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Abstract- We address the problem of direction of arrival (DOA) 
finding for uniform linear arrays (ULAs). We derive a new and 
very simple method for estimating the DOA of a single source 
based on the covariance matrix of the received signal. The new 
method is non-data-aided (NDA) and does not therefore impinge 
on the whole throughput of the system. The noise components 
are assumed spatially and temporally white. The new method is 
derived in closed form and it exhibits exactly - over a wide 
practical SNR range - the same performance of the popular 
root·MUSIC algorithm, a powerful DOA estimation technique 
for ULA configurations. Therefore, the new estimator offers a 
way for a rapid and very easy DOA evaluation; making it very 
attractive for practical implementation as compared to the root· 
MUSIC algorithm that relies on the heavy operation of eigen 
decomposition. 

I. INTRODUCTION 

From radar to sonar and cellular wireless communications, 
direction of arrival estimation has attracted a lot of interest 
during the last decades; and intensive research works have 
been conducted on this hot topic. Many DOA estimators 
were derived over the years and, roughly speaking, they can 
be categorized into two major categories: inphase/quadrature 
(I1Q)-based algorithms and moment-based algorithms. The first 
category includes in particular the maximum likelihood (ML)­
based approaches such as the ML techniques introduced in [1], 
the decoupled maximum likelihood (DEML) angle estimator 
[2] and the modified likelihood (MML) function approach 
[3]. These estimators that solve the ML criterion provide 
usually very accurate DOA estimates but they suffer from a 
very high computational burden; making them even impossible 
to implement in practical situations where the computational 
cost is a crucial design parameter. This is for example the 
case of mobile phones where the complexity should be kept 
at the lowest possible level in order to increase the battery 
autonomy. To circumvent this challenging problem, the ML 
estimators can be derived in closed form in the data-aided DA 
case where a training sequence (a sequence that is perfectly 
known to the receiver) is periodically transmitted. But, in 
counterpart, this training overhead has the major drawback 
of limiting the whole throughput of the system. Therefore, 
there has been a need for deriving completely blind (or NDA) 
estimators which should also be easily implemented. In this 
context, an interesting class of the so-called moment-based 
estimators which base the estimation process only on the 
envelope of the received signal (blind) were derived in the 

literature. They are much less computationally demanding than 
the NDA ML-based approaches. These include the multiple 
signal classification (MUSIC) estimator [4], estimation of signal 
parameters via rotational invariance technique (ESPRIT) [5] 
and the root-MUSIC algorithm [6]. These pioneering high­
resolution techniques, which were initially formulated in the 
context of direction finding, have been also successfully applied 
in many other applications in the field of signal processing. 

In particular, the root-MUSIC algorithm is a powerful esti­
mation technique especially for ULA systems and it provides 
very accurate estimates even for low SNR values. Surely, it 
is simpler than the ML-based technique, but still it requires a 
complex operation of eigen decomposition whose complexity 
increases substantially with the array size. Thus, avoiding 
this computationally demanding operation is essential for the 
purpose of power saving in situations of scarce energy; such 
as satellite communications where the solar energy is the only 
source of power or wireless sensor networks where nodes even 
rely sometimes on energy harvesting. 

Motivated by these facts, in this paper we derive a new 
moment-based technique for DOA estimation of a single source 
signal impinging on a receiver equipped with a ULA of receiv­
ing antenna elements. The single source case is encountered, for 
instance, when dealing with CDMA signals after performing the 
de spreading operation. Indeed, one single source corresponding 
to the desired signal will be preserved through constructive 
correlation and any other source will be dramatically reduced by 
destructive correlation and incorporated in the noise component. 
The single source model can also be obtained in case of multi­
source transmissions for which an algorithm of blind source 
separation (BSS) is applied as a post treatment. Afterward, the 
observation obtained for each source will follow a single-source 
model; for which our newly derived method can be adequately 
applied to estimate the DOA of corresponding source. 

