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ABSTRACT 

Recently, a novel method for blind channel equalization based 
on the truncation of the covariance matrix has been proposed. 
Despite having interesting properties, more specifically its low 
complexity through adaptive implementation and its robust­
ness to channel over-modeling, this method, is based on zero 
delay equalization thus yielding non satisfactory results in 
case the first channel coefficient is of low power. In this pa­
per, we propose to generalize this method to nonzero delay 
equalization. We show that the proposed method not only in­
herits the same interesting properties of the original one, but 
also improves considerably its performance and its sensitivity 
to the value of the first channel coefficient. 

Index Terms- MMSE equalization, blind equalization, 
nonzero delay equalization 

1. INTRODUCTION 

Blind channel methods can be classified into two categories. 
One is the indirect blind approach for which a priori estima­
tion of the channel is required. This approach usually requires 
singular value decomposition of the output correlation matrix, 
thus making real-time implementation difficult [ 1]. The other 
approach namely, the direct blind method, estimates the op­
timum linear equalizer by using the second order statistics of 
the data without involving any estimation of the channel fil­
ter. This method can be implemented by using adaptive algo­
rithms that exhibit low-cost computational complexity. 

Recently, active research work has been made in order 
to develop efficient techniques for direct blind equalization 
methods, with low computational complexity and that are ro­
bust to channel over-modeling. In [2], a mutually referenced 
filter based method has been proposed. This technique re­
quires the estimation of several (at least two) equalizers, and 
thus is not computationally efficient. 

On the other hand, various methods involving the esti­
mation of a unique equalizer, have been widely proposed. 
For instance, one can cite linear prediction based techniques 
that were proposed to estimate nonzero delay equalizers, [I, 
3]. These methods are slightly robust to channel order over­
modeling errors [4], but their adaptive implementations are 
either expensive (e.g., RLS like) or slowly convergent (e.g., 
LMS like). 

Later, new methods based on the truncation of the co­
variance matrix have been proposed [5, 6]. These techniques 
yield zero delay equalizers through performing an appropriate 
truncation to the covariance matrix. Despite their high robust­
ness to channel over-modeling, these methods do not always 
yield satisfactory results, since they involve zero delay equal­
ization and thus are sensitive to the value of the first channel 
coefficient. 

In this paper, we propose to generalize the methods in 
[5,6] to nonzero delay equalization. We show by using sim­
ulations that our method allows significant performance im­
provement while maintaining robustness to channel order over­
modeling. 

The organization of this paper is as follows: First we de­
scribe the system model in section II. Then, in the next section 
we review and state some results about the method proposed 
in [5]. Based on these results, we introduce our method in 
section IV. Finally, we provide and discuss the simulation re­
sults. 

Notations Throughout this paper, vectors and matrices 
are respectively represented by boldface small and capital let­
ters. Moreover, the transpose, hermitian, complex conjugate 
inverse and expectation operators are denoted by T, H, *, -1 

and IE. We also denote by Ilxll the Euclidean norm of vector 

x. We adopt some MATLAB notations like A(k,:) or A(:, k) 
to refer to the kth row or kth column of matrix A. 

2. SYSTEM MODEL 

Consider a discrete-time Single Input MUltiple Output (SIMO) 
system with M outputs, given by: 

L 

x(n) = L h(k)s(n - k) + b(n), 

k=O 

where s ( k) denotes the transmitted symbol sequence and h( k) 
refers to the M x 1 channel impulse response vector corre­
sponding to the kth tap. b( n) denotes the white noise se­
quences with variance a�. Stacking N successive observa­
tions of the received signal x( n) into a single vector, we get: 

xN (n) = [xT (n) ,··· ,xT (n - N + lW ( 1) 

= HNsd (n) + bN (n) , (2) 



where d = N + L, sd(n) = [s(n),··· , s(n - d + 1W and 
bN(n) = [bT(n), .. · , bT(n - N + 1)r. The matrix HN is 
the N M x d block toeplitz matrix given by: 

h(L) 

h(O) 

In the sequel, we consider the following additive assumptions: 

Al The transmitted signal s(n) is assumed to be an in­
dependent and identically distributed zero mean unit 
power process. 

