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ABS TRACT 

In this paper, we derive a performance comparison between 
the conventional time-multiplexing training based scheme 
and the most-recently proposed data-dependent superim­
posed training scheme, when using linear receivers. For 
both schemes, we derive an approximative closed�form ex­
pression for the Bit Error Rate (BER) and determine the op­
timal power allocation between pilot and data that minimizes 
the BER. Simulations are conducted to assess the accuracy of 
the provided expressions and to determine contexts for which 
it is more interesting to opt for the data-dependent superim­
posed training scheme. 

Index Terms- Bit error rate, data-dependent superim­
posed training, time multiplexing, optimal power allocation. 

1. INTRODUCTION 

Time-Division Multiplexed Training (TDMT) is the most 
commonly used technique for channel estimation [1] . Be­
cause of its simplicity, it has been used in many practi­
cal communication systems, e.g. in Global System for 
Mobile Communications (GSM) [2] . Although accurate 
channel estimation can be obtained with low-computational­
complexity receivers, this technique results in a low band­
width efficiency, especially when a large number of pilots is 
required. 

Recently, Superimposed Training (ST) has evolved as 
a new promising alternative to TDMT schemes due to its 
high bandwidth efficiency. [t consists in transmitting pilot 
and data symbols simultaneously at the same time and on 
the same frequency domains. Channel estimation is then 
performed by treating data as an additive source of noise. 
The first proposed (ST) schemes use induced cyclostation­
arity (eg. periodic pilot sequence) to asymptotically miti­
gate the cross-correlation between training and data symbols, 
[3, 4, 5] . The major problem in this case is the data-pilot 
non-zero cross-correlation for small or finite sample sizes, 
thus limiting its potential over TDMT schemes to the cases 
of multi-carrier based systems [6] or short channel coherence 
times [7] . 

[n order to enhance the channel estimation quality in su­
perimposed training based systems, Ghogho et al. proposed 
in [8, 9] to introduce linear distortion to the data prior to in­
sertion of the pilot symbols so as to guarantee the orthogo­
nality between pilot and data sequences for finite length data 
frames. The proposed method was referred to as the Data­
Dependent Superimposed Training (DDST) scheme and was 
shown in [10] to outperform the conventional superimposed 
training technique. 
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In this paper, we derive a performance comparison be­
tween the TDMT and DDST schemes. More particularly, we 
provide approximative theoretical closed-form expressions 
for the BER and also determine for both schemes the opti­

mal power allocation between data and pilotl. For applica­
tions in which the BER should be less than a given threshold, 
we show that the DDST scheme can be interesting only for 
large frames. 

Notations: Subscriptis Hand # denote, respectively, her­
mitian and pseudo-inverse operators. The (K x K) identity 
matrix is denoted by IK. The (i,j) -th entry of a matrix A is 
denoted by [AL,) or A (i,j) . 11.11 denotes the Euclidean norm 

of a vector. Moreover, lK denotes the (K x K) matrix of all 
ones. 9\ denotes the real part of a complex entity. 

2. SYS TEM MODEL 

2.1 Time-Division Multip[exing 

We consider a M x K Multiple-Input Multiple Output 
(MIMO) system operating over a flat fading channel. Two 
phases are considered: 
First Phase: [n the first phase, each transmitting antenna 
sends NI pilot symbols. The received symbol YI writes as: 

Yl =HPt+VI 
where H is the M x K channel matrix with independent 
and identically distributed (iid) Gaussian variables with zero 

mean and variance k, V I is the M x NI matrix whose entries 

are iid zero mean with variance u; and PI is the K x Nl pilot 
matrix. [t is well known that the Mean Square Error of the 
channel estimation is minimized subject to a fixed training 
power uft , when the pilot matrix satisfies [11] : 

PtP� = NI U)IK . 

Second Phase: [n the second phase, N2 data symbols with 
power u; are sent by each antenna so that the received signal 
Y2 writes as: 

Y2 =HWt+V2, 
where Wt is the K x N2 data matrix with iid data symbols of 
power u; and V 2 is the M x N2 additive noise matrix. 

2.2 Data-Dependent-Based Scheme 

One of the major shortcomings of Conventional Superim­
posed Training (CST) schemes is the low quality of the chan­
nel estimation caused by the embedded unknown data which 

iNote that this optimal power allocation and the one in [3] are distinct as 
the considered pilot design schemes are different. 



acts as an additive source of noise. In order to improve the 
channel estimation quality, Ghogho et at. [8] proposed to 
distort the data so that it becomes orthogonal to the training 
sequence. The proposed distortion matrix D is defined by: 

where J = � 1 N Q9 h (we assume that � is integer valued, 
K 

N being the sample size). This distortion matrix was shown 
to be optimal in the sense that it minimizes the averaged Eu­
clidian distance between the distorted and non-distorted data, 
[12] . The received signal at each block is therefore given by: 

Y = HWd(IN-J) +HPd+ V 

where W d is the data matrix with iid data symbols of 
power o'�/, P d is the K x N training matrix and V is the 
M x N matrix whose entries are i. i.d zero mean with vari­
ance 0';. The chosen pilot matrix P d should fulfill two re­
quirements. It should be orthogonal to the distorsion ma­
trix D, thus satisfying DP:t = 0, and also verify the or­

thogonality relation P dP:t = N O'}th in order to minimize 
the channel estimation error subject to fixed training power. 
A possible pilot matrix that fulfills these requirement is [8] : 

Pd(k,n) = jdi, exp(j27rkn /K), with k = O, .. ·,K -1 and 

n=O,,,·,N - 1. 

