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ABSTRACT 

It has been very recently noted that it is possible to recover the blind 
channel estimate in case of channel order overmodeling by using £p 
quasi norms. But, to the best of our knowledge, there is, until now, 
no theoretical results that investigate this issue. In this paper, we 
propose to study the robustness of subspace blind methods using £p 
quasi-norms in the noiseless case and for nonsparse channels. More 
particularly, we provide conditions that ensures channel identifiabil­
ity and study their frequency of occurence with respect to the system 
parameters. 

1. INTRODUCTION 

In current communication systems, channel estimation is essential, 
since it enables data detection without the 3dB loss incurred in the 
case of noncoherent estimation. Over the last decades, a special in­
terest has been devoted to blind channel estimation techniques for 
their high spectral efficiency as compared to their training-based 
counterparts. As long as the channel order is correctly estimated, 
the channel can be uniquely identified using blind methods, but once 
an error on the estimation of the channel order occurs, identifiability 
is no longer possible for many existing blind methods. This is for in­
stance the case of conventional subspace-based methods, which are 
known to exhibit a significant sensitivity to channel order overmod­
eling [1]. Actually, in the noiseless case, the channel can be iden­
tified as the vector that spans the I-dimensional kernel of a matrix 
denoted by Q which can be estimated by using solely second-order 
statistics. But when the channel order is overestimated, the kernel of 
the matrix Q is no longer a line but rather a vector space whose di­
mension depends on the overestimated order, thereby raising a new 
issue: how to estimate the right direction among all the vectors that 
span the kernel of Q? 

To deal with this problem, a large effort was devoted to either 
add to conventional subspace techniques a feature that estimates ef­
ficiently the channel order [2], or to propose new methods that are ro­
bust to channel-order overmodeling. In this context, a new technique 
for blind channel estimation of sparse channels has been recently 
proposed. This technique takes into account the sparsity criterion 
so as to select among the possible vectors the vector that exhibits 
the lowest £p quasi-norm 0 < p ::; 1. It was noted that using this 
technique, Cross relation as well as blind deterministic maximum 
likelihood based methods become robust to channel-order overmod­
eling as far as sparse channels are concerned, [3, 4]. However, for 
nonsparse channels, no results are available so far, to the best of 
our knowledge. Yet, we strongly believe that introducing likewise a 
sparsity criterion shall enhance the channel identifiability probabil­
ity. Actually in this case, one can note that overmodeling the channel 
is equivalent to zero-padding the channel vector, thus making it arti­
ficially sparse. Moreover, as far as subspace methods are concerned, 
it can be shown that the zero-padded channel vector is the one that 
exhibits the most sparsity. In light of this consideration, we claim 

that selecting the vector that minimizes the £p quasi-norm should 
often yield the desired channel vector response (up to a scalar ambi­
guity). 

In this paper, we propose to study the robustness of subspace 
methods using £p quasi-norms for nonsparse channels. We derive the 
necessary and sufficient condition for channel identifiability when 
considering the £1 norm as well as a sufficient condition when con­
sidering the £p quasi-norm 0 < p < 1. Then, we derive lower 
bounds on the probability that these conditions are satisfied. Using 
these lower bounds, we study the effect of the system parameters on 
the channel identifiability probability. For instance, we note that in 
the £1 norm problem, increasing the number of antennas improves 
significantly the channel identifiability probability, in contrast to in­
creasing the number of channel coefficients, which tends to reduce 
it. 

2. A BRIEF REVIEW ON SUBSPACE-BASED METHODS 
FOR SIMO SYSTEMS 

For the reader's convenience, we review hereafter the subspace based 
method for Single Input Multiple Output (SIMO) systems [1]. 

In a SIMO system, if Sk denotes the unit-power transmitted sig­
nal, the M receiving antennas observe the following signal: 

L 
Yk = L hlSk- l + Vk, 

1=0 

where hi is the channel impulse response vector at the loth tap and 
Vk denotes the additive Gaussian noise. Let h = [hJ, ... ,hIlT be 
the channel vector parameter. Stacking n observations of vector Yk 
in a (n + l)M vectorYk = [yr , · · ·  ,yLnlT, we will get: 

where In (h) is the M(n+ 1) x (L +n+ 1) block-toeplitz matrix : 
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The covariance matrix of the received signal Y k can be expressed as: 

Assuming that the subchannels of vector h have no zeros in common 
and n ;:::: L, the rank of In(h) is equal to L+n+ 1. Hence, there are 
L + n + 1 eigenvalues of R that correspond to the signal subspace 



(non null eigenvalues of In (h)), whereas the remaining eigenval­
ues correspond to the noise subspace. Denote by II the orthogonal 
projector on the noise subspace, and by 'D the operator given by: 