A2 The polynomial h(z) = 'Lt=o h(k) z-k verifies: 

h(z) -=I- 0 for all z -=I- 0, 

or equivalently, the sub-channels corresponding to the 
receiving antennas do not share any zero in common. 

3. MMSE EQUALIZER 

We recall hereafter the equalization technique that has been 
proposed in [5]. The main features of this technique are its 
highest robustness to channel over-modeling and also its low 
computational complexity as compared to other proposed tech­
niques. 

As we will see below, this method is based on the fact that 
the 7-delay MMSE equalizer belongs to a certain vector space 
that depends solely on the autocorrelation matrix, and whose 
dimension is equal to 7 + 1. As a consequence, if 7 = 0, the 
zero-delay MMSE equalizer can be estimated up to a scalar 
ambiguity. 

For the reader's convenience, we provide in the sequel an 
overview on the main results derived in [5]. Let us first recall 
that the 7-delay linear MMSE equalizer (7 E {O, ... , d - I}) 
is the optimal linear filter that extracts s ( n - 7) in the least 
square sense. 

More explicitly, the linear MMSE equalizer vector v r is 
given by: 

Vr = arg min lE ( 1 Is(n - 7) - vHxN(n)112) , 
v 

which leads to: 
(3) 

where 

and 

One can note that the linear MMSE equalizer belongs to the 
signal subspace, i.e., Range(HN) and thus can be written as: 

Vr =Wyr, 

where W denotes the signal subspace basis vectors. Along 
the same lines as in [5], we can prove the following result: 

Theorem 1. Let Rr be the matrix given by the last M N -
(7 + 1) M rows of R Then, assuming AI, A2, and that 
N > L + 1 + 7, the kernel of matrix WHR� Rr W has 
dimension 7 + 1 and contains all the t-delay equalizers Vt, 
t E {O,,,· ,7}. 

The proof of this theorem has not been provided before, 
but it relies on the same technique used in [5]. For the sake of 
completeness, we provide hereafter the proof of this theorem: 

Proof Let R = wrwH + alUUH be the eigenvalue de­
composition of R, where W and U are the eigenvectors that 
span, respectively, the signal and the noise subspace. Since, 
the columns ofW and U are orthogonal, we have: 

Rw=wr. 

Hence, Range(RW) = Range(W) = Range(HN) ' There­
fore, there exists a nonsingular matrix P such that RW = 
HNP. 

As a consequence, 

We end up the proof by noting that if N -7- 1 > L, HN-r-1 
is full column rank [7] and thus dim(null(Rr W)) 7 + 
1. D 

Example: Zero Delay Equalizer 

Let Vo denote the zero delay equalizer. There exists a 
vector Yo such that Vo = WYo, with 

Let Ro be the matrix given by the last M N - M rows of R. 
Then the following result has been shown in [5] and can be 
easily deduced from Theorem 1. 

Corollary 1. Assuming that N > L + 1, the solution of 

RoWY = 0, 

is unique and corresponds to the desired zero-delay equalizer 
vector Vo up to a scalar ambiguity. 

In other words, this result states that the zero delay equal­
izer can be determined as the intersection line between the 
range space ofW and the kernel of the matrix Ro. 

In the nonzero delay case, this intersection becomes a vec­
tor space of dimension 7 + 1, that contains all the t delay 
equalizers, t E {O,,·· ,7}. The issue now is how to select 



in this vector space the direction of the desired 7 delay equal­
izer. In [5], a two-step approach is proposed: First, the zero 
delay equalizer is estimated and the transmitted symbols are 
decoded by performing a hard decision on the equalized sig­
nal. After that, the estimated symbols are reused to reestimate 
a nonzero delay equalizer according to (3). 

However, one may expect that this technique will not pro­
vide good performance, since as soon as the result of the first 
step is bad, all the process that comes after, will be affected. 

4. NON-ZERO DELAY EQUALIZER 

The performance of the zero delay equalizer is poor when the 
energy of the first channel coefficient h(O) is low. In average, 
the nonzero delay equalizer has better performance since it 
depends on more than one channel tap and thus can benefit 
from the channel path diversity. Motivated by this well known 
result [8], we propose in this paper to extend the work of [5] 
to the nonzero delay case. 

