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Abstract—In the mining industry, knowing the position of
miners and/or equipments is an important safety measure that
reduces risks and improves the security of that facility. Being an
indoor environment, wireless transmitted signals in underground
narrow-vein mines suffer multiple kinds of distortions due to
extreme multipath and non-line of sight (NLOS) conditions.
One of the proposed solutions to accurate localization in such
challenging environments is based on extracting the channel
impulse response (CIR) of the received signal and using the
fingerprinting technique combined with cooperative artificial
neural networks (ANNs). Such localization systems use the spatial
domain where the reference localizing units are implemented at
different positions away from the transmitter. In this article, we
introduce a localization technique that uses fingerprints succes-
sively recorded in time with in-built tracking as an alternative
method to localize. Unlike the spatial-domain technique where
cooperative localizing units collect memoryless fingerprints from
different locations, this technique uses one localizing unit and
is capable of estimating the position of a transmitter precisely
using its current and previous registered fingerprints in time.
Localization using time-domain fingerprinting (i.e., tracking) and
ANNs is introduced as a new method that exploits time diversity
and improves the accuracy, precision and scalability of the
positioning system.

Index Terms—Indoor localization, channel impulse response,
artificial neural network, fingerprinting technique, cooperative
localization, tracking, time diversity.

I. INTRODUCTION

One of the vast numbers of applications of wireless com-
munication systems is position estimation or localization.
Outdoor localization systems such as the Global Positioning
System (GPS) are already in the market and are available
to anyone providing an important service that can locate the
user’s position precisely. Different localization techniques base
their estimations on one or more extracted parameters out
of the received signal such as the received signal strength
(RSS), angle of arrival (AOA), time of arrival (TOA) or the
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time-difference of arrival (TDOA). Other systems use scene-
analysis or fingerprinting techniques which include using
ANNs as matching algorithms. Once a transmitted signal is
received at different locations in space, the variation in the
signals’ fingerprint, RSS, AOA, TOA, or TDOA is calculated
and the position of the transmitter is estimated accordingly.
Nevertheless, indoor localization is still a challenging topic
due to the fact that the transmitted signals indoor undergo
several distortions caused by reflections, refractions, NLOS
regions and multipath effects. Unlike outdoor mediums where
signals relatively travel almost freely in open spaces, indoor
environments such as underground mines stem from more
complicated scenarios that need to be modeled in order to
estimate how the signal would be received after reacting
with the channel. Surveys on wireless indoor positioning
techniques [1],[2] provide multiple detailed discussions of
different localization approaches.

A new approach to localization in tunnel-shaped under-
ground narrow-vein mines is presented in [3] and is based on
extracting the CIRs of the received signal as fingerprints of the
transmitter’s positions, then using these fingerprints to localize
the source of transmission with one receiver or Access Point
(AP). Several parameters extracted from the CIR give this
approach uniqueness unlike other approaches [5],[6],[7],[8],[9]
that mainly base their fingerprints on the RSS only. However,
this technique was not able to cover the whole curve-shaped
topology of underground mines until the cooperative localiza-
tion concept was introduced in [4]. Cooperative localization
using the CIR technique benefits from the presence of multiple
receivers which collect multiple fingerprints in tunnels before
estimating the position of the transmitter. Leading to increased
accuracy and precision, the developed technique in [4] uses
different cooperative neural network techniques and exploits
the spatial diversity of the collected fingerprints. However, in
the case where spatial diversity is limited by one localizing
unit, the system in [4] fails.

In this article, we will study localization in tunnel-shaped
underground narrow-vein mines using the time-domain finger-
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print diversity (i.e., tracking) technique combined with ANNs.
This technique innovates the idea of integrating tracking within
the ANN-based fingerprint matching algorithm for localiza-
tion. The time-domain fingerprint is made up from a chain
of CIRs which are collected for the same transmitter along
its path to the position which has to be estimated. ANNs
are properly then designed based on different chain length or
memory levels then trained on all possible path scenarios. Be-
cause of the tunnel-shaped topology of underground narrow-
vein mines which is quasi-curvilinear, information about the
path that the transmitter is following within the confines of its
well-mapped galleries adds valuable input to the ANNs and
creates an accurate in-built tracking system. The following
section summarizes the concept of cooperative localization
using fingerprinting and neural networks in the spatial domain.
In section 3, localization using tracking is introduced along
with the theoretical fingerprinting approach. The results of
both the spatial (i.e., cooperation) and time (i.e., tracking)
diversity-based localization techniques are compared in section
4. In section 5, the major complexities/challenges that face the
design are highlighted along with their proposed solutions.
Finally, conclusions are drawn out in section 6.

