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Abstract— This paper addresses the problem of Doppler spread
estimation in Rayleigh flat fading channels using a new low-cost
and robust maximum likelihood (ML) technique. Relying on a
an elegant approximation of the channel covariance matrix by
a two-ray model, we are able to invert the overall approximate
covariance matrix analytically thereby obtaining a low-cost closed-
form approximation of the likelihood function. We show by com-
puter simulations that the new estimator is accurate over a wide
Doppler spread range and that it outperforms many state-of-the-art
techniques. In contrast to the latter, it exhibits an unprecedented
robustness to the Doppler spectrum shape of the channel since it
does not require its a priori knowledge.

I. INTRODUCTION

The environment of mobile communication systems is char-

acterized by a multipath time-varying fading channel where the

received signal and its phase are time varying randomly. As

known, the fading rate of the channel depends on the Doppler

spread (or equivalently the maximum Doppler frequency) which

is related to the velocity of the mobile terminal. The Doppler

spread is therefore a key parameter for transceiver optimization

in mobile communication systems. The characterization of the

time variations of such a propagation channel is directly related

to the Doppler information. The knowledge of the Doppler

parameter or time variations rate (such as the coherence time

for example) can be used to optimize the interleaving length in

order to reduce the reception delay in addition to optimizing

the feedback rate of CSI-based schemes [1]. From the signal

processing point of view, the Doppler spread is involved in

optimizing the adaptation steps of adaptive channel estimation

algorithms [2]. It has also been a key parameter for many other

wireless communication applications such as power control and

handoff schemes [3-4]. Moreover, due to the very nature of the

newly deployed heterogeneous networks (HetNets), the well-

known interference mitigation and handoff hysteresis issues are

exacerbated when a moving user temporarily enters or even

approaches a small cell (i.e., picos or femtos), thereby interfering

with its users and possibly resulting in brief macro/small and

small/macro cell-reassignments[5]. Reducing interference and

avoiding useless handoffs can be achieved by predicting the

evolution of the interferer’s trajectory through its Doppler spread

information (i.e., velocity).

In practice, the Doppler spread estimates are usually obtained

from the estimates of the channel coefficients. Then, depending

on how the channel estimates are processed, four classes of

Doppler estimators are encountered in the open literature: the

level-crossing rate (LCR)-based [6-7], the covariance-based [8-

10], the spectrum-based [11], and the ML techniques. The

covariance-based estimators are usually preferred as compared

to the LCR-based ones. Indeed, the latter need a very large

observation window size. Otherwise, the number of crossings

may be very small (or there may even be no crossings at all

for small Doppler values). The performance of the covariance-

based estimators themselves degrades drastically for a relatively

small number of received samples, due to a weaker averaging

effect (i.e., unreliable estimates of the channel autocorrelation

coefficients). The same holds for the spectrum-based ones,

since the estimated spectrum is the Fourrier transform of these

autocorrelation coefficients. In adverse conditions such as in data

shortage cases, the ML estimators are known to be the most

accurate by relying, among other things, on the direct use of the

channel coefficients themselves.

Four ML-based Doppler estimators were previously introduced

in the open literature. In fact, one of the first implementations of

the ML criterion was proposed in [12] based on the maximization

of the power spectral density (PSD) of the estimated channel and

a hypothetical one (namely the Jakes’ model). Another early

ML approach was developed in [13], in the specific context of

TDMA transmissions, where periodic pilot symbols are trans-

mitted over each time slot. It involves, however, the numerical

inversion of the covariance matrix, a quite demanding operation

in complexity. Later, another ML estimator was proposed in [14]

using the Whittle approximation. However, it works only for

very large normalized Doppler frequencies (fn > 0.1 where

fn = FdTs and Ts is the sampling period). Estimation of

very low normalized Doppler frequencies is, however, more

challenging and more useful. Indeed, current 3G and 4G wireless

communication systems and beyond are characterized by high-

data-rate transmissions and, hence, require very high sampling

rates (e.g., typically Ts = 70 µs in LTE systems [15]). Hence,

the target normalized Doppler frequency region for these systems

is typically in the range of 0.0001 ≤ fn ≤ 0.03 for a maximum

Doppler frequency Fd ranging from 1 to 450 Hz. A more recent

ML estimator was specifically designed to cope with relatively

small normalized Doppler frequencies [16] and, hence, shown to

outperform the two previous ML versions1. It will be therefore

selected as a first benchmark against which we will compare our

new ML estimator. In [16], the actual channel autocorrelation

function is approximated by a Taylor series of order K and its

complexity remains high as it involves the numerical inversion

1Please note that the first ML approach in [12] is also outperformed by a
more recent technique introduced in [17], which will be selected as a second
benchmark as will be explained shortly below.
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of (K ×K) matrices at each point of the search grid on the top