Let Fr denote the vector space given by the intersection 
between the kernel of Rr and the range of W, and Br = 
{vo,'" ,vr} a basis of Fr. Then, obviously, we have Fr-l C 

Fro More particularly, a basis of Fr could be given as the 
union of Br-l and another vector V r which cannot be writ­
ten as a linear sum of elements ofBr_l. 

The difficulty here is to select the right direction v n which 
corresponds to the 7-delay equalizer. To solve this problem, 
we will make use of an approximate orthogonality relation be­
tween the equalizer vectors, which is accurate as long as the 
mean square symbol estimation error is low. Indeed, since 
vfxN(n) � s(n - t) and vf,xN(n) � s(n - t'), and since 
the input symbols are Li.d., we get: 

0= IE (s(n - t)s* (n - t')) � vfRvt" (4) 

More explicitly, if R = wrwH + (7�UUH denotes the 
eigenvalue decomposition of R, then, since v t belongs to the 
range space of W, (4) is equivalent to: 

vrwrWHVt' � O. 
1 -1 

Let vr = r"2wHvn i.e, Vr = wrTvn then, it is clear 
that vr is approximatively orthogonal to vr" for 7' -I=- 7. By 

1 
performing the changing variable vr = r"2wHvn the de-
sired direction can be selected as the one that is orthogonal to 
the range space of Fr-l. To sum up, our algorithm consists 
in the following steps: 

1. Computation of the autocorrelation matrix: 

K 
RK = L xN(n)x�(n). 

n=l 

The signal subspace is estimated by extracting the first 
d eigenvectors of R. 

(W,r) = Eig(RK, d). 

1 
2. Estimation ofT r = Rr Wr-"2, and E = [eo, ... , er], 

the 7+1 least eigenvectors ofT�TT=r-!wHR� RT wr-!. 

1 
3. Estimation ofTr_1 = Rr_1Wr-"2,and F = [fo, · · ·  ,fr-l], 

the 7 least eigenvectors ofT�_1 TT_1=r-!wHR�_1 RT_1 wr-!. 

4. Selection of the direction v r given by the one that is 
contained in the range of E and that is orthogonal to the 
range of F. More explicitly, v r is the least eigenvector 
of EHFFHE. The 7 delay equalizer is therefore given 
by: 

Remark 1. If 7 = 0, our algorithm will be reduced to the 
following steps: 

• Computation of the autocorrelation matrix. 

1 
• Estimation of To = Ro wr-"2 andvo the least eigen-

vector ofT�To. The zero delay equalizer is therefore 
given by: 

H -.!v vo= W r 2vo. 
1 

Remark 2. In case of channel over-modeling, the matrix r -"2 
plays an important role in ensuring the robustness of the pro­
posed method. Actually, at moderate or high SNR, it discards 
the eigenvectors that lie in the noise subspace because they 
are weighted by ;b' 
Remark 3. In this work, we did not seek efficiency in terms of 
computational cost. Indeed, we can use the relation between 

T rand T r-l to eliminate one of the SVDs and reduce the 
algorithm's complexity. Also, as in [51, we can use efficient 
subspace tracking techniques in an adaptive scheme to reach 
linear or close to linear complexity per iteration. 

5. SIMULATIONS 

In all our simulations, we consider a SIMO model with M = 
4 receiving antennas and L + 1 = 4 channel coefficients cho­
sen randomly according to the Rayleigh distribution. The in­
put signal is drawn from the BPSK constellation and the tem­
poral window N is set to 11. We measure the performance 
equalizer by using the mean square error (MSE) given by: 

5.1. Sensitivity to the variance of h(O) 

In this section, we investigate the sensitivity of our algorithm 
to the variance of the first channel coefficient. We have noted 
that for small values of the first channel coefficient, the equal­
ization process tends to estimate the 7 + 1 delay signal se­
quence (rather than the 7 delay signal sequence). Like CMA 
blind methods, we can assume that our method estimates the 
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Fig. 1. Sensitivity to the variance of h(O) . 

transmitted sequence up to a certain unknown delay. In prac­
tice, this issue can be dealt with by employing a synchroniza­
tion process and hence we assume that the effective delay that 
minimizes the errors between the equalized signal and the de­
lay source signal sequences is properly estimated. 