II. LOCALIZATION USING FINGERPRINTING AND NEURAL
NETWORKS

We will briefly describe below as a background reference a
localization technique that uses the spatial domain in order to
localize a transmitter in a mine tunnel. The system is capable
of localizing a transmitter using two receivers that work
separately or cooperatively using different neural network
techniques. A more detailed discussion of these techniques
can be found in [4]. But before doing so, we will study below
the underlying fingerprinting technique from which extension
using multiple APs was developed in [4].

A. Localization in the presence of one receiver

Fig. 1. Map of the tunnel.

Due to the special nature of underground narrow-vein mines
which are made of quasi-curvilinear connected tunnels as
shown in Fig. 1, traditional wireless localization systems fail
to provide accurate positioning services. This is mainly caused

by the distortions of the basic parameters used in localization
systems due to the multipath components and NLOS scenarios
present in such environments. In such cases, the fingerprinting
technique becomes a very promising alternative in that it
confers to each position a specific fingerprint that is then
identified by the localizing units using different matching
algorithms. In this work, the fingerprinting technique is used to
identify a position based on the extracted CIRs at that position.

After conducting a real-time measurement campaign in the
CANMET gold mine in Val d’Or city [3], CIRs were collected.
For each position across the tunnel in Fig. 1, seven parameters
were then extracted from the corresponding CIR forming
overall a set of fingerprints at different distances (d) away from
the receiver as shown in Fig. 2. These parameters are the mean

Fig. 2. Localization using one fixed receiver.

excess delay (τ̄ ), the root mean square (τrms), the maximum
excess delay (τmax), the total power of the received signal (P ),
the number of multipath components (N ), the power of the
first arrival (P1) and the delay of the first path component (τ1).
Estimating the position based on the fingerprints is performed
using ANNs.

Being able to perform complex computational operations
such as classification, control optimization, and function ap-
proximation, ANNs proved to be reliable computational mod-
els that are widely used for different localization approaches
[3],[4],[10],[11],[12]. Every ANN needs to be trained using a
set of training data which, in our case, is made up of 75% of
the collected fingerprints, leaving 25% of the data for testing.
The use of an MLP-type feed forward neural network with a
back propagation learning algorithm has been proven to give
accurate estimation results in underground localization studies
[3],[4]. The simple form of the ANN used in localization in
the presence of one receiver consists of 7 inputs, one hidden
layer and one output that is the distance to the transmitter. The
hidden layer for this system consists of 10 neurons and it uses
a differential tan-sigmoid transfer function, whereas the output
layer uses a linear-type transfer function. It was shown that
position estimation using one receiver only is precise and that
the error is less than 1.5 meters for 90% and 80% of training
and non-training data, respectively [4]. Despite the promising
accuracy of estimating the distance to the transmitter, this
technique cannot by itself guarantee full coverage of the whole
tunnel network of an underground mine.

B. Cooperative localization using two references in space

Precisely, a search for an upgraded technique that can serve
as a complete localizing system in underground mines led to
the idea of cooperative artificial neural intelligence [4]. The
concept of ANN-based cooperative localization using multiple
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receivers is based on collecting multiple signatures from
different receivers forming one fingerprint that corresponds
to a transmitter located between the reference endpoints as
shown in Fig. 3. Because of the quasi-curvilinear topology
of tunnels in underground narrow-vein mines, two APs should
be enough to provide wireless coverage of the whole area in
between in the corresponding tunnel section.

Fig. 3. Localization using two signatures of two receivers.

One of the two cooperative localization approaches, dis-
cussed in [4], is based on estimating the position of the
transmitter by using a single neural network as shown in
Fig. 4. Two extracted signatures of the transmitter from two
different receivers are fed to this neural network. The latter,
which has 14 inputs, is trained to localize a transmitter by
estimating the distance to one of the receivers. The separation
distance D affects the number of fingerprints that are collected
given that each AP (receiver) has a limited wireless coverage.
For each separation distance D, a new neural network is
created and trained. Unlike the first new cooperative approach
in [4] that uses separate neural networks, this approach is
based on one position estimation made by one neural network.