of several matrix multiplications. Another limitation of the four

ML estimators [12, 16] discussed above is that they assume the

a priori knowledge of the channel spectrum form (its analytical

expression) and most of them were specifically designed for the

very special case of the uniform Jakes model.

Motivated by these facts, we develop in this paper a new ML

estimator which i) avoids the numerical inversion of the autocor-

relation matrix and, therefore, exhibits a very reduced compu-

tational complexity; ii) does not require the a priori knowledge

of the analytical expression of the channel PSD and is robust to

its shape; and iii) is able to accurately estimate extremely small

normalized Doppler spreads. Indeed, it is based on a second-

order Taylor approximation that is valid for most known Doppler

PSD models, including the very basic and widely studied uniform

Jakes the restricted Jakes (rJakes) and the Gaussian, biGaussian,

rounded, bell, and 3-D flat models, etc. The new estimator is also

compared in performance to a more recent technique proposed in

[17], selected here as a second benchmark, since it outperforms

many other traditional approaches, namely, the HAC technique

[10] (which is a combination of [3] and [18]), the ML-based

technique in [12], and the Holtzman and Sampath’s method [19].

Yet, it will be shown by computer simulations that our new ML

estimator outperforms the two selected benchmark techniques,

i.e. [16] and [17], over a very wide practical Doppler range,

especially in the presence of short data records.

We organize the rest of this paper as follows. In section II,

we introduce the system model. In section III, we develop our

new ML estimator. In section IV, we assess its performance and

compare it to the two selected benchmark techniques as well

as the Cramér-Rao lower Bound (CRLB). Finally, we draw out

some concluding remarks in section V.

II. SYSTEM MODEL

Consider an analogous signal, x(t), propagating through a

flat fading Rayleigh channel, h(t), and immersed in an additive

noise, w(t), which can account also for any interference signal.

The baseband received signal can be written as:

y(t) = h(t)x(t) + w(t). (1)

Observing this baseband analogous signal at pilot positions,

npTs, returns nothing but the estimates of the channel coeffi-

cients where Ts is the sampling period of the system. Likewise,

the received signal can be sampled at the rate 1/Ts to provide

a set of N discrete observations {y(nTs)}N−1
n=0 from which the

channel can be tracked and estimated at both pilot and non-

pilot positions, nTs. Without loss of generality, we assume that

a set of estimates of N equally-spaced channel coefficients,

{ĥ(nTs)}N−1
n=0 , are made available to the receiver by any channel

estimation technique and given by:

ĥ(nTs) = h(nTs) + w(nTs), n = 0, 1, 2, · · · , N − 1, (2)

where w(nTs) is the estimation error component modelled

by a white circular complex Gaussian random variable with

mean zero and variance σ2
n. The statistics of the actual channel

coefficients are governed by the unknown Doppler spread to be

obtained from the estimates {ĥ(nTs)}N−1
n=0 . For instance, for the

very specific case of the unifrom Jakes’ model, the channel au-

tocorrelation coefficients, rh(kTs) = E{h(nTs)h((n + k)Ts)
∗}

where “*” denotes complex conjugation, are given by:

rh(kTs) = J0(
√
2kσdTs) = J0(2πkFdTs),

where J0(.) is the zero-order Bessel function of the first kind

and the second equality follows from the relationship between

the maximum Doppler frequency and the Doppler spread in the

uniform Jakes σd = 2πFd/
√
2. In general, this relationship can

be explicitly found from the following identity:

σd =

(∫ 2πFd

−2πFd

f2S(f)df

)1/2

, (3)

where S(f) is the PSD of the model (i.e., the Fourrier transform

of the channel autocorrelation coefficients). For instance, for the

3-D scattering model (i.e., flat PSD), the relationship becomes

σd = 2πFd/
√
3 [17].

