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Abstract—Underground narrow-vein mines result in complex
indoor scenarios which require sophisticated localization tech-
niques to maintain basic security measures. While some tradi-
tional localization systems use the triangulation techniques for
outdoor channels, fingerprint positioning techniques are mostly
used in more complex indoor environments like mines. One
of the techniques exploited in the quasi-curvilinear topology of
underground mines is the Channel Impulse Response (CIR) based
fingerprint positioning combined with Artificial Neural Networks
(ANNs). This article innovates a CIR-based positioning technique
within a cooperative memory-assisted approach that exploits both
the temporal (from different time instances) and spatial (from
different space positions) diversities of the collected fingerprints.
Introducing memory-type signatures in a cooperative localization
technique within the spatial confinements of the tunnel-shaped
narrow-vein mines significantly increases the accuracy, preci-
sion and robustness of the localization system. The cooperative
memory-assisted technique is capable of localizing a transmitter
with an accuracy of less than 25 cm 90% of the time.

Index Terms—Indoor localization, channel impulse response,
artificial neural network, fingerprinting technique, cooperative
localization, tracking, spatial diversity, temporal diversity.

I. INTRODUCTION

Chile August 2010, the mine collapsed and many miners
were trapped. It took the rescue team 69 days to find the
first miner, and 10 weeks to rescue the rest [1]. Localizing
miners/equipments in underground and confined areas is not
a feature added for luxury, but an essential basis for the
well-known principle of the mining industry, ”Safety First”.
However, the special nature of narrow-vein mines’ topology
which is made of interconnected tunnels challenges any lo-
calization system expected to precisely estimate the location
of miners underground. Like most wireless localization sys-
tems, the distance to the transmitter is estimated based on
the received signals’ characteristics after being affected by
the channel. In underground narrow-vein mines, wireless
signals propagate within humid rough surfaces and non-line
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of sight (NLOS) branching tunnels forming complex mul-
tipath components. The received signals’ components such
as the Received Signal‘s Strength (RSS), Angle of Arrival
(AOA), Time of Arrival (TOA) and Time Difference of Arrival
(TDOA) are altered once multipath reception takes place. And
since most traditional localization systems use one or more of
the mentioned parameters (i.e., RSS, AOA, etc ...) to localize
[8] [9] [10] [11] [12], they fail once deployed in underground
narrow-vein mines. Another challenge present in narrow-vein
mines is the spatial confinement of the interconnected quasi-
curvilinear tunnels which prevents a 2D-meshed deployment
of localizing units or access points (APs) to further increase
the accuracy and precision of underground geo-location.

A search for an alternative led to the innovation of a
localization technique that uses artificial neural networks
(ANNs) and fingerprints collected from the channel’s impulse
responses (CIRs) [2]. The system accurately estimates the
distance to a transmitter using one receiver only (i.e., solitary
localization) with an estimation error of less than 2 meters for
90% of the collected measurements. Since wireless coverage
requires more than one AP in the confinement of narrow-vein
mines, the use of another localizing unit introduces geolocation
as a cooperative technique that exploits the spatial diversity
of the collected fingerprints. The cooperative memoryless
localization technique using two receivers later proposed in
[3] reduces the location error to less than 1m for 90% of
the data making use of two spatially distinct fingerprints to
better estimate the user’s location. It also introduces two
ANN structures that exploit these two fingerprints separately
or jointly to better estimate cooperatively the position of the
miner in underground narrow-vein mines.

