more accurate variance,

but also in a more reliable localization [7].

VI. PROPOSED ALGORITHM’S IMPLEMENTATION COST

As discussed in Section IV, the Proposed algorithm’s im-

plementation requires the (i−Na)-th regular node to be able

to compute its coordinates’ initial guess (x̂i, ŷi) as well as

δi which is used at the position correction step. As discussed

above, since these quantities depend solely on the information

locally available at the (i−Na)-th regular node, their compu-

tation does not require any additional overhead or power cost.

Furthermore, this node must perform matrix-inversion opera-

tions to the matrices ΥΥ
T and Γ

T
i P

−1
i Γi in order to derive

(x̂i, ŷi) and δi, respectively. This kind of operations which is

often highly computationally demanding may significatively

increase the overall cost of the WSN. Nevertheless, since these

matrices are 2-by-2 matrices, the entries of their inverses can

be analytically and easily derived using the locally available

information at the (i − Na)-th regular. This proves that the

computation of (x̂i, ŷi) and δi does not burden neither the

implementation complexity of the proposed algorithm nor the

overall cost of the WSN. Moreover, some iterations should be

repeated, at most 5 times as shown in Fig. 4, to ensure the

convergence of the proposed correction mechanism. Knowing

that the required power to execute one instruction is in the

range of 10−4 of the power consumed per transmitted bit,

the power needed to execute this mechanism is then very

negligible with respect to the overall power consumed by each

node. On the other hand, as discussed in Sections IV and V,

the proposed algorithm’s implementation requires that each

node transmits, upon reception a message from an anchor,

its transmission capability and variance besides to the latter’s

coordinates and the distance between the two nodes. This

results in additional few bits, with respect to the existent

algorithms, thereby causing an additional power cost. We will

shortly see below that this cost could be easily avoided.

Let pi be the available power at the i-th node, bi be the

length in bits of the original packet sent when the existing

algorithms are implemented (i.e., packet includes only the

anchor’s coordinates and its distance to the i-th node), and

ai be the cost in bits if Tci and σi
2 are added to the packet.

If the power pi allows the i-th node to transmit bi bits over

a Tci coverage distance, this power will also allow the latter

node to transmit bi + ai bits but over a coverage distance

T̃ ci < Tci, where T̃ cl is the new transmission capability of

the i-th node. Since no matter are the transmission capabilities

of the i-th node and the previous intermediate node, this

node is always able to compute the EHP, the fact that Tci
decreases to T̃ ci does not affect the performance of the

proposed localization algorithm. Therefore, the additional bits

ai could be broadcasted without any additional power cost.

All the above discussion proves that the proposed localization

algorithm can be implemented at a low cost. Furthermore,

since it complies with the heterogeneous nature of WSNs and,

further, is power efficient, it could easily find application in

EH-WSNs where the power is considered as a scarce resource.

VII. SIMULATIONS RESULTS

In this section, we evaluate the performance of the proposed

algorithm in terms of localization accuracy by simulations

using Matlab. These simulations are conducted to compare,

under the same network settings, the proposed algorithm

with some of the best representative localization algorithms

currently available in the literature, i.e., DV-Hop [7], LAEP

[8] and EPHP [9]. All simulation results are obtained by aver-

aging over 100 trials. In the simulations, nodes are uniformly

deployed in a 2-D square area S = 100×100m2. We assume

that Tci 6= Tcj if i 6= j and that all transmission capabilities

are set between 5 and 30 meters. We also assume that the

number of anchors Na is set to 20. As a performance metric,

we propose to adopt the normalized root mean square error

(NRMSE) which is defined as

NRMSE =
1

Nu

Nu
∑

i=1

√

(xi − x̂i)
2
+ (yi − ŷi)

2

Tci
. (18)

Fig. 6(a) plots the localization NRMSE achieved by DV-

Hop, EPHP, LAEP and the proposed algorithm for different

node densities λ in HWSNs. From this figure, the proposed

algorithm, with or without localization correction, always

outperforms its counterparts. Indeed, our proposed algorithm

turns out to be until about two, three and four times more

accurate than LAEP, DV-Hop, and EPHP, respectively. Fur-

thermore, as can be observed from Fig. 6(a), the NRMSE

achieved by the proposed algorithm significantly decreases

when the node density λ increases while those achieved by

its counterparts slightly decreases then quickly saturate. This

is expected since two conflicting phenomena arise when λ
grows large. The first is that the approximation in (V-A)

becomes more realistic and, hence, more accurate localization

is performed. The second is the increase of the number of

different transmission capabilities due to the heterogeneous

nature of WSNs when the node density increases. Since

more different are the transmission capabilities in the net-

work, worse is the accuracy of the former algorithms. This

explains why their performance quickly saturates when the

node density increases. The proposed algorithm’s accuracy,

in contrast, increases with λ since it takes into account the

difference between the transmission capabilities that is typical

of HWSNs. This further proves the efficiency and suitability

of the proposed localization algorithm to HWSNs.

Fig. 6(b) illustrates the localization NRMSE’s CDF. Using

the proposed algorithm, 90% of the regular nodes could esti-

mate their position within almost the fifth of their transmission

capabilities. In contrast, 20% of the nodes achieve the same

accuracy with LAEP, about 14% with DV-Hop, and only 9%
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with EPHP. This further proves the efficiency of the proposed

localization algorithm.
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Fig. 7 plots the NRMSE’s standard deviation achieved by all

localization algorithms. As can be observed from this figure,

the one achieved by the proposed algorithm substantially de-

creases when the node density increases while those achieved

by the other algorithms slightly decrease. This is due once

again to the fact that the proposed algorithm complies with the

heterogeneous nature of the WSNs when the former algorithms

do not. Furthermore, the NRMSE standard deviation achieved

by the proposed algorithm approaches zero. This means that

implementing our algorithm in HWSNs guarantees a very

accurate localization for any given realization. This result is

very interesting in terms of implementation strategy, since it

proves that the result in Fig. 6(a) becomes more and more

meaningful as λ grows large.

VIII. CONCLUSION

In this paper, a novel low-cost localization algorithm which

accounts for the heterogeneous nature of WSNs was pro-

posed. A novel approach is developed to accurately derive

the EHP. Using the latter, the proposed algorithm is able to

accurately locate the sensor nodes owing to a new low-cost

implementation that avoids any additional power consumption.

Furthermore, a correction mechanism which complies with

the heterogeneous nature of WSNs was developed to further

improve localization accuracy without incurring any additional

costs. The proposed algorithm, whether applied with or with-

out correction, is shown to outperform in accuracy the most

representative WSN localization algorithms.
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