As mentioned previously, a distinct advantage of the new ML

estimator is its capability of estimating the Doppler spread with

almost all known models (cf. Section I) without even knowing

its PSD form. For the sake of clarity in the derivations that will

follow, it is more convenient to rewrite (2) in a vector form:

ĥ = h+w, (4)

where

ĥ = [ĥ(0), ĥ(Ts), ĥ(2Ts), · · · , ĥ((N − 1)Ts)]
T ,

h = [h(0), h(Ts), h(2Ts), · · · , h((N − 1)Ts)]
T ,

w = [w(0), w(Ts), w(2Ts), · · · , w((N − 1)Ts)]
T ,

We also mention that the expressions “received samples” and

“estimated channel coefficients” will be henceforth used inter-

changeably to refer to the available observations {ĥ(nTs)}N−1
n=0 .

III. FORMULATION OF THE NEW ML ESTIMATOR

Owing to (4), it can be shown that ĥ is a circular symmetric

Gaussian random vector whose probability density function,

parameterized by the unknown Doppler spread, σd, is given by:

p(ĥ;σd) =
1

πN det{R
ĥ
(σd)}

exp
{
−ĥ

H
R

−1

ĥ
(σd)ĥ

}
, (5)

where R
ĥ
(σd) is the covariance matrix of the estimated channel,

ĥ, which is given by:

R
ĥ
(σd) = E

{
ĥĥ

H
}

= Rh(σd) + σ2
nI, (6)

in which Rh(σd) = E
{
hh

H
}

is the the covariance matrix of the

actual channel. Then, taking the logarithm of (5) and dropping

the constant terms yields the log-likelihood function (LLF) as:

L(ĥ;σd) = − log
(
det{R

ĥ
(σd)}

)
− ĥ

H
R

−1

ĥ
(σd)ĥ. (7)

At this early stage, the true challenge of the ML derivation

is obvious. Indeed, maximizing L(ĥ;σd) with respect to the

unknown parameter, σd, requires from (7) the inversion of a

large-size (N ×N ) covariance matrix and the computation of its

determinant. Hence, its computational complexity, in the order
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of O(N3) operations, increases relatively quite fast with N
(e.g., 106 operations at each point of the search grid even for

a relatively small N = 100 samples). This suggests that any

naive implementation of the ML estimator would be simply too

prohibitive in complexity. To avoid the inversion of a large-

size covariance matrix, Tsai and Young have recently proposed

in [16] an approximate LLF using a K-order Taylor series

expansion that requires the inversion of a (K×K) matrix where

K ≪ N no matter how large is N (K is typically in the range

of 10). However, this approximate LLF still requires a series

of heavy multiplications of (K × K) matrices (on the top of

the matrix inversion). Also, the reduced-size approximate matrix

being badly conditioned results in numerical instabilities (we will

further discuss this limitation later in section IV).

In this paper, we opt for a different approach that avoids any

matrix inversion or multiplication, thereby resulting in a very

easy and efficient implementation of the ML estimator. To

do so, we rely on the following second-order Taylor series

approximation of the covariance matrix, developed2 in [15],

which is valid for most known Doppler PSD models (cf. Sections

I and II):

Rh(σd) =
σ2
h

2
A(σd)A

H(σd), (8)

where

A(σd) = [a(−σd) a(σd)], (9)

in which a(σ) is a vector that contains a set of N uniform

samples from a sinusoid of frequency σ/2π:

a(σ) = [1 ejσTs ej2σTs · · · ej(N−1)σTs ]. (10)

Now, injecting (8) in (6), an explicit approximate expression for

the covariance matrix of the estimated channel is obtained:

R
ĥ
(σd) =

σ2
h

2
A(σd)A

H(σd) + σ2
nI. (11)

As a first step in our quest for finding the analytical inverse of

this (N × N ) matrix and its determinant, we begin by finding

the analytical expressions of the non-zero eigenvalues of the

matrix A(σd)A
H(σd) and their associated eigenvectors. Here,

we mention that this matrix is of rank two and thus has two non-

zero eigen-values only. Further, it is known from basic linear

algebra that the non-zero eigenvalues of A(σd)A
H(σd) and

A
H(σd)A(σd) are the same. Fortunately, the latter matrix is of

size 2× 2 and, thus, its eigen-values can be found analytically.