The spatial confinement of the tunnel-shaped topology of
narrow-vein mines facilitates the prediction of the patterns of
motion. In other words, training ANNs on different motion
patterns collected at short time instances enriches the set of fin-
gerprints corresponding to the transmitter’s positions. In some
localization techniques [15] [16] [17], tracking is a process
that follows estimating the position of the users (i.e., post-
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processing the results). Few are the techniques that implement
a prioiri tracking within an ANN-based localization system.
Enhancing the accuracy within this spatial confinement is
possible once the system exploits the temporal diversity of
the collected fingerprints over short periods of time, a concept
proven more recently to be right and promising in [4]. Using
one localizing unit, the technique in [4] takes advantage of
the limited motion patterns (i.e., spatial confinement) to create
a rich database used for fingerprint positioning. The memory-
assisted system in [4] targets position accuracies of less than
40 cm for 90% of the collected fingerprints. Yet, the local-
ization system in [4] which exploits the temporal diversity
of the collected fingerprints uses one localization unit only,
which means that it can be further enhanced once introduced
in a cooperative memory-assisted technique that exploits both
the spatial and temporal diversities of the signatures.

This article introduces a cooperative memory-assisted lo-
calization technique that exploits both the spatial and tem-
poral diversities of the assembled signatures. The power of
a spatio-temporal fingerprint is in its ability to project the
signal on two spatially separated receivers with an additional
projection in time (i.e., by introducing memory). ANNs are
trained to localize all different scenarios of motion in a
cooperative localization technique that takes into account the
signatures of two APs. The next section highlights different
CIR-based fingerprint positioning techniques that use ANNs
to localize. The cooperative memoryless (i.e., exploiting the
spatial diversity only) [3] and the memory-assisted (i.e., using
the temporal diversity only) [4] localization techniques are
briefly summarized. In section 3, the cooperative memory-
assisted localization technique that exploits both the spatial
and temporal diversities is introduced. Simulation results are
reported and discussed in section 4. Conclusions are drawn
out in section 5.

II. LOCALIZATION IN MINES USING CIR-BASED
FINGERPRINTING AND ANNS

The fingerprinting or scene analysis technique is used in
scenarios where the channels cannot be easily modeled due
to the severe distortion that signals encounter on their way
to the receiver. Fingerprint positioning is based on extracting
some of the parameters of the received signals (i.e., RSSs,
AOAs, etc ...) at different distances and saving them in a
database. Different matching algorithms such as probabilistic
methods, k-nearest neighbour (kNN), support vector machine
(SVM) or ANNs are then used in real-time scenarios to
localize [6] [7]. These algorithms try to match the collected
fingerprint to the saved measurements in order to estimate
the distance to the transmitter. In underground narrow-vein
mines, localization based on RSS, AOA, or TDOA is neither
accurate nor precise [2] [5] [3]. Increasing the accuracy
of position estimation in confined areas requires deploying
more APs to overcome the multipath components and the
signals’ fluctuation effects. Another approach to accurate
positioning innovated in [2] uses seven parameters extracted
from the CIR of the received signal to form a fingerprint.

The parameters are the mean excess delay (τ̄ ), the root mean
square (τrms), the maximum excess delay (τmax), the total
power of the received signal (P ), the number of multipath
components (N ), the power of the first arrival (P1) and the
delay of the first path component (τ1). A fingerprint is denoted
by f = (τ̄ , τrms, τmax, P,N, P1, τ1) and it corresponds to
a distance d. Due to the narrow quasi-curvilinear topology
of underground tunnels and for simplicity, the distance to
the transmitter d is taken along the x-axis only neglecting
the small variation along the tunnels’ confined width (i.e.,
y-axis). It is also a way to ensure that the localization system
takes into account the fluctuations of wireless signals for
the same position (i.e. more than one fingerprint f may
represent the same separation distance d). A measurement
campaign at a carrier frequency of 2.4 GHz was carried out
in CANMET mine in Val d’Or Canada where the fingerprints
were extracted along with their corresponding distances for
480 positions as illustrated in Fig. 1. It should be noted
that the distance between the consecutive measurement
points along the x-axis is one meter. Mapping the set of

Fig. 1. Map of the underground tunnels.

fingerprints S = {f1, f2, f3, ..., fn} to the corresponding set
of distances D = {d1, d2, d3, ..., dn} is successfully achieved
using ANNs. The measurements conducted in [2] for the
stationary positions along the tunnel as shown in Fig. 1
are used to simulate memory-type fingerprints. For more
technical information about the experimental setup, please
refer to [2].