Moreover, we expect that even for a non zero delay equal­
izer, our method should exhibit some sensitivity towards the 
variance of the first channel coefficient, because the matrices 

T T and T T-l may have low singular values thus introducing 
wrong directions. 

Fig. 1 displays the MSE of our algorithm, and compares 
it with that of the algorithm in [5]. We represent for differ­
ent values of T (the equalizer delay) the MSE with respect to 
the variance of the first channel (j�o. We note that when the 
variance of h(O) is too low, the proposed algorithm exhibits 
a small degradation in the mean square error performance, as 
compared to the algorithm in [5]. Besides, for T = 0 and very 
low channel coefficient variance (j�o = 0.01, our algorithm is 
able to switch to the delay T = 1, thus explaining its relatively 
good performance in this case. 

5.2. Robustness to channel order over-modeling 

We investigate in this section the robustness of our algorithm 
to channel order over-modeling. Fig. 2 compares the MSE 
with respect to the estimated channel order for the proposed 
equalization process (when T = 2) and the zero-delay equal­
izer that is proposed in [5], when the SNR is set to 0 dB and 10 
dB, respectively. We note that like the zero delay equalizer, 
our algorithm is robust to the channel order overestimation, 
even at low SNR values. 

2 

0 

Zero delay algorithm [5] SNR=O dB 
Our algorithm T = 2 SNR=O dB 
Zero delay algoritlun [5] SNR=I 0 dB 

--0- Our algorithm T = 2 SNR= 1 0 dB 

-2 
03' -0 
ur -4 
(/) 
� -6 

-8 

-10 
2 3 4 5 6 7 8 

Overestimated order 

9 10 II 

Fig. 2. Evaluation of the robustness of the proposed algo­
rithm. 

5.3. Effect of the delay 

In this section, we investigate the effect of the equalizer delay 
on the MSE performance of our algorithm. Fig. 3 displays 
the MSE with respect to the equalizer delay at different SNR 
values. We can see that almost a gain of 6 dB in MSE can 
be otained by increasing the equalizer delay. Moreover, as 
expected, when T is set above L + 1 = 4, the performance 
enhancement is not significant, in other words, the wide range 
of gain is approximately achieved when T ;::: L + 1. 

5.4. Iterative decoding 

As we have previously mentioned, the proposed algorithm is 
a bit sensitive to the variance of the first channel coefficient 
(see Fig. 1). In order to further enhance the bit error rate 
performance, we perform an iterative decoding that makes use 
of the estimated a posteriori probabilities. Fig. 4 summarizes 
the iterative process. Given the T delay equalizer estimate, we 
compute the variance of the noise iT; = 1 - V�RKVT. We 
also estimate the transmitted signal sequence Sn-T = v�Xn. 
For BPSK constellation, the a posteriori probability on the 
transmitted bits can be easily shown to have the following 
expression: 

Pn = APP(sn = 1) � P(sn = Ilsn) = 
1 

� . 

1 +exp(-�) 
an 

To estimate the vector gn one can perform hard decision 
on the equalized signal, as in [5]. But this will not be op­
timal in the sense that the non reliable entries will have the 
same contribution as the reliable ones. Using the aposteriori 
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probabilities, the vector gT can be estimated as: 

1 K 

K 2:= XnlE [Sn-T 1 
n=l 

1 K 

K 2:= Xn (2pn-T - 1). 
n=l 

Fig. 5 displays the bit error rate performance of our algorithm 
for T = 6 with the soft iterative. In the legend 'ideal MMSE' 
refers to the genie MMSE equalizer which exactly knows the 
correlation matrix R and the correlation vector gT' We note 
that with soft iterative processing, the performance of our al­
gorithm can become very close to that of the ideal receiver. 

6. CONCLUSION 

In this paper, we have generalized a recently proposed zero 
delay blind equalization to arbitrary delay equalization. Un­
like the original method, our technique is much less sensitive 
to the variance of the first channel coefficient. However, by 
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Fig. 5. Bit error rate with soft iterative processing. 

using an iterative decoding algorithm, our technique can cir­
cumvent this issue, and almost reach the performance of an 
ideal equalizer. 
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