In fact, it can be easily shown that:

A
H(σd)A(σd) =




||a(−σd)||2 a
H(−σd)a(σd)

a
H(σd)a(−σd) ||a(σd)||2


 . (12)

Then, it can be easily shown that ||a(−σd)||2 = ||a(−σd)||2 =
N and

a
H(−σd)a(σd) =

N−1∑

n=0

ejn(2σdTs)

=
sin(NσdTs)

sin(σdTs)
ej(N−1)σdTs . (13)

2See the details in the Appendix of [17].

Hence, by denoting b(σdTs) = sin(NσdTs)
sin(σdTs)

ej(N−1)σdTs), the

matrix A
H(σd)A(σd) is explicitly given by:

A
H(σd)A(σd) =




N b(σdTs)

b(σdTs)
∗ N


 . (14)

After some relatively easy derivations, the two eigenvalues, σ1

and σ2, of this matrix can be found as:

N ±
∣∣∣∣
sin(NσdTs)

sin(σdTs)

∣∣∣∣ = N ± sin(NσdTs)

sin(σdTs)
, (15)

the second expression in the equation above being dependent on

the signum of sin(NσdTs)/ sin(σdTs). In the sequel, we will

assume without loss of generality that
sin(NσdTs)
sin(σdTs)

≥ 0 and set:

σ1 = N +
sin(NσdTs)

sin(σdTs)
(16)

σ2 = N − sin(NσdTs)

sin(σdTs)
(17)

Otherwise, we would just need to swap the definitions of σ1 and

σ2, if
sin(NσdTs)
sin(σdTs)

< 0, to always have σ1 > σ2. And their cor-

responding eigenvectors would be swapped accordingly thereby

resulting in the same decomposition. Then, it can be easily shown

that [|b(σdTs)| b(σdTs)
∗]T and [|b(σdTs)| −b(σdTs)

∗]T are two

eigenvectors associated with σ1 and σ2, respectively, which upon

normalization, yield the following two unit-norm eigenvectors:

v1 =
1√
2

[
1 e−j(N−1)σdTs

]T
(18)

v2 =
1√
2

[
1 − e−j(N−1)σdTs

]T
. (19)

These two eigen-vectors of A
H(σd)A(σd) allow us to find the

two eigen-vectors, u1 and u2, associated to the only non-zero

eigen-values σ1 and σ2 of the (N ×N) approximate covariance

matrix of interest A(σd)A(σd)
H . In fact, using the singular

value decomposition of the matrix A(σd):

A(σd) = UΣ
1/2

V
H , (20)

where V = [v1 v2], U = [u1 u2] and Σ = diag (σ1, σ2), it

can be shown from (20) that the matrix U of interest is obtained

as:

U = A(σd)VΣ
−1/2. (21)

Hence, u1 and u2 are given by:

u1 =
1√
σ1

A(σd)v1, (22)

u2 =
1√
σ2

A(σd)v2. (23)

Now, we define the matrix J as:

J =




0 · · · · · · 0 1
... . .

.
1 0

... . .
.

. .
.

. .
. ...

0 1 . .
. ...

1 0 · · · · · · 0




. (24)
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and note that:

e−j(N−1)σdTsa(σd) = J a(−σd). (25)

Therfore, taking into account (9), (18) and (22), we obtain:

u1 =
1√
2σ1

(
a(−σd) + e−j(N−1)σdTsa(σd)

)

=
1√
2σ1

(I+ J) a(−σd). (26)

Likewise, u2 is given by:

u2 =
1√
2σ2

(
a(−σd)− e−j(N−1)σdTsa(σd)

)

=
1√
2σ2

(I− J) a(−σd) (27)

After some algebraic manipulations, it can be shown that the

vectors u1 and u2 are given by u1 =
√
2√
σ1

e−j N−1

2
σdTs ũ1 and

u2 = j
√
2√
σ2

e−j N−1

2
σdTs ũ2 where :

ũ1=




cos
(
N−1
2 σdTs

)

cos
(
N−3
2 σdTs

)

...
cos
(
N−2k

2 σdTs

)

...

...
cos
(
N−2k

2 σdTs

)

...
cos
(
N−3
2 σdTs

)

cos
(
N−1
2 σdTs

)




ũ2=




sin
(
N−1
2 σdTs

)

sin
(
N−3
2 σdTs

)

...
sin
(
N−2k

2 σdTs

)

...