ANNs are defined as computational models capable of
approximating a function. They are capable of performing non
linear regressions which make them suitable for localization
in harsh environments [2] [13] [14]. The power of ANNs
is that they are relatively simpler than traditional estimation
techniques such as Kalman filters especially when modeling
a non-linear function which is, in our case, of order 7 (i.e.,
seven parameters as inputs). An MLP feed-forward ANN with
a back-propagation learning algorithm is proven effective
for underground geo-positioning [2] [5] [3] [4]. During
the learning phase, the neural network is given the training
data that corresponds to 75% of the collected measurements.
Then, in the testing phase, ANNs are tested using 25% of the
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fingerprints which are not seen in the training phase.
The solitary memoryless localization system used in [2]

estimates the distance to the transmitter instantaneously
based on fingerprints extracted from the CIR of the received
wireless signals. As shown in Fig. 2, this technique accurately

Fig. 2. Solitary localization using one receiver.

localizes based on the input of one localizing unit (i.e.,
one receiver or AP). A simple neural network with 7
input neurons, one hidden layer provides the transmitter’s
distance with an approximate accuracy of less than 2 m
for 90% and 80% of the training and testing data, respectively.

A. Cooperative Memoryless Localization using Spatial Diver-
sity

A global localization system requires the participation of
multiple APs in estimating the transmitter’s location within the
quasi-curvilinear topology of underground narrow-vein mines.
However, only the two nearest APs found at either end of any
given section of a mine tunnel are needed to guarantee its
wireless coverage. The cooperative memoryless localization
system in [3] exploits spatial diversity taking advantage of the
implemented APs to collect different fingerprints. As shown

Fig. 3. Cooperative localization using two receivers.

in Fig. 3, the use of two APs within the spatial confinement
of the tunnels not only enhances the accuracy of the esti-
mated distance, but also provides correct positioning inside
the quasi-curvilinear interconnected tunnels. In the cooperative
approach, the sets of fingerprints SR1 = {f1, f2, f3, ..., fm}
and SR2 = {f ′1, f ′2, f ′3, ..., f ′m} are collected from receivers
R1 and R2, respectively. Two different ANN architectures are
presented in [3] and both accurately estimate the position
of the transmitter. One of the ANN designs is shown in Fig.
4 where the set of fingerprints S = {F1, F2, F3, ...., Fm} =
{(f1, f ′1), (f2, f

′
2), (f3, f

′
3), ..., (fm, f

′
m)} is the concatenation

of both observations, SR1 and SR2 . The output of the ANN
is the estimated distance to one of the transmitters D =
{d1, d2, d3, ..., dm}. The exploitation of the spatial diversity
of the collected fingerprints introduced a cooperative version
of the CIR-based fingerprint positioning technique in [2] for
underground geolocation and hence significantly increased its
accuracy, precision and reliability.

Fig. 4. Neural network based on multiple signatures.

B. Solitary Memory-Assisted Localization using Temporal Di-
versity

The accuracy of the cooperative memoryless technique
discussed in Sec. II-A may only be enhanced by increasing
the number of APs which is not practical given the spatial
confinement of narrow-shaped tunnels. However, the narrow
curvilinear topology is an advantage because it facilitates
the prediction of the user’s motion patterns. The memory-
assisted localization technique in [4] utilizes the narrow-
shaped topology to introduce an in-built tracking model that
exploits the temporal diversity of the recorded fingerprints.
The path fingerprint f ji =

(
fit0 , fit−1

, fit−2
..., fit−(l−1)

)
represents a concatenation of the fingerprints recorded in time
while moving towards a destination to be estimated (i.e., at
a distance di). More than one path can lead to the same
position to be estimated, i.e., more than one path fingerprint
f ji correspond to the same distance di. While l represents the
number of concatenated fingerprints or the so called memory
level in [4], j is simply an index number that counts the
number of possible tracks to a desired destination at a given
memory level l. The terms memory level l and time depth
are used interchangeably in the article and they represent
the number of concatenated memory-type sub-fingerprints that
constitute the temporal fingerprint for a given position at
distance di away from R1. The maximum number of path
fingerprints jmax for a given position is limited by the upper
bound Nfp :

jmax ≤ Nfp = 5(l−1).