The new method exhibits exactly the same performance -
over a wide range of practical SNRs - of the root-MUSIC 
estimator. Yet, it is derived in closed form and hence it is much 
easier to implement in practice and also has a much lower 
computational cost (no eigen decomposition). In other words, 
the new method can be thought of as the closed-form version 
of the root-MUSIC estimator when a single source is active. 

The rest of this paper will be organized as follows. In 
section II, we will introduce the system model that will be used 
throughout the article. In section III, we will derive the new 

978-1-4577 -1348-4/11/$26.00 ©2011 IEEE 1944 



DOA estimator. In section IV, we will assess the performance of 
the new estimation technique through Monte-Carlo simulations 
and concluding remarks will be drawn out in section V. 

II. SY STEM MODEL 

We consider a uniform linear array (ULA) with Na antenna 
elements receiving a planar wave impinging from a single 
source. The transmitted symbols are assumed to be independent 
and equally likely drawn from any M -ary constellation. Further, 
assuming perfect frequency synchronization, the received signal 
on the {ith} �1 antenna element, at the output of the matched 
filter, can be modeled as a complex signal as follows 1: 

Yi(n) = hej(i-l)7r sin(e)a(n) + Wi(n), i = 1,2, ... ,Na (1) 

where j is the complex number verifying j2 = -1. Moreover, 
at time index n, a( n) is the transmitted symbols, and Wi (n) 
is the noise component on the ith antenna branch that is 
modelled by a zero-mean complex Gaussian random variable 
with independent real and imaginary parts, each of variance 0"2. 
h is the complex channel coefficient (i.e., h = IhleN with ¢ 
standing for any possible channel distortion phase). Moreover () 
is the unknown DOA of the wave impinging from the far-field 
source. We assume hereafter that the noise components w(n) = 
[wl(n), w2(n),··· , WNa(n)V are spatially uncorrelated, i.e., 
E{w(n)Hw(n)} = 0"2INa where INa is the Na x Na identity 
matrix. We also assume that the energy of the transmitted signal 
is normalized to one, i.e., E{la(n)1 2} = 1). Then we define the 
SNR of the system as follows: 

p = E{lhl��
2
(nW} = �;:. (2) 

III. FORMULATION OF THE NEW MOMENT-BASED DOA 
E STIMATOR 

The new estimator is primarily based on the second-order 
cross moments of the received signals on the antenna array. In 
fact, the cross-moment between the received signals on the ith 
and the kth receiving antenna elements, is given by: 

Me(i, k) = E{Yi(n)y.\;(n)}, i, k = 1,2,··· ,Na. (3) 
Then using the fact that the transmitted symbols are iid and the 
noise components are spatially and temporally white, Mo(i, k) 
reduces simply to: 

for i = k 
(4) 

for i =I=- k 

Actually, {Mo(i, k)}f,k=1 are the entries, [ M(9 )] i, k , of the 
autocovariance matrix, M(9), of the received signal y(n) = 
[Yl(n), Y2(n),···, YNJn)V which is defined as M(9) = 
E{y(n)yH (n)}. 
Next, since M(9) is a Hermetian matrix, we will only consider 
the elements contained in the lower triangular matrix obtained 

1 Note here that receiving antenna elements are supposed to be spaced by half 
the wavelength, i.e., d = ),,/2 where d is the distance between two consecutive 
antenna branches and ).. is the wavelength. 

from M(9). Therefore, from now on, the counters i and k 
always verify i > k. Actually, the unknown DOA will be 
estimated from the phases of the estimated cross-moments, 
{Me(i,k)h>k' which are found by simple sample averaging 
as follows: 

N 
Me(i, k) = � L Yi(n)y'\;(n), i = 1,2,··· ,Na, k::; i. (5) 

n=1 
First, we notice from (4) that the cross-moments Mo(i, k) that 
belong to the same diagonal have the same expression, i.e., 
whenever i -k = l for l = 1,2,··· ,Na -1, we have: 

Mz(()) Me(i + l,i) i=1,2,···,Na-l, 
Ihl 2ej7rZ sin(e). (6) 