...
− sin

(
N−2k

2 σdTs

)

...
− sin

(
N−3
2 σdTs

)

− sin
(
N−1
2 σdTs

)




.(28)

Then, from (20), we obtain:

A(σd)A(σd)
H = UΣU

H (29)

Therefore, from (11), the approximate covariance matrix of the

received samples (or estimated channel coefficients) is given by:

R
ĥ
(σd) =

σ2
h

2
UΣU

H + σ2
nI. (30)

Now using the Woodburry identity, it can be shown that:

R
−1

ĥ
(σd) =

1

σ2
n

I− 1

σ2
n

U

(
2

ρ
Σ

−1 +U
H
U

)−1

U
H , (31)

where ρ =
σ2

h

σ2
n

is the SNR of the received signal (or channel

estimate). The unit-norm vectors u1 and u2 are orthogonal as

can be seen from (28) and thus U
H
U = I. Consequently, the

matrix 2
ρΣ

−1+U
H
U is in fact diagonal and its inverse is easily

obtained by inverting its diagonal elements. After some algebraic

manipulations, we obtain:

R
−1

ĥ
(σd) =

1

σ2
n

I− 1

σ2
n

UΣρU
H , (32)

where Σρ = diag
(

ρσ1

2+ρσ1

ρσ2

2+ρσ2

)
. The determinant of R

ĥ
is

also analytically obtained as the product of its eigenvalues as

follows:

det
{
R

ĥ

}
=

σ2N
n

4
(2 + ρσ1) (2 + ρσ2) . (33)

Finally, substituting (32) and (33) into (7) and dropping the

constant terms (that do not depend on the unknown Doppler

spread), the LLF of the system reduces simply to:

L(ĥ;σd) = log

(
(2+ρσ1)(2+ρσ2)

)
+

1

σ2
n

∣∣∣
∣∣∣Σ1/2

ρ U
H
ĥ

∣∣∣
∣∣∣
2

, (34)

This approximate likelihood expression involves the noise vari-

ance, σ2
n, and the SNR, ρ, which are also unknown in practice.

In this work, they are estimate as follows. We form a (p × p)
Toeplitz matrix from the first p estimated correlation coefficients

where p = 20. Owing to the two-ray approximation model in

(8), this matrix is also of rank 2. Therefore, its 10 (actually

p−2) smallest eigenvalues are nothing but multiple estimates of

the unknown noise variance which can be averaged together to

obtain a more refined estimate, σ̂2
n, of σ2

n. Further, the zero-lag

estimated correlation coefficient is given by r̂ĥ(0) = σ2
h + σ2

n,

from which the channel power is obtained as σ̂2
h = r̂ĥ(0)− σ̂2

n.

The SNR estimate is then obtained as ρ̂ = σ̂2
h/σ̂

2
n. Then, by

injecting these estimates in (34) and exanding the norm term,

the LLF becomes:

L(ĥ;σd) = log

(
(2+ρ̂σ1)(2+ρ̂σ2)

)
+

1

σ̂2
n

2∑

i=1

√
ρ̂σi

2 + ρ̂σi

∣∣∣uH
i ĥ

∣∣∣
2

. (35)

Then ML estimte, σ̂d, of the Doppler spread is given by:

σ̂d = argmax
σd

L(ĥ;σd) (36)

It can be easily obtained numerically with a very light grid

search. In fact, as highlighted by (35), the LLF breaks down

into the sum of two inner-product terms which can be rapidly

evaluated at each point σd of the grid3, and hence the new

estimator is of very low computational cost. This is in contrast to

the recent ML implementation introduced in [16] where, at each

grid point, its involves the numerical inversion of a (K × K)
approximation matrix and K multiplications of other predefined

matrices of the same size. Moreover, in contrast to the simple

LLF of (35) which is valid for most common Doppler PSD

models (cf. Sections I and II), the ML implementation in [16]

relies on a different Taylor series expansion for each model and,

hence, requires its unpractical knowledge a priori.

IV. SIMULATION RESULTS

In this section, we assess the new ML estimator using the

normalized mean square error (NMSE) as a performance metric.

The NMSE is computed using 2000 Monte-Carlo runs. The two

recent techniques selected as benchmarks, i.e., [16] and [17] (cf.