Since each fingerprint contains 7 parameters, the length of the
temporal fingerprint defines the number of inputs of the ANN
and it is given by:

Ninputs = 7l.

The design of the ANN depends on l because the number
of neurons in the input layer is equal to the length of the
path fingerprint Ninputs. The number of neurons in the hidden
layer is Nn = 2Ninputs + 1 for all architectures and the
output is the distance to the transmitter. Figure 5 illustrates
a simple fingerprint allocation for one position when l = 2.
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Fig. 5. Possibilities of previous positions for l = 2.

The star represents the current position of a transmitter located
at a distance di to be localized showing the previous possible
positions 1. While respecting the spatial boundary limits of
the tunnels, any previous position is selected to create the
potential path fingerprints. The length of the combinatorial
set of fingerprints for the same position is dependent on l
and the geometry of the narrow tunnels. In this example, the
combinatorial subset of possible fingerprints collected from a
transmitter located at di (i.e., star position) within the total set
S = {S1, . . . , Si, . . . , Sm} over all distances D is:

Si =
{
F 1
i , F

2
i , F

3
i , F

4
i , F

5
i

}
.

where,
F 1
i = (fi, fi),

F 2
i = (fi, finorth

),

F 3
i = (fi, fisouth

),

F 4
i = (fi, fiwest),

F 5
i = (fi, fieast

).

are all the possible path fingerprints reaching the star posi-
tion when l = 2. The exponential increase in the number
of fingerprints Nfp due to the linear increase of temporal
memorization level l overwhelmingly enriches the information
given to ANNs about each position inside the tunnels from the
same original set of data measurements.

Speed plays a significant role in defining the sampling
time interval that precedes the collection of the memory-
type fingerprints. In order to allow the same trained ANN to
accurately localize a transmitter regardless of its limited speed
in the confinement of narrow-vein mines, the sampling time
at which the sub-fingerprints are collected should be adjusted
accordingly. In other words, sampling time is set to allow the
extraction of sub-fingerprints measured at any two positions
(separated by the distance covered by the transmitter in motion
at a velocity below or equal to a given maximum speed) that
is shorter than the grid resolution times the memory level or
time depth.

Introducing temporal diversity and in-built tracking to the
CIR-based fingerprinting technique in [4] outperforms the
localization system in [3] in terms of accuracy, precision
and scalability within the narrow quasi-curvilinear topology
of mine tunnels. However, solitary localization using temporal
diversity alone does not benefit from the possible cooperation
between multiple localizing units (having each an overlapping

1Motion across the diagonals is excluded because it exponentially increases
the combinatorial set of path fingerprints without a significant gain.

radio footprint with their two nearest adjacent neighbors)
required anyway for proper coverage of the whole mine
galleries and, additionally, it cannot resolve the location am-
biguity arising from the presence of tunnel junctions. On the
other hand, as shown in the following, the collaboration of
memory-assisted localizing units (i.e., spatio-temporal diver-
sity) with lower memory levels allows significant reduction
of the complexity encountered when using solitary memory-
assisted localization performing at higher time depths while
offering better accuracy.

III. COOPERATIVE MEMORY-ASSISTED LOCALIZATION
EXPLOITING SPATIO-TEMPORAL DIVERSITIES

Based on a combination of the two previous solutions, an
even more intelligent localizing system integrates the in-built
tracking technique at a given memory level l in a coopera-
tive spatial localizing system (i.e., spatio-temporal diversity).
This leads to higher performances that could match those of
memory-assisted localization alone at higher memory levels l
(i.e., only time diversity). Mixing both spatial and temporal
diversities is a technique that further enriches the information
given to ANNs resulting in a better mapping of the limited
motion patterns in narrow quasi-curvilinear tunnels.