3. CHANNEL ES TIMATION AND DATA 
DETECTION 

3.1 Time-Division Multiplexing 

In the first phase, we assume that the receiver estimates the 
channel in the least square sense. Hence, the channel esti­
mate is given by: 

YIP� (ptpn-1 
H+ VIP� (PtP�)-l 
H+LlHt 

where LlHt = V1P� (PtP�)-1 . 
In the data transmission phase, the linear receiver uses 

the channel estimate in order to retrieve the transmitted data, 
thus yielding the estimated data matrix given by: 

(1) 

Assuming that the channel estimation error is small, the 
pseudo-inverse of the estimated matrix can be approximated 
by the linear part of the Taylor expansion as: 

(Htr = H# -H# (LlHt)H#. 

Hence, the zero-forcing estimate of the transmitted matrix 
can be expressed as: 

�nsequently, the effective post-processing noise Ll Wt = 

Wt -Wt could be written as: 
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3.2 Data-Dependent Superimposed Training 

For the data-dependent superimposed training scheme, the 
channel estimate is given by: 

Hd YP:t(PdP:t)-l 
H+LlHd 

where LlHd = VP:t (p dP:t) -I. The zero-forcing estimate is 
given by: 

Wd (HdrY(IN-J) 
Wd+LlWd 

where using the Taylor expansion, we have: 

LlWd -WJ -H#LlHdW(IN-J) 
+ (H# -H# LlHdH#) V (IN -J) . 

4. PERFORMANCE ANALYSIS 

For finite system dimensions, the performance analysis of 
the TDMT and DDST schemes is difficult. Instead, we will 
work under the asymptotic regime when N, K and M grow 

to infinity with a constant rate, � ----+ Cl , with 0 < Cl < 1 and 

¥ ----+ C2 > 1. For the TDMT scheme, we assume also that NI 

and N2 go to infinity such that %7- ----+ r. Moreover, the nota­

tion N ----+ 00 will refer to this asymptotic regime. Note that all 
proofs are omitted due to space limitation but are available 
on line at [13] . 

4.1 Asymptotic Post-Processing Noise Distribution 

Under the asymptotic regime, it is possible to prove the 
asymptotic convergence of the post-processing noise by us­
ing the 'characteristic function' approach: 

4.1.1 Time-division multiplexing 

Theorem 1 Under the asymptotic regime, and conditioned 
on the channel, the post-processing noise experienced by the 
i-th antenna at each time k for the TDMT scheme behaves 
asymptotically as a Gaussian random variable: 

-------+ 0 JvT-----j.OQ 

where 

4.1.2 Data-dependent superimposed training 

Theorem 2 Under the asymptotic regime, and conditioned 
on the channel, the post-processing noise experienced by 
the i-th antenna at each time k behaves asymptotically as a 
Gaussian mixture random variable, i.e: 



where 2- is the cardinal of the set of all possible values 
l ie] 

ofWU,k) = CI L W(i,k) and Pi is the probability that k=1 
W(i, k) takes the value ai. Moreover, 8d is given by: 

4.2 Bit Error Rate Expression 

In the sequel, we derive the closed-form expression for the 
BER under QPSK constellation and Gray encoding. 

4.2.1 Time-division multiplexing 
Following the same lines as in [14], it can be proved that for 
the TDMT based scheme, the Bit Error Rate (BER) is given 
by: 

BER =J(M-K + I,K/5" 1), (2) 
where: 

Let c = -ta. Then, it can be easily seen that if c = 0, 
J(m,a,b) = 0.5. If c is strictly positive, then this integral 
has the following closed-form expression [15]: 

JC7nl(m+�) I I J(m,a,b) = ] 2FI(1,m+-,m+I,--), 
2(I+c)m+zl(m+l) 2 I+c 

(4) 
where 2Fl (p,q, n,z) is the hypergeometric function [16], and 
r is the complete gamma function defined as: 

4.2.2 Data-dependent superimposed training 
Let NU,}) denote the post-processing noise such that we 
have: 

As it has been shown, NU behaves as a mixture of Gaussian 
random variables. Using the symmetry of noise and data, the 
BER expression under QPSK constellation is given by: 

BER = P [9tWd(i,}) > 019tWd(i,}) = -/�] 
p [9t(NU,})) > AJ 
�PkEQ (vcr (1-�) ) 

where the expectation is taken over the distribution of X = 1 . 
b Dd[(HHH) I L gIven y: 

(K8 )M-K+l :0i-K 
f; ( ) -

d -KDdX 
xx - ( ) e . M-K! 
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Hence, the BER expression is given by: 

l-l 
BER= �lE cI, (l �)Q ((I +CI (2k-�)) vx) . 2 '"I 

I k= 1 cI 
I Cl 

Using (3), the BER can be expressed as: 

where * = t, is assumed to be integer. 