Therefore, Me(i, k) can be averaged over all the pairs (i, k) 
verifying i -k = l to obtain a more refined set of moments, 
{MZ(())}�I-\ as follows: 

- 1 "' -
Mz(()) = N -l � Me(i, k), l = 1,2,··· ,Na -1. (7) a i-k=Z 

Then the more accurate cross-moments Mz(()) (compared to the 
elementary cross-moments Mo(i, k» can be used to obtain a 
set of more accurate estimates, {B} �1-1 

, of the unknown DOA. 
In fact, we define the following statistic: 

az(()) = arg (Mz(())) , (8) 

where arg(.) returns the argument or the angle of any complex 
number, respectively. Note here that an accurate estimate, az  (()), 
of az (()) can be obtained as: 

a z  (()) = arg (M (())) , (9) 

from which an estimate, ()z, of () can be obtained for each 
l = 1,2, ... ,Na. However, it should be kept in mind that the 
function arg(.) as used in (9) will not alw�s return the quantity 
7rl sin( ()) that appears in the argument of Mz (()). This is because 
7rlsin(()) may not always be confined in [-7r,7r]. Indeed, this 
is only true for l = 1 since -1 < sin( ()) < 1 and therefore 
-7r < 7rsin(()) < 7r. Yet, this initial estimate obtained in the 
special case of l = 1 can be used to obtain other estimates for 
l = 2,3, ... ,Na -1, as explained subsequently. 
To begin with, it is easy to see that al(()) = 7rsin(()). Thus, 
the first estimate is simply obtained from a1 (()) as follows: 

� (a1(())) ()1 = arcsin -7r- . (10) 

Now having ()1 at hand, we check for each l = 2,3, ... ,Na -1, 
if Il sin(e1)1 < 1. If yes, then for this l we have az(()) = 
7rl sin( ()) and the corresponding estimate Bz is simply obtained 
as follows: 

� . (az(())) ()z = arcsm ---y;- . (11) 

If not, i.e., Ilsin(()dl = Ilsin(edl > 1 ( by assuming the 
true DOA value is () = ed, then az (()) =I=- 7rl sin( ()) and 
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the estimation procedure should then be carefully handled as 
detailed subsequently. 
In fact, in this situation, we have two cases depending on the 
sign of lsin(8), i.e., lsin(8) > 1 or lsin(8) < -1. In both 
cases, we decompose this quatity in a sum of an integer and 
a fraction, then the estimation process reduces to a task of 
calculating this fraction using the estimated moments. 

A. Case 1: if l sin( 81) = l sin(Bd > l: 

In this case, we decompose l sin(8) as follows: 

l sin( 8) = m + p, (12) 

where m is the largest positive integer verifying m < l sin(B1) 
and p is a real remainder in ]0,1[ . Then: 

1) 1f m is even, i.e., m = 2r where r E]N: In this case we 
have tfl sin(8) = 2r7f + p7f which means that: 

(13) 

and therefore al (8) = p7f meaning that: 

p = al(8) (14) 7f 
Hence, injecting (14) in (12) it follows that tfl sin(8) = 2r7f + 
al(8) from which the lth estimate of 8 is obtained as: 

� . (a1(8) m) 81 = arcsm ----;z + T . (15) 

2) 1f m is odd, i.e., m = 2r + 1 where r E]N: In this case 
we have: 

7fl sin(8) = 2r7f + (1 + p)7f. (16) 

Consequently, it can be seen that the statistic a(8) is expressed 
as 

(1  + p)7f -27f 
(p -1)7f. (17) 

Now, from (17), we obtain the value of the fraction p involved 
in (16) as follows: 

1 al (8) p= + --. 7f (18) 

Then, injecting (18) in (16) and resorting to simple algebraic 
manipulations, we obtain the lth estimate as: 

� . (a1 (8) m + 1 ) 81 = arcsm ----;z + -l- . 