This work innovates a localization system that uses the
memory capability (i.e., in-built tracking) cooperatively be-
tween two spatially-separated localizing units before esti-
mating the position of the transmitter. Within the spatial
confinement of the tunnels and over short periods of time,
the signatures recorded at consecutive time instances and
collected from two spatially-separated receivers guarantee
less-fluctuating spatio-temporal fingerprints. Unlike the sys-
tem introduced in [4] which exploits the temporal di-
versity of a solitary receiver, this approach creates chains
of path fingerprints from two nodes before training the
ANNs. The scalability of the system allows the ANNs to
be trained to localize at different separation distances D and
memory levels l. The subset of path fingerprints SR1

i ={
FR1,1
i , FR1,2

i , FR1,3
i , ..., FR1,jmax

i

}
collected from R1 at a

distance di is properly combined path-wise with the other
subset SR2

i =
{
FR2,1
i , FR2,2

i , FR2,3
i , ..., FR2,jmax

i

}
gathered

from R2 at a distance d2 = D−d1 to form the spatio-temporal
group of path fingerprints:

Si =
{

(FR1,1
i , FR2,1

i ), (FR1,2
i , FR2,2

i ), (FR1,3
i , FR2,3

i ), ...,

(FR1,jmax

i , FR2,jmax

i )
}
.

As discussed earlier in Sec. II-B, the length of the temporal
fingerprint is dependent on the memory level l of the solitary
receiver where localization is taking place. If we consider two
spatially separated APs each collecting fingerprints at different
time depths, we may create different scenarios denoted by
(l1, l2) corresponding to receivers (R1, R2) respectively. For
example, localizing a transmitter at a distance di and time
instant t0 with memory levels (l1 = 2, l2 = 1) is achieved
by matching the measured spatio-temporal fingerprint Fi =
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(FR1
i , FR2

i ) where

FR1
i = (fR1

it0
, fR1

it−1
),

FR2
i = (fR2

it0
).

For (l1 = 2, l2 = 1), R2 provides a fingerprint FR2
i of

length 7 (i.e., memoryless fingerprint) while the fingerprint
FR1
i collected from receiver R1 is the concatenation of two

fingerprints recorded at the time instances t0 and t−1 (i.e.,
memory-assisted fingerprint of length 14). Concatenating two
fingerprints from two spatially separated receivers where at
least one is introducing memory creates a spatio-temporal fin-
gerprint for a given position. The length of the spatio-temporal
fingerprint defines again the number of inputs Ninputs of the
ANN and it is dependent on both l1 and l2 where:

Ninputs = 7(l1 + l2).

IV. PERFORMANCE RESULTS

The results of the localization techniques are presented
using the Cumulative Density Function (CDF). CDF plots
show the accuracy of the positioning technique (i.e., position
error in meters) for a given percentage of the treated data.
As mentioned earlier and shown in the following graphs, 75%
of the collected fingerprints are trained by the ANN whereas
25% are left for testing the generalization of the ANN of
any technique. These results are plotted in Figs. 6 and 7 and
summarized in Tab. I.

The performance results of the spatio-temporal fingerprint
positioning technique are compared to the localization tech-
nique that uses either spatial or temporal diversity alone. The
memory levels of receivers R1 and R2 are denoted by l1
and l2, respectively. If one of the receivers is not partici-
pating in the localization process (i.e., solitary localization),
its memory level is presented as l = 0. On the other hand,
memoryless localizing units use one fingerprint to localize (i.e,
l = 1) without the need of fingerprint concatenation. When
the memory level is set to l > 1, the localizing unit would
be concatenating fingerprints in short time instances before
feeding them to the ANN. The notation (l1, l2) shows the
different memory levels at which both receivers are performing
their fingerprint allocation. Both observations from R1 and
R2 are concatenated again and fed to a cooperative ANN that
estimates the position of the transmitter.