Fig. 4. Neural network based on multiple signatures.

III. LOCALIZATION USING TRACKING IN THE TIME
DOMAIN

The major localization systems use the space domain in
order to estimate the position of the transmitter. In other words,
the reference points or APs that collect the RSS, TOA, AOA,
or fingerprints from the transmitted signal at different positions
are fixed in space. In the previous sections, we defined local-
ization using one reference point and a cooperative localization
technique using two references in space. Using these systems,

the position of the transmitter is estimated regardless of the
CIR at its previous positions. Tracking, as studied in the
literature, is the algorithm of filtering the trajectory that the
mobile unit (i.e., transmitter) follows in order to improve the
localization accuracy. Most of these algorithms decrease the
positioning error a posteriori by post-processing the estimated
results [13],[14],[15]. To the authors’ best knowledge, none
of the proposed systems integrates a priori tracking within an
ANN-based fingerprint matching algorithm for localization.
In this section, we will introduce a localization system that
properly exploits the time domain where the CIRs of the
previous positions play an important role in estimating the
new position within the ANN through in-built tracking.

A. Concept of time domain diversity with tracking

Consider a walking miner who is transmitting wireless
signals across the tunnel. One receiver is fixed and set on a
time axis in a way that it starts localizing the miner after saving
the CIRs from its transmitter up to a certain memory level l.
Using one reference in time (l=1) is the same as using one
reference in space; i.e., one CIR is recorded and the position
is estimated for each location separately using the localization
technique in sec. II-A [3] with one receiver only. However,
the estimation of the same position would be more accurate
if the neural network considers two signatures representing a
motion pattern within the limits of the tunnel topology.

In order to estimate the miner’s position based on two
references in time, a fingerprint should be formed from two
CIRs. The first CIR is extracted for the position to be estimated
at t0 while the other CIR is that for the previous position
registered in memory at t−1. The speed of motion plays an
important role in defining all possible fingerprints a priori, but
it does not vary too much between the two typical stationary
and pedestrian speeds in the considered underground mining
application. Due to the fact that a miner may come from
different directions before reaching a current position, the
neural network is trained on chains of all possible fingerprint
combinations for each position in a tunnel. Localization using
tracking with two memory levels (l = 2) exploits temporal
diversity in the same way as cooperative localization in [4]
does with spatial diversity using two references in space. The
accuracy of the neural network (as shown in the following
section) increases when increasing the memory level of the
system. In this work, we study localization based on tracking
using up to five references in time.

Since a miner’s movements inside the tunnels of an under-
ground narrow-vein mine are predictable within the confines
of its well-mapped galleries due its quasi-curvilinear topology,
we are able to add valuable information to our model by
creating chains of predictable fingerprint combinations to be
fed to the neural network. We assume that a miner may walk to
a position from different directions in the tunnel-shaped mine
gallery taking into consideration the boundary conditions of
the narrow tunnel. Using a time domain motion model, the
number of input levels (l) that needs to be considered defines
the combinatorial number of possible CIRs from which each
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fingerprint may be extracted. In the simplest case where l = 2,
each fingerprint is made up of 14 parameters extracted from
two CIRs. The first CIR is that of the position to be estimated
at t0 while the other CIR may be one of the five possible
previous positions, as illustrated in Fig. 5 and listed in Tab.
I. Measurements at either side of a position are included in
the generated fingerprint; however, the output of the ANN is
selected along the longitude of the tunnel (i.e., the x dimension
in Fig. 1), the other dimension (i.e., the y dimension in
Fig. 1) along the narrow tunnel’s width being much less
significant as a coordinate for localization (but still extremely
useful for its accuracy along the x-axis). The star represents

Fig. 5. Possibilities of previous positions for l = 2.

the transmitter at t0 while the filled circles are four possible
previous locations at t−1 other than the current position (which
is also among possible previous positions). For simplicity,
motion across diagonals is excluded although our technique
can easily take it into account.