5. OPTIMAL POWER ALLOCATION 

Referring to (2) and (5), we can easily see that the optimal 
amount of power allocated to data and pilot for the TDMT 
scheme (resp. for the DDST scheme) is the one that mini­
mizes 81 (resp. 8d). 

5.1 Time-Division Multiplexing Scheme 

Let r = N2/Nl and Cl = (I +r)cl. Minimizing 8/ with re­

spect to 0",7. and O"); under the constraint that NIO"}; + N20",7. = 
(NI + N2)O"f (this is a simple second-order polynomial opti­
mization), we get: 

r ((1 +r)(i2 + i'1(J;�) T C2-1 

2 (i
F-r (/r======�==-r=========�) ((1 + ) 2 + c, (J3 ) + - ((1 + 0 ) 2 + m3 ) r r (iT "2-] CI I (ij' c,=T 

(6) 

(7) 

5.2 Data-Dependent Superimposed Training Scheme 

The optimal data and pilot powers that minimize 8d subject 2 2 2 ' b to O"w' + 0"1" = O"T are given y: 

6. SIMULATIONS 

6.1 Accuracy of the Asymptotic Results 

Despite being valid only for the asymptotic regime, our re­
sults are found to yield good accuracy even for very small 
system dimensions. Fig. I plots the empirical and theoretical 
BER using QPSK modulation for N = 32, K = 2, and M = 4 
for the TDMT and DDST based schemes. All comparisons 
are conducted in the context when both schemes (TDMT and 
DDST) have the same total energy. The number of pilots is 



set to N1 = 2 (N2 = 30) for the TDMT scheme. For low SNR 
values (SNR until 6 dB), both schemes achieve approxima­
tively the same BER performance, and therefore the DDST 
scheme outperforms its TDMT counterpart in terms of data 
rate since it has a better bandwidth efficiency. For high SNR 
values, the noise caused by the data distorsion is higher than 
the Gaussian additive noise, thus affecting the performance 
of the DDST scheme. 

SNR (dB) 

Figure 1: Theoretical and empirical BER for the TDMT and 
DDST based schemes. 

6.2 Application 1 
We consider an application in which the BER should be be­
Iow a certain threshold, say 10-2. This may be the case 
for instance of circuit-switched voice applications. We set 

/', u2 
the SNR = -:!i to 15 dB and the number of transmitting and 

u" 

receiving antennas to 2 and 4, respectively (i.e, K = 2 and 
M = 4). We then vary the ratio C1 from 0.01 to 0.5. For each 
value of C1, we compute the BER by using our results as 
�llustrated in Fig. 2. We note that the data-dependent super­
Imposed training may be interesting for low values of Cl (say 
below 0.125), i.e. ,  for long enough frames. For small frames 
(high distorsion ratio cd, the distortion of the data becomes 
too high thus reducing the interest of the DDST scheme. 

Figure 2: BER with respect to C1 when K = 2, M = 4 and 
SNR=15 dB 
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6.3 Application 2 
In this experiment, we also consider a scenario where the 
BER should be below 10-2. We set the packet length N to 32 
and the number of transmitting and receiving antennas to 2 
and 4. Using (6), (7) and (2), we determine the minimum 
number of required pilot symbols to meet the BER lower 
bound requirement. We note that if the SNR is below 2 dB 
the BER requirement could not be achieved. This is to b� 
compared with the DDST scheme where the SNR should be 
set at least to 10.5 dB so as to meet the BER lower bound re­
quirement as it can be shown in fig. 3. Moreover, for a BER 
more than 8.5 dB, the minimum number of pilot symbols for 
channel identification (equal to K) is sufficient to meet the 
BER requirement. 

14 
12 
10 

" 8 

°2������---'�0--�'�2 --�'4��'6��'8--�W 
SNR (dB) 

Figure 3: Required r versus SNR for BER s: 10-2. 

7. CONCLUSION 

Based on an asymptotic analysis, we have derived in this pa­
per closed-form expressions for the BER for the TDMT and 
DDST schemes, when using zero-forcing detection. Based 
on these expressions, we have calculated the optimal pilot 
and data power expressions that minimize the BER. We have 
shown that in applications in which the BER should be less 
than a given threshold, the DDST scheme with linear re­
ceiver might be interesting for large enough frames. For the 
same kind of application, we have determined for the TDMT 
scheme the minimum required number of pilot symbols that 
could meet the BER lower bound requirement. However, 
overall, and for the considered context, the TDMT scheme 
seems to be more interesting (perform ant) than the DDST 
scheme when using zero-forcing receivers. Future exten­
sion of this work would be to analyse the performance of the 
DDST scheme when using non-linear receivers as the one 
considered in [8] . 
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