Merging the temporal path fingerprints of two spatially
different receivers and feeding them as one concatenated
spatio-temporal fingerprint to one ANN is a breakthrough
in the fingerprint positioning techniques (i.e., cooperative
memory-assisted technique). The results of spatio-temporal
localization are compared to the techniques discussed in II
and presented in Figs. 6 and 7 for the training and testing
data, respectively. These results clearly show the increased
accuracy of spatial and temporal combination in the CIR-based
localization approach.
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Fig. 6. CDF of the training data for different localization techniques at
memory levels (l1,l2).
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Fig. 7. CDF of the testing data for different localization techniques at memory
levels (l1,l2).

Cooperative memory-assisted localization is a result of the
collaboration of the receivers when at least one of them is
introducing memory (i.e., producing path fingerprints). In the
first cooperative memory-assisted approach, R2 is kept at a
memory level l2 = 1 (i.e., without memory) while R1’s
memory level varies (i.e., l2 = 2, 3). In memory-assisted
techniques, it is noticed that the cooperative approach that
adds spatial diversity to the fingerprints performs better than
the solitary technique even when the length of the fingerprints
is the same. For example, solo memory-assisted localization
at (l1 = 3, l2 = 0) is less accurate than cooperative memory-
assisted localization at (l1 = 2, l2 = 1) even though both
path fingerprints are of length 21. In addition to that, when
(l1 = 3, l2 = 1), merging spatial and temporal information
further increases the location accuracy to values less than
40 cm surpassing the upper limit of solitary memory-assisted
localization when (l1 = 5, l2 = 0).

In the second cooperative memory-assisted approach, both
receivers use in-built tracking or memory to form their finger-
prints. Surprisingly, a one step increase in the memory level
of R2 creates uniform spatio-temporal fingerprints where two
references in time are taken from two receivers in space. As
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shown in Figs. 6 and 7, location accuracy of the last curve
drops to 20 cm and 25 cm for 90% of the training and testing
data, respectively. It may be seen that the accuracy of a 2-by-
2 spatio-temporal localization system [i.e., (l1 = 2, l2 = 2)]
is double the accuracy of a 1-by-1 cooperative spatial system
[i.e., (l1 = 1, l2 = 1)].

TABLE I
ESTIMATION ERRORS OF DIFFERENT LOCALIZATION TECHNIQUES

Localization Technique with 90% Precision
Training

Errors

(m)

Testing

Errors

(m)

Spatial localization using one receiver [2] 1.5 2
Cooperative spatial localization based on separate ANNs [3] 1 1
Cooperative spatial localization based on one super ANN [3] 0.6 1

Solo memory-assisted localization [4]

(l1 = 2, l2 = 0) 1 1.25
(l1 = 3, l2 = 0) 0.75 0.8
(l1 = 4, l2 = 0) 0.5 0.5
(l1 = 5, l2 = 0) <0.5 <0.5

Cooperative memory-assisted localization
(l1 = 2, l2 = 1) 0.48 0.62
(l1 = 3, l2 = 1) 0.38 0.43
(l1 = 2, l2 = 2) 0.20 0.25

As shown by the results above, cooperative memory-assisted
localization outperforms other memoryless/memory-assisted
localization techniques even at lower memory levels or time
depths. An optimum solution would uniformly exploit spatial-
temporal (i.e., l1 = l2 > 1) to overcome the spatial
confinement of the environment and significantly utilize the
limited motion patterns inside the quasi-curvilinear tunnels.
The spatio-temporal localization technique localizes with high
accuracy, precision and scalability.

V. CONCLUSION

This article investigated the CIR-based localization tech-
niques and innovated the spatio-temporal fingerprint position-
ing technique that uses ANNs. The concept of localization us-
ing the spatio-temporal diversity in underground narrow-vein
mines is satisfied when fingerprints are recorded at short time
periods and collected from two spatially separated receivers.
This cooperative memory-assisted localization system (i.e., 2-
by-2) is able to attain higher accuracies at lower memory
levels using ANNs. The estimation error is reduced to 20 cm
and 25 cm for 90% of the training and testing fingerprints,
respectively. The proposed system is feasible given that its
complexity is still affordable, and that it could be integrated
into different wireless technologies.
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