TABLE I
FINGERPRINTS OF EACH LOCATION FOR l=2

Fingerprint Source of Parameters

1 CIRt0 & CIRcenter

2 CIRt0 & CIRup

3 CIRt0 & CIRdown

4 CIRt0 & CIRleft

5 CIRt0 & CIRright

Once l increases, more positions get involved in forming the
paths (fingerprints) to the current position of the transmitter.
Fig. 6 shows the positions that may be considered for creating
a path to the current position for l = 3. Once again, if the path
taken exceeds the boundary conditions of the mine gallery,
this path is automatically excluded from being listed as a
possible fingerprint. The positions involved in forming the

Fig. 6. Possibilities of previous positions for l = 3.

path are highlighted in Fig. 6, while the maximum number
of fingerprints (Nf ) extracted for the miner’s position at level
l may be calculated using the following formula:

Nf = 5(l−1).

All possible fingerprints are gathered for all positions in the
tunnel after specifying a certain level l; then the signatures
and paths are saved in a database.

B. ANN structure with time-domain diversity using tracking

The ANN used here is the same feed forward neural network
with back propagation learning used in sec. II. The purpose of
this choice is to properly compare the results of tracking with
the original localization system in [3] and its first extension
to spatial diversity (i.e., cooperation) in [4]. Here, the ANN is
scalable up to the number of input levels to be used. Since we
extract 7 parameters from each CIR signature, adding more
signatures in time increases the number of inputs (Ninputs) of
the neural network such that:

Ninputs = 7l.

The memory level l under study specifies the structure of the
neural network used in the positioning system. For l = 2, the
structure of the ANN is the same as in Fig. 4. On the other
hand, the number of neurons (Nn) used in the hidden layer is
based on the number of inputs of the neural network:

Nn = 2Ninputs + 1 = 14l + 1.

The output layer contains one neuron which represents the
distance in meters to the receiver at time t0. The combinatorial
number of possible paths increases the combinatorial number
of possible chains of CIRs from which the possible fingerprints
or input parameters are extracted without necessarily requiring
any increase in the number of CIR measurements. As a
matter of fact, while keeping the size of measurement data
unchanged, the combinatorial exponential increase in the size
of the training data (from where stems temporal diversity)
overwhelmingly surpasses the linear increase in the number of
neurons required to match the corresponding increase in the
so-called memory level l. Throughout the training process,
75% of the collected data are classified to train the neural
network while 25% are left in order to test the performance of
the neural network with data not seen in the training process.
Localization using tracking is analyzed up to level 5 (i.e., using
as a fingerprint 35 input parameters extracted from 5 CIRs).

IV. EVALUATION RESULTS

The performance of the presented localization techniques is
evaluated using the Cumulative Distribution Function (CDF)
graph. In CDF graphs, the accuracy of the system is compared
to its precision. The x-axis of the CDF is the estimation error
which represents the difference between the estimated and the
real position measured in meters. The second parameter is
the precision or the percentage of occurrences for such an
estimation error in the collected data.

A. Results of cooperative localization in the spatial domain

For the spatial localization approaches, each graph in Fig.
7 or 8 shows four CDF plots that correspond to the position
estimation errors of the different techniques used in sec. II.
The first two CDF plots represent the position errors caused
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by the separate estimations (i.e., cf. sec. II-A) of the first and
second receivers, respectively. The third plot represents the
result of cooperative localization based on separate estimations
(i.e., averaging both estimation errors, cf. sec. II-B). The
fourth CDF plot represents the position estimation error of
the cooperative neural network technique using one neural
network (cf. sec. II-B). At a separation distance (D) of 80 m,
the CDF plots of the training and non-training data are shown
in Figs. 7 and 8, respectively. Other plots for different

Fig. 7. CDF plots of the position estimation errors for the training data at a
receivers’ separation distance D = 80 m using several localization techniques.

Fig. 8. CDF plots of the position estimation errors for the testing data at a
receivers’ separation distance D = 80 m using several localization techniques.

separation distances (D) are presented in [4]. The accuracy
of position estimation using one of the receivers is found
to be around 1.2 and 1.5 m for 90% of the training data at
different separation distances (D). In the non-training set of
data, the error varied between 1m and 2 m for 90% of the
cases. The accuracy of the cooperative localization method
based on averaging the two position errors was recorded to be
around 1m and 1.5 m for 90% of the training and testing data,
respectively. For the cooperative localization method using one
neural network, the position estimation error was recorded to
be less than 60 cm and 1m for the training and testing data,
respectively.