Section I), outperform many other state-of-the-art approaches

(see references therein). The estimator proposed in [17] is based

on a covariance matching technique and hence it is referred to

here as COMAT. The estimator proposed in [16] is referred to

here as TAML for time-domain approximate ML. For illustration

purposes, we consider the case of the uniform Jakes model. Note

that although COMAT was developed as the first estimator to be

3The procedure of estimating the noise variance and the SNR is performed
only once before the grid-search task.
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oblivious in its derivations to the Doppler PSD model, it requires

in its implementation an appropriate selection of the correlation

lags that could be sensitive to noticeable PSD model mismatches.
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Fig. 1. NMSE of the three estimators vs. FdTs at Ts = 10 µs, an SNR = 0
dB, and N = 100.

Fig. 1 shows the performance of the three estimators for an

observation window size of N = 100 samples. The new ML

estimator outperforms the two benchmark techniques over a wide

range of the normalized Doppler frequency fn = FdTs, i.e., over

0.0001 ≤ fn ≤ 0.012. On one hand, COMAT is covariance-

based and therefore suffers from a weaker averaging effect at

relatively small values of N . On the other hand, TAML suffers

from numerical instabilities due to the numerical inversion of

badly conditioned matrices. This can be observed very clearly

from the plot of different realizations of its approximate LLF

in Fig. 2(a) for a true Doppler frequency Fd = 1000 Hz.

In this figure, we see that the TAML’s LLF exhibits a true

maximum near Fd = 1000 Hz, but it is dominated by another

spurious maximum located approximately at FD = 2300 Hz

stemming from numerical instabilities. This is in contrast to the

new ML estimator’s LLF in Fig. 2(b), which is always smooth

and exhibits a single maximum relatively near the true Doppler

frequency value Fd = 1000 Hz.

Such wrong maxima make TAML extremely biased, as can

be seen from Fig. 3. This figure shows, however, that the new

ML exhibits a reduced bias. Therefore, when a larger number

of data records is available, there is room, as far as the new

ML estimator is concerned, for averaging over local windows

of size M = 100 so as to enhance the estimation accuracy.

This is depicted in Fig. 4 where we plot the NMSE of the three

estimators using N = 1000 received samples. In this figure, the

new ML approach estimates the Doppler frequency over each

block of M = 100 samples and then averages all the N/M
individual estimates as a final refined estimate. The COMAT

estimator is applied using the entire block of received samples

and, hence, its performance improves remarkably. This is due

to the fact that the correlation coefficients are quite accurately

estimated in the presence of a large number of received samples.
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Fig. 2. LLFs vs. Fd for a true Fd = 1000 Hz at an SNR = 0 dB: (a) TAML,
(b) New ML.
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Fig. 3. Estimation bias of the three estimators vs. FdTs at Ts = 10 µs, an
SNR = 0 dB, and N = 100.

Yet, the new ML estimator exhibits the best performance over the

entire Doppler range (except for a minor advantage for TAML

in the very high Doppler range). But taking into account their

performance/complexity tradeoffs and their dependence on or

obliviousness to the knowledge of the PSD shape, the new ML

approach is more cost-effective and robust as well. Finally in

Fig. 5, we plot the NMSE of both COMAT and the new ML

estimator for a 3-D flat PSD model. TAML is not plotted here

since it is mainly derived for the uniform Jakes. It is seen that the

new ML outperforms COMAT over a wide range of normalized

Doppler spreads. This stems from the increased robustness of the

new ML estimator to the Doppler type since it applies directly to

the received samples without the need for an appropriate choice

of the correlation lags as required by COMAT (cf. above).
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an SNR = 0 dB, and N = 1000.

V. CONCLUSION

In this paper, we derived a new ML estimator for the Doppler

spread geared toward current and next generations of high-

data-rate wireless communication systems. Indeed, it is able to

accurately estimate extremely low normalized Doppler frequen-

cies that are typical of these new systems. It is applicable to

most used Doppler types without knowledge of their models

and, hence, exhibits an unprecedented robustness to their PSD

shape . In contrast to all previous ML implementations, the new

estimator does not involve any numerical matrix inversion and

therefore requires a relatively very low computational cost. It

also outperforms the state-of-the art estimators over a wide range

of the normalized Doppler spread, more so at the very useful low

values region that is typical of current and next generations of

high-data-rate wireless communication systems.
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