'D : MM(n+1)xM(n+1)(C) --+ MM(n+1)(L+1)XM(L+1)(C) 

M = [Mo, ... , Mnl >--+ 

Mo 0 

Mo 

o 

The blind subspace estimator can be defined as: 

with: 

� H h = min f Qf, IIf112=1 

Q = D(II)HD(II). 
In case of channel overmodeling, the kernel of matrix Q is a 

vector space with dimension equal to 0 = L' -L (L' being the 
overestimated order), which is spanned by the channel vector as well 
as all its 0 - 1 delayed copies [1]. In other words, the kernel is 
spanned by the following (0 + L + I)M x (0 + 1) block-Toeplitz 
matrix H: 

ho 0 

ho 

3. CONDITIONS FOR CHANNEL IDENTIFIABILITY 

One can note that the columns of the matrix H represent the sparsest 
vectors of the kernel of matrix Q. In fact, any linear combination of 
vectors of H will yield almost surely vectors that are less sparse as 
they contain less zeros. Hence, the channel vector can be selected as 
the one that solves the following combinatorial optimization prob­
lem: 

(Po) min Ilxllo X,Xl=l,Qx=O (1) 

where Xl denotes the first entry of x, 11.110 is the £0 quasi-norm that 
returns the number of coefficients where the vector is not equal to 
zero. However, solving (Po) requires generally an intractable com­
binatorial search, thus reducing its interest for real-time applications. 

An alternative is to consider the optimization problem: 

min Ilxllp x,xl=l,Qx=O (2) 

1 
where Ilxllp denotes the £p quasi-norm: Ilxllp = (Li IXiIP) p. It 
should be mentioned that this approach has been extensively studied 
by the compressed sensing theory [5] and applied to many fields like 
image processing [6] and communication systems [7, 8]. For all 
these applications, the problem is usually put under the form: 

where T is a matrix independently distributed from vector x. This 
is different from our case, since matrix Q is a function of vector h. 

Therefore, all the theoretical results that have been derived in 
compressed sensing theory should be adapted to our context, and 
cannot be applied directly. Thereby, in this paper, we propose to 
make use of the structure of our problem so as to derive new re­
sults about the channel identifiability conditions and evaluate their 
frequency of occurence. Taking into account the structure of our 
problem, we can deduce that (Pp) is equivalent to: 

hI 

min IIHsll� <=} min II hL + Hsll� 5,51=1 s 

o 

where H is the (o+L)Mx 0 block-Toeplitz matrix that has the same 

shape as H. Before proceeding, we shall partition H = [ � ], 
where A (resp. B) represents the first M L (resp. the last M( 0 + 1)) 
rows ofH. 

3.1. £1 norm 

Unlike the £p quasi-norm,(p < 1), the £1 norm is convex. So in this 
case, it is possible to derive a necessary and sufficient condition for 
channel identifiability, which can be stated by the following theorem. 
For simplicity, we consider here the real case, i.e h E RM(L+1). 

Theorem 1. Necessary and sufficient condition 
Let v = [sign(hdT, ... ,sign(hL)Tr and assume thatL > 

o 2': 1, then the necessary and sufficient condition for channel iden­
tifiability can be expressed as: 

3.2. £p quasi-norm 

IvT Asl 8 
IIBslll 

S 1 'is E R . 

Since the £p quasi-norm is a nonconvex function, the problem might 
have many local minima. Nevertheless, We still can find a sufficient 
condition that ensures that the channel can be identified as a local 
minimum of (2). This result is stated in the following theorem: 

Th .. :: � :"[V:;(�:)l�'[il�' 
1'-' 

1 where. denotes the Hadamard 

sign(hL) I hL IP-1 
(element by element) product. If the following condition is satisfied: 

IvT Asl 8 
IIBslll 

S 1 'is E R 

then the channel can be identified as a local minimum of(2}. 

4. PROBABILISTIC ANALYSIS 

(3) 

In this section we will study the effect of the system parameters 
on the channel identifiability probability. We assume that the chan­
nel coefficients are drawn from the Gaussian distribution with mean 
o and variance L�l ' To determine a lower bound on the channel 
identifiability probability, we will rely on the techniques derived in 
[9, 10]. Actually, in the same way as [9], we recast the probability 
conditions in an other form as stated by the following theorem: 



Theorem 3. Let d* be the value that minimizes : 

min Ildlloo 

subject to BTd = ATv 

Then, the channel can be identified if and only iflldlloo ::; 1. 