B. Results of localization using tracking in the time domain

The CDF plot is used again in order to show the results
of localization using tracking at different memory levels. The
input level l is the number of signatures a neural network
accepts including the fingerprint extracted from the CIR at
time t0. They are shown for the training and testing data in
Figs. 9 and 10, respectively. For level two, localization
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Fig. 9. CDF plots for the training data using tracking.
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Fig. 10. CDF plots for the testing data using tracking.

using tracking with only one previous CIR shows an estimation
error of 1 and 1.25 meters for 90% of training and testing
data, respectively. As the input level increases, more paths
get involved in the estimation of the current positions. As l
increases, the accuracy and precision of the neural network
are enhanced forming a better estimation model of the motion
principle and the variation of the CIR with respect to distance.
At level three, estimation errors of 0.75 and 0.8 meters were
recorded for 90% of training and testing samples, respectively.
The performance was again improved when adding another
previous position to the modeling process, and at level four,
the estimation error decreased to 50 cm for 90% of training and
testing data. An error of little less than 50 cm was reported at
level five clearly suggesting saturation in performance at level
4 beyond which no significant gain is observed. At this level,
the input of the neural network is five times larger in size
than that of a neural network using one CIR and the number
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of neurons in the hidden layer is 71.
Both cooperative and tracking localization techniques pro-

vide high accuracy of position estimation with high precision.
The limitation in space, however, prevents us from decreasing
the position estimation errors with more than two APs in a
narrow-vein mine tunnel given its quasi-curvilinear topology.
On the other hand, due to the flexible scalability of localization
using tracking, more inputs are introduced to the neural
network resulting in better localization accuracy. At D = 80
m, it appears that using cooperative localization has almost the
same estimation errors as that of localization using tracking
when l = 3 and l = 2 for the training and testing data,
respectively.

V. SYSTEM DESIGN: COMPLEXITY VS. ACCURACY

The accuracy of the proposed techniques is high compared
to simple localization techniques because it uses the CIR as a
fingerprint. The major challenge that faces this approach is to
extract the CIR at the receivers’ end. Being part of a wireless
network, each receiver would be capable of transmitting the
extracted CIRs to a main server that should handle the process
of training the neural network using the separate or cooperative
techniques discussed in sections II and III. The transmitting
unit is supposed to be, in our case, a mini transmitter on the
miner’s cap. Since such system works using the fingerprinting
technique, collecting multiple fingerprints in different parts of
the tunnels is another essential step that builds up the database.
Instead of taking measurements manually, collecting the fin-
gerprints in real-time scenarios is easier once the infrastructure
is ready i.e. the miners are automatically transmitting signals
and the CIRs are collected at a computer server from the
receivers.

Since the channel is dynamic, classifying the neural net-
works based on receivers’ locations and the time of day would
be an interesting feature that may lead to better estimation
results. The variation of the channel due to human activity
may also be adjusted by implementing some fixed transmitters
along the galleries for calibration purposes.

Considering a system that uses tracking alone does not cre-
ate a global localization system in underground mines because
it uses one localizing unit as in [3]. The question arises as to
whether we are capable of integrating the tracking system in
a cooperative neural network technique where two references
in space localize using the tracking algorithm and then a final
estimation is drawn using one of the two cooperative neural
network topologies discussed in sec. II. An ongoing study
investigates whether integrating the tracking technique at a
given memory level l in a cooperative spatial localizing system
(i.e., diversity both in space and time) would lead to higher
performances that could match those of tracking alone with
higher memory levels l (i.e., only time diversity).

VI. CONCLUSION

This article presented a new localization approach that
exploits time diversity for radio-localization in tunnel-shaped
underground narrow-vein mines. With an in-built tracking

algorithm, this technique uses ANNs to localize a transmitter
based on fingerprints extracted from chains of CIRs recorded
in time. The proposed system is able to estimate the position of
a wireless transmitter in narrow tunnels with high accuracy and
precision of 50 cm for 90% of both training and testing data.
Compared to cooperative localization in the spatial domain,
geo-location using tracking is more accurate and precise with
much more flexible scalability. The question of whether this
system may be integrated in a cooperative localization tech-
nique that exploits spatial diversity is currently under investi-
gation. Although this work was conducted for an underground
environment such as mines, localization using tracking may be
used in different indoor/outdoor environments. The proposed
system may also use different wireless technologies such as
UWB, WLAN, or mobile radio.
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