B. Case 2: if l sin(8) = l sin(B1) < -l: 

In this case, we write l sin( 8) as follows: 

lsin(8)=m+ q 

(19) 

(20) 

where m is the closest (to l sin(Bd) negative integer that verifies 
l sin( 8) = l sin(B1) < m :::; -1 and q is a real negative fraction 
in ] -1,0[ . Then: 

1) 1f m is even, i.e., m = 2r where r E ��: in this case 
we have: 

7fl sin( 8) = 2r7f + q7f (21) 

and therefore al(8) = q7f. Then injecting the value of q = al;O) 
in (21), we obtain: 

� . (a1(8) m) 81 = arcsm ----;z + T ' (22) 

which is the same estimate obtained in (15) 
2) 1fm is odd, i.e., m = 2r-1 where r E �_: in this case, 

we have: 

7fl sin( 8) (2r -1)7f + q7f 
2(r -1)7f + (1  + q)7f (23) 

Then, it can be seen that al (8) = (q + 1)7f from which the 
fraction q is obtained as q = allO) - 1. Afterward, injecting q 
in (23), yields: 

. (8) _ m -1 al (8) sm - l + tfl . 

Finally, the estimate 81 is deduced as: 

Bt = arcsin (a�1) + m � 1) 
. 

which is a bit different from the one obtained in (19) . 

(24) 

(25) 

Finally, a more refined estimate of the unknown DOA can be 
obtained by averaging over all the Na -1 estimates, {Bt}{�,\-\ 
as follows: 

(26) 

IV. SIMULATION RESULTS 

In this section we assess the performance of the new es­
timator using the mean square error (MSE) as a

�
performance 

measure. The MSE is computed for the estimator 8 of the DOA, 
8, as follows: 

1 Me 

MSE(B) = - �) e(q) -8) 2, Me q=l 
(27) 

where Me is the number of Monte-Carlo simulations which is 
set to Me = 1000 for all simulations and e(q) is the estimate of 
8 during the qth Monte-Carlo run. We also consider the root­
MUSIC (RM) estimator as a benchmark for the assessment of 
our newly developed method. In fact, the RM estimator remains 
so far among the best DOA estimators (in terms of accuracy) 
for ULA configurations. 

In Fig. 1, we plot the estimation error for the two estimators 
for a true DOA value of 8 = 0.37f in the presence of 4 receiving 
antenna elements. We see that the two estimators exhibit exactly 
the same performance over the entire practical SNR range of 
[+2, 20] dB with a slight performance improvement for the 
root-MUSIC algorithm for the negative SNRs. Actually, this 
behavior holds regardles of the true DOA to be estimated. This 
can be more clearly seen from Fig. 2 where we plot the MSE 
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Fig. 1. MSE of the two estimators vs. the SNR, QPSK, Na = 4, N = 10, 
() = 0.27r. 

of the two estimators over the entire DOA range ]- 7r /2, 7r /2[ 
for two SNR values, i.e., SNR = 10 dB and SNR = 20 
dB. Furthermore, the performance improvement for the two 
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Fig. 2. MSE of the two estimators vs. the DOA for two different values of 
the DOA, 16-QAM, Na = 4, N = 50. 

estimators is also the same when the number of receiving 
antenna elements is increased. This is depicted in Fig. 3 where 
we plot the MSE for different values of Na = 4,8,16,32. In 
summary, we observe that, over a wide range of practical SNRs, 
the new simple estimator amounts to a closed-form version 
of the popular root-MUSIC estimator in the case of single­
input multiple-output (SIMO) systems with a ULA receiving 
configuration. Yet, it involves very much simpler operations 
that can be more easily implemented in practice. 
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Fig. 3. MSE of the two estimators vs. the SNR for different array sizes, 
16-QAM, N = 1000, () = 0.37r. 

V. CONCLUSION 

In this paper, we derived a new DOA estimation method for 
single planar wave impinging on a ULA antenna array. The 
noise components are assumed to be spatially and temporally 
white. The new method is NDA and based on the second­
order cross-moments of the received signals. The new estimator 
is derived in closed-form and it exhibits the same statistical 
performance of the well-known root-MUSIC estimator. It is a 
very simple method and still provides very accurate estimates; 
making it well geared toward practical implementation for 
power-sensitive systems. 
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