The new formulation given by theorem 3 is interesting in the 
sense that it allows geometric interpretation of the channel iden­
tifiability condition. Actually, it follows from theorem 3 that the 
channel identifiability holds for a given channel realization if and 
only if there is a vector d on the cube Q = [ -1, Ij8 M such that 
BT d = AT v, i.e, AT V belongs to the image of the cube generated 
by BT. Since rank(B) = 8 almost surely, the channel identifiability 
will hold if the following conditions are satisfied: 

• The image of the cube by B T contains a ball of radius a 
• The vector AT V satisfies IIA T vl12 ::; a. 
Let P denote the probability that the channel identifiability holds 

and E; and E; be the events given by: 

E� = {The image of the cube by B T contains a ball of radius a} , 
E;' = { IIA Tvl12 ::; a}. 

Then, P can be lower bounded as: 

P � IF { yE� nE;' } � m� IF (E� nE;'). 

4.1. £1 norm 

In the following, we propose to determine a lower bound on the prob­
ability of the events E; and E;, while considering the £1 norm min­
imization. We will consider first the relatively easy case 8 = 1 and 
after that the more general case 8 ::; min(M, L -1). For 8 � M, 
we have not been able to derive a lower bound on the probability of 
channel identifiability, but we conjecture that the effect of the system 
parameters remains the same. 

Before going any further, let us, first, write the event E; in an 
other equivalent way [9]: 

1 {. IIBxlh } E", = m�n Txrr;- � a . 

4. 1.1. Case when 8 = 1 

When 8 = 1, it is easy to see that vT A is a real standard Gaussian 
random variable with mean 0 and variance i�. Hence we have; 

IF (E;') = IF (IvT AI ::; a) (4) 

= IF (I T AI2 < 2) = _1 (.! a2(L + 1)) (5) v _ a 
yf1i'Y 2' 2LM 

where 'Y( a, x) is the lower incomplete gamma function given by: 

'Y(a, x) = foX exp(-t)ta-1dt. 

On the other hand, using standard concentration inequalities for nor­
mal variables [11], we show that, for every 10 E [0,1]' we have : 

IF ( 1lhLill � M J 7r(L
2
+ 1) (1-E)) � 1-exp (_ �(2 ) . 

(6) 

Since for 8 = 1, the events E; and E; are independent, we get after 
combining (6) and (5), and setting a = M J 71'(£+1) (1 - E), the 
following theorem: 

Theorem 4. For 8 = 1, the probability P that channel identifiability 
occurs is greater than: 

( ( M 102 ) ) 1 (1 2M 2) P� max I-exp --- --'Y -,-(I-E) 
<E[a,l] 7r yf1i 2 L 

(7) 

Remark 1. Under the assumption that the random variables Ilv T AI12 
and IlhLlh = minx 1I1�11�1 are concentrated around their expected 
values with high probability (this assumption is valid in general for 
standard random distributions), one can understand intuitively the 
effect of the system parameters M and L on the probability for chan-
nel identifiability. Actually, given that JEllhL Ih = M J 71'(£+1)' we 

deduce that we can find, a ball of radius rl of order 0 ( .Jr;) that is 
contained in the image of the cube Q by B T with a high probabil­
ity. In the same way, given that the expected value of IvT AI is of 
the order 0 ( vIM), we can find a ball of radius r2 = 0 (vIM) 
that contains the vector v T A, with a high probability. Since channel 
identifiability occurs when rl � r2, we deduce that as M increases, 
and L decreases, channel identifiability should be more likely to oc­
cur. 

4.1.2. Case when 8 > 1 and 8 ::; min(L -1, M) 

When 8 > 1, the problem becomes more difficult, since v T A is 
no longer Gaussian and minx 111���1 has no closed-form expres­
sion. Besides E; and E; are no longer independent, thus making 
our computations less tighter. But, as we can see later, even if the 
lower bound probability is too loose, one can still draw conclusions 
about the effect of the system parameters on the channel identifiabil­
ity probability. 

Let us now deal with the probability of the event E;. 

TIJ) (El) = { . IIBxlh > } Jr '" 
�

n 
IIxl12 

_ a . 

Since 8 ::; min(L -1, M), it can be shown that: 

where B = [hL,··· ,hL-Hlj. Consequently, 

TIJ) (El) > TIJ) { • IIBxlh > } 
Jr 

'" _ 

Jr �
n 

IIxl12 
_ a . 

(8) 

(9) 

To determine a lower bound on the probability IF (E;), we will use 
the following result: 

Theorem 5. [i2l Let cI> be a M x 8 Gaussian matrix, with iid en­
tries, i. e, c/>i,j rv N(0,0-2) .  Let 1 > r;, > 0 and choose 1],10 > 0 
such that r;, = �. Then 



holds uniformly for x E R8 with probability exceeding 

1 -(1 + 2/c)8 exp ( _ 17;:;) 
1 

where c = (31/40)4 (1.13 + ft). 
Applying theorem 5, we get that for every 1 � K, > 0, and 

0:' = M J ,,(£+1) (1 - K,) we have : 

IF (E�.) � 1 -(1 + 2/c)8 exp ( -17;:;) (10) 

where c and 17 are positive reals satisfying K, = �. 
Remark 2. Note that in contrast to c, increasing 17 improves the lower 
bound probability. Consequently, the values of 17 and c can be set so 
as to maximize the lower bound probability. 

According to Markov inequality, IF ( E�) can be written as: 

IF (E;.) = IF { IIATVI12 :S o:' } 
> 1 _ 

lE (IIA T vll§) 
- (0:*)2 

> 1- M<5(2L-<5+ 1) 
- 2 (0:*) 2 (L + 1) 
> 1 _ 

7r<5 (2L -<5 + 1) 
- 4M (1 -K,)2 (11) 

Using (6) and (11), the lower bound on the channel identifiability 
can be lower bounded by: 

8 ( 172M ) 7r<5 (2L -<5 + 1) p� max 1-(1+ 2/c) exp --2 2 - 2 . 
�'� c 4M (I-K,) 

K,- 1+£ 
(12) 

Although the provided bound is not tight, it provides information 
about the impact of the system parameters on the channel indetifia­
bility probability. One can obviously see that increasing the number 
of antennas M improves the channel identifiability probability, in 
contrast to the system parameters L and <5 which tend to decrease it. 

4.2. f.p quasi-norm 

In this section, we will consider, only the case when <5 = 1. Let 
hi = [hi,I , ' "  ,hi,M] andsi,j = sign(hi,j) sign(hi-1,j) .  Then, 
the probability that E� is satified can be expressed as: 

L M 
One can note that asp tends to zero, p L L  Ihi,jIP-1 Ihi_1,jl Si,j 

k=1 j=1 
converges almost surely to zero, thus implying that IF (E�) tends to 
one as p tends to zero. 

Let us deal with the complementary event of E�. According to 
Markov inequality, IF (C E�) can be upper bounded by: 

lE Ip t t Ihi,j IP-1Ihi_1,jlsi,j I ! 
IF (C E;) :S ,=1 )=1 

1 0:'2 
To remove the expectation on the Rademacher sequence Si,j, we will 
use the Kintchine's inequality that can be stated as follows: 

Lemma 1. [I3l Let x be a vector in Rn, and Sj a Rademacher 
sequence. Then, we have: 

whereC= � . 
24I'(�) 

Applying the Kintchine's inequality, we get: 

Since p < 1, x H IxlP is a concave function when x > 0, we can 
therefore prove, using Jensen inequality, that: 

where the second inequality referred to as (a ) follows from the fact 
that aPbq :S pa + qb whenever a and b are positive and p + q = 1. 
Combining (13) and (15), we get : 

Consequently, for 0: = M J ,,(£+1) (1 -c) 

where 

Al = 
2�Lr(M/2 + 1/4)r(3/4) 

r(M/2)VM7r� 

A2 = 
L(L+ 1)�VM�(1/4)(r(3/4))2 

7r4 

(16) 

We note that unlike A!, A2 tends to increase with M. Hence, the 
lower bound probability does not always decrease with M. Combin­
ing (10) and (16), it can be proved that the channel identifiability is 
lower bounded by: 

( Mc2 ) ( AIP� A2yP(1-p)I/4 ) p � max 1-exp(- -- ) 1- -- - . 
€ 7r v"1=E v"1=E 

(17) 



5. SIMULATION RESULTS 

5.1. £1 norm 

We present here simulation results for the £1 norm. Fig. 1 displays 
the effect of the system parameters L and M on the lower bound 
probability that we have computed by maximizing (7) numerically. 
We note that, as expected, increasing the number of antennas tends 
to enhance the channel identifiability probability. 
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Fig. 1. Impact of the system parameters L and M on the lower bound 
probability. 

5.2. £p quasi-norm 

For the £p quasi-norm, we study the effect of the parameter p on the 
lower bound probability. We set the system parameters M and L to 
6 and 3, and we vary p from 10-3 to 10-6. Fig. 2 displays the lower 
bound with respect to p. We note that as p tends to zero, the lower 
bound probability increases. 

6. CONCLUSION 

This paper analyses the robustness of certain blind channel identifi­
cation methods when using £p quasi-norms. Necessary and sufficient 
conditions of channel identifiability are provided. Lower bounds on 
the channel identifiability probability are derived. Even though they 
are not tight, they provide some useful insights on the impact of the 
number of sensors M, the channel length L and the quasi-norm pa­
rameter p on the identifiability conditions. 
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